A Predictive Analysis of China’s CO2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model
Abstract
:1. Introduction
2. Literature Review
2.1. Relationship between OFDI and Carbon Emissions
2.2. China’s CO2e Forecasting Using Grey Model
3. Methodology
3.1. Nonlinear Fractional Grey Multivariable Model
3.2. An Illustrative Example
4. Empirical Study
4.1. Data Description
4.2. Empirical Results
4.3. Discussion and Suggestions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Nomenclature
CO2e | Carbon dioxide emissions |
OFDI | Outward foreign direct investment |
GM | Grey model |
R&D | Research and development |
FGM | Grey model with fractional-order accumulated generating operation |
NFGM | Nonlinear grey model with fractional-order accumulated generating operation |
ARMA | Auto-regressive moving average model |
MAPE | Mean absolute percentage error |
Appendix B. Traditional GM(1,N) Model
References
- IEA. World Energy Outlook 2008. Available online: http://www.worldenergyoutlook.org/ (accessed on 6 April 2020).
- Dong, K.Y.; Hochman, G.; Zhang, Y.Q.; Sun, R.J.; Li, H.; Liao, H. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R. Is china’s economic growth decoupled from carbon emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Ding, S.; Dang, Y.G.; Li, X.M.; Wang, J.J.; Zhao, K. Forecasting chinese CO2 emissions from fuel combustion using a novel grey multivariable model. J. Clean. Prod. 2017, 162, 1527–1538. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Liu, D.L.; Fang, Z.G.; Xu, H.Y. Modelling and forecasting CO2 emissions in the brics (brazil, russia, india, china, and south africa) countries using a novel multi-variable grey model. Energy 2015, 79, 489–495. [Google Scholar] [CrossRef]
- Wang, S.J.; Shi, C.Y.; Fang, C.L.; Feng, K.S. Examining the spatial variations of determinants of energy-related CO2 emissions in china at the city level using geographically weighted regression model. Appl. Energy 2019, 235, 95–105. [Google Scholar] [CrossRef]
- Mello, D.; Luiz, R. Foreign direct investment in developing countries and growth: A selective survey. J. Dev. Stud. 1997, 34, 1–34. [Google Scholar] [CrossRef]
- Khachoo, Q.; Sharma, R. Fdi and innovation: An investigation into intra- and inter- industry effects. Glob. Econ. Rev. 2016, 45, 311–330. [Google Scholar] [CrossRef]
- Zhu, L.; Jeon, B.N. International r&d spillovers: Trade, fdi, and information technology as spillover channels. Rev. Int. Econ. 2007, 15, 955–976. [Google Scholar]
- Yue, W.; Du, L. The effects of fdi and odi on the development of low carbon economy and the inspiration for b&r strategy. Wuhan Univ. J. Soc. Sci. 2017, 70, 52–60. [Google Scholar]
- Shahbaz, M.; Balsalobre-Lorente, D.; Sinha, A. Foreign direct investment-CO2 emissions nexus in middle east and north african countries: Importance of biomass energy consumption. J. Clean. Prod. 2019, 217, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Kojima, K. Direct Foreign Investment: A Japanese Model of Multinational Business Operation; Crooom Helm: London, UK, 1978. [Google Scholar]
- Liu, H.Y.; Li, M. The home country effect research of china’s ofdi on carbon emissions. J. Ind. Technol. Econ. 2016, 35, 12–18. [Google Scholar]
- Jiang, H.; Kong, P.Y.; Hu, Y.-C.; Jiang, P. Forecasting china’s CO2 emissions by considering interaction of bilateral fdi using the improved grey multivariable verhulst model. Environ. Dev. Sustain. 2020, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.L. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Zeng, B.; Luo, C.M.; Liu, S.F.; Li, C. A novel multi-variable grey forecasting model and its application in forecasting the amount of motor vehicles in beijing. Comput. Ind. Eng. 2016, 101, 479–489. [Google Scholar] [CrossRef]
- Wu, L.F.; Gao, X.H.; Xiao, Y.L.; Yang, Y.J.; Chen, X.N. Using a novel multi-variable grey model to forecast the electricity consumption of shandong province in china. Energy 2018, 157, 327–335. [Google Scholar] [CrossRef]
- Zeng, B.; Liu, S.; Cuevas, C. A self-adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application. Math. Methods Appl. Sci. 2017, 40, 7843–7857. [Google Scholar] [CrossRef]
- Mao, S.H.; Xiao, X.P.; Gao, M.Y.; Wang, X.P.; He, Q. Nonlinear fractional order grey model of urban traffic flow short-term prediction. J. Grey Syst. 2018, 30, 1–17. [Google Scholar]
- Wu, W.Q.; Ma, X.; Zeng, B.; Wang, Y.; Cai, W. Forecasting short-term renewable energy consumption of china using a novel fractional nonlinear grey bernoulli model. Renew. Energy 2019, 140, 70–87. [Google Scholar] [CrossRef]
- Wang, Z.X.; Ye, D.J. Forecasting chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. J. Clean. Prod. 2017, 142, 600–612. [Google Scholar] [CrossRef]
- Yuan, Y.B.; Zhao, H.; Yuan, X.H.; Chen, L.Y.; Lei, X.H. Application of fractional order-based grey power model in water consumption prediction. Environ. Earth Sci. 2019, 78, 266. [Google Scholar] [CrossRef]
- Wang, Z.X.; Li, Q. Modelling the nonlinear relationship between CO2 emissions and economic growth using a pso algorithm-based grey verhulst model. J. Clean. Prod. 2019, 207, 214–224. [Google Scholar] [CrossRef]
- Nie, F.; Liu, H.Y. Carbon emissions effect of china’s ofdi evidence from urbanization threshold model. China Popul. Resour. Environ. 2016, 26, 123–131. [Google Scholar]
- Liu, H.Y.; Gong, M.Q. A study on the factor market distortion and carbon emission scale effect of two-way fdi. China Population. Resour. Environ. 2018, 28, 27–35. [Google Scholar]
- Long, R.Y.; Zhou, Y. Effect of ofdi reverse technology spillover on regional carbon productivity in China. Ecol. Econ. 2017, 33, 58–62. [Google Scholar]
- Yang, H.; Sun, J. Influence of two-way investment on technological progress and environment: Based on panel threshold model analysis. Sci. Technol. Manag. Res. 2019, 39, 103–109. [Google Scholar]
- Buckley, P.J.; Clegg, L.J.; Cross, A.R.; Liu, X.; Voll, H.; Zheng, P. The determinants of chinese outward foreign direct investment. J. Int. Bus. Stud. 2007, 38, 499–518. [Google Scholar] [CrossRef]
- Fei, N.Y. Low-carbon effects of chinese foreign direct investment. Resour. Dev. Mark. 2014, 30, 984–989. [Google Scholar]
- Luo, L.W.; Cheng, X.J. Path construction of china’s outward foreign direct investment for pushing forward low-carbon economy. Technol. Econ. 2013, 32, 76–82. [Google Scholar]
- Huang, J. Threshold effect of fdi on china’s carbon emission intensity. Stat. Decis. 2017, 33, 108–111. [Google Scholar]
- Zhou, J.Q.; Han, Y.; Zhang, Y. The influence mechanism and effect of foreign investment on china’s carbon emissions. J. Beijing Inst. Technol. Soc. Sci. Ed. 2015, 17, 46–53. [Google Scholar]
- Yu, Y.; Xu, W. Impact of fdi and r&d on china’s industrial CO2 emissions reduction and trend prediction. Atmos. Pollut. Res. 2019, 10, 1627–1635. [Google Scholar]
- Jiang, H.; Hu, Y.-C.; Lin, J.-Y.; Jiang, P. Analyzing china’s ofdi using a novel multivariate grey prediction model with fourier series. Int. J. Intell. Comput. Cybern. 2019, 12, 352–371. [Google Scholar] [CrossRef]
- Wu, W.Z.; Zhang, T. An improved gray interval forecast method and its application. Commun. Stat.-Theory Methods 2019, 49, 1120–1131. [Google Scholar] [CrossRef]
- Li, F.F.; Xu, Z.; Ma, H. Can china achieve its CO2 emissions peak by 2030? Ecol. Indic. 2018, 84, 337–344. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D.; Shang, W. A small-sample hybrid model for forecasting energy-related CO2 emissions. Energy 2014, 64, 673–677. [Google Scholar] [CrossRef]
- Pao, H.-T.; Fu, H.-C.; Tseng, C.-L. Forecasting of CO2 emissions, energy consumption and economic growth in china using an improved grey model. Energy 2012, 40, 400–409. [Google Scholar] [CrossRef]
- Wu, W.Q.; Ma, X.; Zhang, Y.Y.; Li, W.P.; Wang, Y. A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of brics countries. Sci. Total Environ. 2020, 707, 135447. [Google Scholar] [CrossRef]
- Ma, X.; Xie, M.; Wu, W.Q.; Zeng, B.; Wang, Y.; Wu, X.X. The novel fractional discrete multivariate grey system model and its applications. Appl. Math. Model. 2019, 70, 402–424. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Yao, L.G.; Yan, S.L.; Liu, D.L. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wang, Z.X.; Dang, Y.g.; Zhao, J.Y. Optimized gm(1,1) power model and its application. Syst. Eng. Theory Pract. 2012, 34, 1973–1978. [Google Scholar]
- Zeng, L. Analysing the high-tech industry with a multivariable grey forecasting model based on fractional order accumulation. Kybernetes 2019, 48, 1158–1174. [Google Scholar] [CrossRef]
- Liu, S.F.; Lin, Y. Grey Systems: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
No. | Actual | Linear Regression | GM(1,1) | GM(1,N) | FGM(1,N) | NFGM(1,N) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | APE | Predicted | APE | Predicted | APE | Predicted | APE | Predicted | APE | ||
1 | 11.4918 | 12.2438 | 6.54 | 11.4918 | 0.00 | 11.4918 | 0.00 | 11.4918 | 0.00 | 11.4918 | 0.00 |
2 | 12.2255 | 12.7083 | 3.95 | 10.2363 | 16.27 | 12.0729 | 1.25 | 12.1431 | 0.67 | 11.8068 | 3.43 |
3 | 13.3201 | 13.4741 | 1.16 | 12.041 | 9.60 | 13.3124 | 0.06 | 13.2250 | 0.71 | 13.2241 | 0.72 |
4 | 14.9530 | 14.7367 | 1.45 | 15.0235 | 0.47 | 14.9529 | 0.00 | 14.8553 | 0.65 | 14.9533 | 0.00 |
5 | 17.3891 | 16.8184 | 3.28 | 18.2006 | 4.67 | 17.2267 | 0.93 | 17.3104 | 0.45 | 17.3901 | 0.01 |
6 | 21.0232 | 20.2505 | 3.68 | 22.0495 | 4.88 | 20.5136 | 2.42 | 21.0355 | 0.06 | 20.9479 | 0.36 |
7 | 26.2226 | 25.9092 | 1.20 | 26.7124 | 1.87 | 25.4344 | 3.01 | 26.7891 | 2.16 | 26.3175 | 0.36 |
8 | 34.5325 | 35.2387 | 2.05 | 32.3614 | 6.29 | 33.0049 | 4.42 | 35.9340 | 4.06 | 34.6176 | 0.25 |
MAPE | 2.91 | 5.51 | 1.51 | 1.10 | 0.64 | ||||||
9 | 46.5982 | 50.6204 | 8.63 | 39.205 | 15.87 | 44.8886 | 3.67 | 51.0725 | 9.60 | 47.6437 | 2.24 |
Year | CO2e | OFDI |
---|---|---|
2005 | 2.37 | 13.73 |
2006 | 2.17 | 23.93 |
2007 | 1.82 | 17.15 |
2008 | 1.45 | 56.74 |
2009 | 1.40 | 43.89 |
2010 | 1.29 | 57.95 |
2011 | 1.14 | 48.42 |
2012 | 1.03 | 64.96 |
2013 | 0.96 | 72.97 |
2014 | 0.87 | 123.13 |
2015 | 0.83 | 174.39 |
2016 | 0.81 | 216.42 |
2017 | 0.76 | 138.29 |
Year | Actual | ARMA(1,1) | Linear Regression | GM(1,1) | GM(1,N) | FGM(1,N) | NFGM(1,N) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | APE | Predicted | APE | Predicted | APE | Predicted | APE | Predicted | APE | Predicted | APE | ||
2005 | 2.37 | 2.37 | 0.00 | 1.97 | 16.78 | 2.37 | 0.00 | 2.37 | 0.00 | 2.37 | 0.00 | 2.37 | 0.00 |
2006 | 2.17 | 2.10 | 3.13 | 1.83 | 15.45 | 2.04 | 5.78 | 2.11 | 2.50 | 2.07 | 4.64 | 2.07 | 4.62 |
2007 | 1.82 | 1.82 | 0.07 | 1.92 | 5.46 | 1.82 | 0.25 | 1.82 | 0.03 | 1.81 | 0.48 | 1.81 | 0.54 |
2008 | 1.45 | 1.59 | 9.85 | 1.39 | 4.24 | 1.62 | 11.63 | 1.68 | 16.07 | 1.61 | 10.70 | 1.61 | 10.74 |
2009 | 1.40 | 1.41 | 0.70 | 1.56 | 11.80 | 1.44 | 3.28 | 1.48 | 5.96 | 1.43 | 2.25 | 1.43 | 2.08 |
2010 | 1.29 | 1.25 | 2.54 | 1.37 | 6.76 | 1.29 | 0.03 | 1.38 | 7.41 | 1.28 | 0.58 | 1.28 | 0.82 |
2011 | 1.14 | 1.13 | 0.63 | 1.50 | 32.34 | 1.15 | 0.99 | 1.22 | 7.29 | 1.15 | 1.35 | 1.14 | 0.71 |
2012 | 1.03 | 1.02 | 0.93 | 1.28 | 23.77 | 1.02 | 1.20 | 1.18 | 14.44 | 1.04 | 0.77 | 1.03 | 0.05 |
2013 | 0.96 | 0.94 | 2.25 | 1.17 | 22.01 | 0.91 | 5.25 | 1.14 | 18.23 | 0.95 | 1.19 | 0.94 | 2.05 |
2014 | 0.87 | 0.87 | 0.65 | 0.50 | 43.18 | 0.81 | 7.27 | 1.34 | 52.77 | 0.87 | 0.05 | 0.87 | 0.03 |
MAPE | 2.08 | 18.18 | 3.57 | 12.47 | 2.20 | 2.16 | |||||||
2015 | 0.83 | 0.81 | 1.84 | −0.19 | 123.34 | 0.72 | 12.56 | 1.59 | 92.07 | 0.81 | 1.69 | 0.82 | 0.20 |
2016 | 0.81 | 0.76 | 6.16 | −0.76 | 193.19 | 0.64 | 20.90 | 1.82 | 123.25 | 0.76 | 6.53 | 0.79 | 3.41 |
2017 | 0.76 | 0.72 | 4.94 | 0.29 | 61.59 | 0.57 | 24.77 | 1.33 | 74.94 | 0.71 | 7.45 | 0.72 | 5.58 |
MAPE | 4.32 | 126.04 | 19.41 | 96.75 | 5.22 | 3.06 |
Year | OFDI Prediction | CO2e Prediction |
---|---|---|
2018 | 96.47 | 0.66 |
2019 | 203.89 | 0.66 |
2020 | 230.88 | 0.64 |
2021 | 261.44 | 0.63 |
2022 | 296.04 | 0.63 |
2023 | 335.23 | 0.64 |
2024 | 379.60 | 0.65 |
2025 | 429.85 | 0.67 |
2026 | 486.75 | 0.69 |
2027 | 551.18 | 0.72 |
2028 | 624.13 | 0.76 |
2029 | 706.75 | 0.80 |
2030 | 800.30 | 0.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Jiang, P.; Kong, P.; Hu, Y.-C.; Lee, C.-W. A Predictive Analysis of China’s CO2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model. Sustainability 2020, 12, 4325. https://doi.org/10.3390/su12104325
Jiang H, Jiang P, Kong P, Hu Y-C, Lee C-W. A Predictive Analysis of China’s CO2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model. Sustainability. 2020; 12(10):4325. https://doi.org/10.3390/su12104325
Chicago/Turabian StyleJiang, Hang, Peng Jiang, Peiyi Kong, Yi-Chung Hu, and Cheng-Wen Lee. 2020. "A Predictive Analysis of China’s CO2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model" Sustainability 12, no. 10: 4325. https://doi.org/10.3390/su12104325
APA StyleJiang, H., Jiang, P., Kong, P., Hu, Y. -C., & Lee, C. -W. (2020). A Predictive Analysis of China’s CO2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model. Sustainability, 12(10), 4325. https://doi.org/10.3390/su12104325