Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Methods
2.2.1. Preparation of Banana and Red Beetroot Peel Powder
2.2.2. Determination of Macrocomponent Composition
2.2.3. Extraction
Conventional Extraction Techniques
Innovative Extraction Techniques
2.2.4. Characterization of the Bioactive Content of the Obtained Extracts
Determination of Total Phenolic Content (TPC) and Antioxidant Capacity (AC)
HPLC Determination of Dopamine in Banana Peel Extracts
Determination of Total Betalain Content in Red Beetroot Peel Extracts
2.2.5. Biological Effect of Banana and Red Beetroot Peel Extract
Preparation of Extracts for Biological Effects In Vitro
Cytotoxicity Assay
Reactive Oxygen Species Determination
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Macrocomponent Composition and Content of Macro- and Microelemenents
3.2. Bioactive Content of Obtained Extracts
3.2.1. Characterization of Banana Peel Extracts
3.2.2. Characterization of Red Beetroot Peel Extracts
3.3. Biological Effect of Banana and Red Beetroot Peel Extracts
Author Contributions
Funding
Conflicts of Interest
References
- FAO: How to Feed the World. 2050. Available online: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 19 March 2020).
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- World Atlas: The Most Popular Fruit in The World. Available online: https://www.worldatlas.com/articles/the-most-popular-fruit-in-the-world.html (accessed on 19 March 2020).
- Knoema: World–Bananas Production Quantity. Available online: https://knoema.com/atlas/World/topics/Agriculture/Crops-Production-Quantity-tonnes/Bananas-production (accessed on 24 March 2020).
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Anhwange, B.A. Chemical Composition of Musa sapientum (Banana) Peels. J. Food Technol. 2008, 6, 263–266. [Google Scholar]
- Abou-Arab, A.A.; Abu-Salem, F.M. Nutritional and Anti-Nutrtional Composition of Banana Peels as Influenced by Microwave Drying Methods. Int. J. Nutr. Food. Sci. 2017, 11, 845–852. [Google Scholar]
- Emaga, T.H.; Andrianaivo, R.H.; Wathelet, B.; Tchango, J.T.; Paquot, M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 2007, 103, 590–600. [Google Scholar] [CrossRef]
- Someya, S.; Yoshiki, Y.; Okubo, K. Antioxidant compounds from bananas (Musa Cavendish). Food Chem. 2002, 79, 351–354. [Google Scholar] [CrossRef]
- Kanazawa, K.; Sakakibara, H. High content of dopamine, a strong antioxidant, in cavendish banana. J. Agric. Food Chem. 2000, 48, 844–848. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol Antioxidant Quantity and Quality in Foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- da Silva, D.V.T.; dos Santos Baião, D.; de Oliveira Silva, F.; Alves, G.; Perrone, D.; Del Aguila, E.M.; Paschoalin, V.M.F. Betanin, a Natural Food Additive: Stability, Bioavailability, Antioxidant and Preservative Ability Assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [Green Version]
- Lόpez, N.; Puértolas, E.; Condόn, S.; Raso, J.; Alvarez, I. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J. Food Eng. 2009, 90, 60–66. [Google Scholar] [CrossRef]
- Transparency Market Research: Beet Root Extract Market–Global Industry Analysis, Size, Share, Growth, Trend and Forecast 2018–2026. Available online: https://www.transparencymarketresearch.com/beet-root-extract-market.html (accessed on 19 March 2020).
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Kujala, T.; Loponen, J.; Pihlaja, K. Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation. Zeitschrift für Naturforschung C 2001, 56, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plants Materials. Trac-Trend. Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Kamal, S.M. Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, K.; Huang, S.; Wang, H.; Mu, X.; He, C.; Ji, X.; Zhang, J.; Huang, F. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chem. 2008, 106, 1264–1270. [Google Scholar] [CrossRef]
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S.V. Microwave-Assisted Extraction of Phenolic Antioxidants from Potato Peels. Molecules 2011, 16, 2218–2232. [Google Scholar] [CrossRef] [Green Version]
- Jha, P.; Das, A.J.; Deka, S.C. Optimization of utrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk. J. Food Sci. Techol. 2017, 54, 3847–3858. [Google Scholar] [CrossRef]
- Jokić, S.; Gagić, T.; Knez, Ž.; Šubarić, D.; Škerget, M. Separation of active compounds from food by-product (cocoa shell) using subcritical water extraction. Molecules 2018, 23, 1408. [Google Scholar] [CrossRef] [Green Version]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica Junior, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluid. 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Singh, P.P.; Saldana, M.D.A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Tapre, A.R.; Jain, R.K. Study of Advanced Maturity Stages of Banana. Int. J. Adv. Eng. Res. Stud. 2012, 1, 272–274. [Google Scholar]
- Padmore, J.M. Animal feed - AOAC official method 930.15 - Moisture in animal feed. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC International: Arlington, VA, USA, 1990; Volume 1, pp. 69–70. [Google Scholar]
- Padmore, J.M. Animal feed - AOAC official method 976.05 – Protein (crude) in animal feed, automated Kjeldahl method. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC International: Arlington, VA, USA, 1990; Volume 1, p. 72. [Google Scholar]
- Padmore, J.M. Animal feed-AOAC official method 920.39 – Fat (crude) or ether extract in animal feed. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC International: Arlington, VA, USA, 1990; Volume 1, p. 79. [Google Scholar]
- Padmore, J.M. Animal feed-AOAC official method 942.05–Ash of animal feed. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC International: Arlington, VA, USA, 1990; Volume 1, p. 70. [Google Scholar]
- McCleary, B.V.; DeVries, J.W.; Rader, J.I.; Cohen, G.; Prosky, L.; Mugford, D.C.; Okuma, K. Determination of insoluble, soluble, and total dietary fibre (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J. AOAC Int. 2012, 95, 824–844. [Google Scholar] [CrossRef] [PubMed]
- ISO 5509. Animal and Vegetable Fats and Oils–Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Vojvodić, A.; Komes, D.; Vovk, I.; Belščak-Cvitanović, A.; Bušić, A. Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res. Int. 2016, 89, 565–573. [Google Scholar] [CrossRef]
- Jokić, S.; Aladić, K.; Šubarić, D. Subcritical water extraction laboratory plant design and application. Annu. Croat. Acad. Eng. 2018, 21, 247–258. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Stintzing, F.; Schieber, A.; Carle, R. Evaluation of colour properties and chemical quality parameters of cactus juice. Eur. Food Res. Technol. 2003, 216, 303–311. [Google Scholar] [CrossRef]
- Babich, H.; Borenfreund, E. Cytotoxicity of T-2 toxin and its metabolites determined with the neutral red cell viability assay. Appl. Environ. Microbiol. 1991, 57, 2101–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- Hempel, S.L.; Buettner, G.R.; O’Malley, Y.Q.; Wessels, D.A.; Flaherty, D.M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2’,7’-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate, and dihydrorhodamine. Free Radic. Biol. Med. 1999, 27, 146–159. [Google Scholar] [CrossRef]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Okeke, B.C.; Obi, S.K.C. Lignocellulose and Sugar Composition of Some Agro-waste Materials. Bioresour. Technol. 1994, 47, 283–284. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Vasconcellos, J.; Conte-Junior, C.; Silva, D.; Pierucci, A.P.; Paschoalin, V.; Alvares, T.S. Comparison of Total Antioxidant Potential, and Total Phenolic, Nitrate, Sugar, and Organic Acid Contents in Beetroot Juice, Chips, Powder, and Cooked Beetroot. Food Sci. Biotechnol. 2016, 25, 79–84. [Google Scholar] [CrossRef]
- Costa, A.P.D.; Hermes, V.S.; Rios, A.O.; Flôres, S.H. Minimally processed beetroot waste as an alternative souce to obtain functional ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry. Innov. Food Sci. Emerg. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Optimization of ultrasound-assisted extraction conditions for recovery of phenolic compounds and antioxidant capacity from banana (Musa cavendish) peel. J. Food Process. Pres. 2017, 41, 1–14. [Google Scholar] [CrossRef]
- Aboul-Enein, A.M.; Salama, Z.A.; Gaafar, A.A.; Aly, H.F.; A bou-Elella, F.; Ahmed, H.A. Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. J. Chem. Pharm. Res. 2016, 8, 46–55. [Google Scholar]
- Fatemeh, S.R.; Saifullah, R.; Abbas, F.M.A.; Azhar, M.E. Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: Influence of variety and stage of ripeness. Int. Food Res. J. 2012, 19, 1041–1046. [Google Scholar]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Ishak, N.A.; Abdul Rashid, M.Y.; Zabidi, N.A. Local Banana Peels Extract by Using Subcritical Water Extraction Technique. Ulum Islamiyyah 2019, 26, 19–30. [Google Scholar]
- Wong, Y.M.; Siow, L.F. Effects on heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models. J. Food Sci. Technol. 2015, 52, 3086–3092. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Food. 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Laqui-Vilca, C.; Aguilar-Tuesta, S.; Mamani-Navarro, W.; Montaño-Bustamante, J.; Condezo-Hoyos, L. Ultrasound-assisted optimal extraction and thermal stability of betalains from colored quinoa (Chenopodium quinoa Willd) hulls. Ind. Crop. Prod. 2018, 111, 606–614. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, sources, applications, and stability–a review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E.; Ballard, T.; Liceaga, A.; San Martín-González, M.F. Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT-Food Sci. Technol. 2014, 59, 276–282. [Google Scholar] [CrossRef]
- Dahham, S.S.; Agha, M.T.; Tabana, Y.M.; Malik, A.; Abdul, S. Antioxidant Activities and Anticancer Screening of Extracts from Banana Fruit (Musa sapientum). Acad. J. Cancer Res. 2015, 8, 28–34. [Google Scholar]
- Kapadia, G.J.; Azuine, M.A.; Rao, G.S.; Arai, T.; Iida, A.; Tokuda, H. Cytotoxic Effect of the Red Beetroot (Beta vulgaris L.) Extract Compared to Doxorubicin (Adriamycin) in the Human Prostate (PC-3) and Breast (MCF-7) Cancer Cell Lines. Anticancer Agents Med. Chem. 2011, 11, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; An, D.; Nguyen, C.T.T.; Patil, B.S.; Kim, J.; Yoo, K.S. Betalain and Betaine Composition of Greenhouse- or Field-Produced Beetroot (Beta vulgaris L.) and Inhibition of HepG2 Cell Proliferation. J. Agric. Food Chem. 2014, 62, 1324–1331. [Google Scholar] [CrossRef]
- Ortiz, L.; Dorta, E.; Gloria Lobo, M.; González-Mendoza, L.A.; Díaz, C.; González, M. Use of Banana (Musa acuminata Colla AAA) Peel Extract as an Antioxidant Source in Orage Juices. Plant Food Hum. Nutr. 2017, 72, 60–66. [Google Scholar] [CrossRef]
- Sathya, M. Assaying the Antioxidant Activity of Banana Peel. Am. J. Biochem. Mol. Biol. 2014, 4, 122–129. [Google Scholar] [CrossRef]
- Baldi, A.; Pandit, M.; Ranka, P. Amelioration of in-vivo Antioxidant Activity by Banana Extracts. Int. J. Pharm. Biol. Arch. 2012, 3, 157–161. [Google Scholar]
Banana Peel | Red Beetroot Peel | |
---|---|---|
Dry matter (%) | 88.1 ± 0.1 | 90.8 ± 0.0 |
Crude protein content (% dmb*) | 9.2 ± 0.3 | 18.3 ± 0.2 |
Crude fat content (% dmb) | 7.5 ± 0.1 | 0.6 ± 0.0 |
● Lauric acid C12:0 (% fa*) | 28.9 ± 0.2 | np |
● Palmitic acid C16:0 (% fa) | 28.6 ± 0.1 | np |
● Stearic acid C18:1 (% fa) | 4.7 ± 0.0 | np |
● Linolenic acid C18:3n3 (% fa) | 37.8 ± 0.2 | np |
Crude mineral content (% dmb) | 14.0 ± 0.3 | 12.1 ± 0.1 |
Total dietary fibre (% dmb) | 39.0 ± 2.7 | 33.6 ± 1.0 |
● Insoluble dietary fibre (% dmb) | 38.1 ± 2.9 | 26.6 ± 0.5 |
● Soluble dietary fibre (% dmb) | 0.9 ± 0.3 | 6.9 ± 0.5 |
Soluble sugar content (% dmb) | 19.1 ± 0.1 | 12.5 ± 0.2 |
● Fructose (% dmb) | 12.7 ± 0.2 | nd |
● Glucose (% dmb) | n.d. | nd |
● Sucrose (% dmb) | 6.4 ± 0.1 | 12.5 ± 0.2 |
Banana Peel | Red Beetroot Peel | |
---|---|---|
Macroelements (mg kg−1 dmb*) | ||
Na | 38 ± 0 | 4380 ± 189 |
Mg | 150 ± 14 | 6570 ± 356 |
K | 75061 ± 563 | 41854 ± 1366 |
Ca | 2698 ± 3 | 2851 ± 153 |
Fe | 33 ± 4 | 159 ± 10 |
P | 2900 ± 31 | 7811 ± 393 |
Microelements (µg kg−1 dmb) | ||
V | 17 ± 1 | 308 ± 21 |
Mn | 63 ± 0 | 52 ± 3 |
Cr | 172 ± 31 | 343 ± 21 |
Co | 35 ± 0 | 200 ± 7 |
Ni | 391 ± 19 | 1370 ± 76 |
Cu | 6 ± 0 | 19 ± 1 |
Zn | 14 ± 0 | 49 ± 2 |
As | 8 ± 0 | 91 ± 6 |
Se | 13 ± 0 | 26 ± 1 |
Mo | 135 ± 3 | 580 ± 11 |
Cd | 11 ± 7 | 421 ± 8 |
Sn | 23 ± 1 | 17 ± 1 |
Sb | 8 ± 1 | 9 ± 1 |
Hg | 49 ± 2 | 36 ± 1 |
Sample | TPC (mg GAE g−1 dmb) | Antioxidant Capacity | Dopamine (mg g−1 dmb) | |
---|---|---|---|---|
DPPH (mmol Trolox g−1 dmb) | ABTS (mmol Trolox g−1 dmb) | |||
INF | 25.59 ± 0.38 a | 0.156 ± 0.00 | 0.160 ± 0.00 | 10.29 ± 0.00 a |
DEC | 25.38 ± 0.53 a | 0.163 ± 0.00 | 0.195 ± 0.00 | 12.63 ± 0.00 |
MAC | 18.73 ± 0.48 bc | 0.124 ± 0.00 | 0.125 ± 0.00 | 9.94 ± 0.02 |
U30 | 18.26 ± 0.59 bd | 0.117 ± 0.00 | 0.123 ± 0.00 | 10.33 ± 0.01 a |
U60 | 17.96 ± 0.13 cd | 0.112 ± 0.00 | 0.132± 0.00 | 11.31 ± 0.02 |
SWE | 16.06 ± 0.06 | 0.110 ± 0.01 | 0.097 ± 0.00 | 10.21 ± 0.03 |
MAE | 3.46 ± 0.05 | 0.021 ± 0.00 | 0.020 ± 0.00 | 5.14 ± 0.01 |
Sample | TPC (mg GAE g−1 dmb) | Antioxidant Capacity | Total Betalain Content | ||
---|---|---|---|---|---|
DPPH (mmol Troloxg−1 dmb) | ABTS (mmol Trolox g−1 dmb) | Total Betacyanin Content (mg betanin g−1 dmb) | Total Betaxanthin Content (mg vulgaxanthin I g−1 dmb) | ||
INF | 45.03 ± 0.99 abcd | 0.056 ± 0.00 | 0.164 ± 0.00 | 9.80 ± 0.14 | 8.41 ± 0.03 a |
DEC | 66.30 ± 0.41 | 0.098 ± 0.00 | 0.295 ± 0.00 | 6.15± 0.01 | 6.50 ± 0.06 |
MAC | 44.75 ± 2.36 aef | 0.066 ± 0.00 a | 0.188 ± 0.00 | 0.85 ± 0.01 | 3.99 ± 0.02 |
U30 | 44.07 ± 0.22 beg | 0.042 ± 0.00 b | 0.140 ± 0.00 a | 3.87 ± 0.03 a | 8.61 ± 0.08 a |
U60 | 47.99 ± 0.98 ch | 0.048 ± 0.00 | 0.142 ± 0.00 a | 3.84 ± 0.02 a | 6.98 ± 0.06 |
SWE | 45.77 ± 0.05 dfgh | 0.064 ± 0.00 a | 0.210 ± 0.00 | 0.03 ± 0.00 | 0.19 ± 0.04 |
MAE | 39.72 ± 0.76 | 0.040 ± 0.00 b | 0.132 ± 0.00 | 3.08 ± 0.02 | 1.74 ± 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šeremet, D.; Durgo, K.; Jokić, S.; Huđek, A.; Vojvodić Cebin, A.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro. Sustainability 2020, 12, 4539. https://doi.org/10.3390/su12114539
Šeremet D, Durgo K, Jokić S, Huđek A, Vojvodić Cebin A, Mandura A, Jurasović J, Komes D. Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro. Sustainability. 2020; 12(11):4539. https://doi.org/10.3390/su12114539
Chicago/Turabian StyleŠeremet, Danijela, Ksenija Durgo, Stela Jokić, Ana Huđek, Aleksandra Vojvodić Cebin, Ana Mandura, Jasna Jurasović, and Draženka Komes. 2020. "Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro" Sustainability 12, no. 11: 4539. https://doi.org/10.3390/su12114539
APA StyleŠeremet, D., Durgo, K., Jokić, S., Huđek, A., Vojvodić Cebin, A., Mandura, A., Jurasović, J., & Komes, D. (2020). Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro. Sustainability, 12(11), 4539. https://doi.org/10.3390/su12114539