A Review of Technical and Economic Aspects of Biomass Briquetting
Abstract
:1. Introduction
2. Biomass Resources
3. Biomass Feedstock Pre-processing
3.1. Cleaning
3.2. Drying
3.3. Size Reduction
3.4. Binder Addition
4. Biomass Densification and Particle Bonding Mechanism
5. Briquette Quality and Determining Parameters
6. Briquette Production Process
7. Briquetting Process Parameters
7.1. Compression Condition
7.1.1. Compaction pressure
7.1.2. Temperature
7.2. Feedstock Properties
7.2.1. Moisture Content
7.2.2. Particle Size, Shape, and Distribution
7.2.3. Feedstock Composition
8. Briquetting Technology and Types of Machinery
8.1. Screw Press Extruder
8.2. Mechanical Piston Press
8.3. Hydraulic Piston Press
8.4. Roller Press
8.5. Manual Press
9. Applications of Briquettes
10. Economic Implication of Briquetting Technology
10.1. Costs of Briquette Production
10.2. Feasibility Analysis
10.2.1. Past Studies on Economic Analysis in Brief
10.2.2. Sensitivity Analysis
11. Challenges and Prospects
12. Summary and Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
°C | Degree centigrade |
% | Percentage |
≤ | Less-than or equal to |
≥ | Greater-than or equal to |
BCR | Benefit Cost Ratio |
CO2 | Carbon dioxide |
g/cm3 | Gram per centimetre cube |
GHG | Greenhouse gases |
IRR | Internal Rate of Return |
ISO | International Organization of Standards |
Kg/cm2 | Kilogram per centimetre squared |
Kg/h | Kilogram per hour |
Kg/m3 | Kilogram per meter cube |
KJ/kg | Kilojoules per kilogram |
KWh/ton | Kilowatt hour per tonne |
MJ/kg | Megajoules per kilogram |
MPa | Megapascal |
mm | Millimetre |
MSP | Minimum selling price |
N | Netwon |
NPV | Net Present Value (NPV) |
NOx | Nitrogen oxide |
ODMT | Oven-dry metric ton |
PBP | Payback Period |
POS | Palm oil shell |
ROI | Return on investment |
RSK | Rubber seed kernel |
SEM | Scanning electron microscope |
SO2 | Sulfur dioxide |
SOx | Sulfur oxide |
TEM | Transmission electron microscope |
ton/h | Tonne per hour |
TWCB | Torrefied-woodchips briquettes |
USA | United States of America |
VMW | Vegetable market waste |
w.b | Wet basis |
WCB | Woodchips briquettes |
WU | Washington University |
$ | Dollars (USA) |
References
- Sansaniwal, S.K.; Pal, K.; Rosen, M.A.; Tyagi, S.K. Recent advances in the development of biomass gasification technology: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 22, 962–979. [Google Scholar] [CrossRef]
- International Energy Agency. CO2 Emissions from Fuel Combustion—Highlights. 2019. Available online: www.iea.org/tandc/ (accessed on 20 November 2019).
- United Nation Environment Programme. Emissions Gap Report. 2019. Available online: https://www.unenvironment.org/resources/emissions-gap-report-2019 (accessed on 20 November 2019).
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Berry, H.; Boykoff, M.; Montgomery, H.; Costello, A. The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Balakrishnan, K.; Jetter, J.; Masera, O.; Mehta, S.; Moss, J.; Ramanathan, V. Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits. Env. Sci Technol. 2013, 47, 3944–3952. [Google Scholar] [CrossRef] [PubMed]
- Jetter, J.J.; Kariher, P. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass Bioenergy 2009, 33, 294–305. [Google Scholar] [CrossRef]
- MacCarty, N.; Still, D.; Ogle, D. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain. Dev. 2010, 14, 161–171. [Google Scholar] [CrossRef]
- Tumuluru, S.J.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densifi cation systems to develop uniform feedstock commodities for bioenergy application. BiofuelsBioprod. Bioref. 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Geyer, W.; Iriarte, L. Biomass for energy in Europe and the United States. In National Convention of the Society of American Foresters 2007: Sustaining Americas Forests; Society of American Foresters: Portland, OR, USA, 2007; pp. 12–17. [Google Scholar]
- Kumar, D.; Singh, B. Role of biomass supply chain management in sustainable bioenergy production. Biofuels 2017, 1–11. [Google Scholar] [CrossRef]
- Baqir, M.; Kothari, R.; Singh, R.P. Fuel wood consumption, and its influence on forest biomass carbon stock and emission of carbon dioxide. A case study of Kahinaur, district Mau, Uttar Pradesh, India. Biofuels 2018, 1–10. [Google Scholar] [CrossRef]
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour Conserv. Recycl. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2010. Available online: https://www.iea.org/newsroom/news/2010/november/world-energy-outlook-2010.html (accessed on 18 October 2018).
- Asresu, A.T. Biomass Briquetting: Opportunities for the Transformation of Traditional Biomass Energy in Ethiopia. J. Energy Technol Policy 2017, 7, 46–54. [Google Scholar]
- Ahiataku-Togobo, W.; Ofosu-Ahenkorah, A. Bioenergy policy implementation in Ghana. In Proceedings of the COMPETE International Conference, Lusaka, Zambia, 26–28 May 2009; Available online: http://www.compete-bioafrica/zambia/presentations_conference.html (accessed on 18 October 2018).
- Mwakubo, S.; Ikiara, M.; Aligula, E. Strategies for Securing Energy Supply in Kenya; Kenya Institute for Public Policy Research and Analysis: Nairobi, Kenya, 2007; p. 80. Available online: https://searchworks.stanford.edu/view/7771943 (accessed on 18 October 2018).
- Agbro, E.B.; Ogie, N.A. A comprehensive review of biomass resources and biofuel production potential in Nigeria. Res. J. Eng. Appl. Sci. 2012, 1, 149–155. [Google Scholar]
- Rahman, M.A.; Møller, H.B.; Alam, M.M. Assessing the energy potential of agricultural residues and an approach to meet the rural energy demand: The Bangladesh perspective. Biomass Convers Biorefinery 2018, 8, 925–934. [Google Scholar] [CrossRef]
- World Energy Outlook. Energy for Cooking in Developing Countries. In Focus on Key Topics; OECD/IEA: Paris, Frances, 2006; pp. 419–445. Available online: https://www.iea.org/publications/freepublications/publication/cooking.pdf (accessed on 28 October 2018).
- Ribeiro, A.P.; Rode, M. Spatialized potential for biomass energy production in Brazil: An overview. Braz. J. Sci. Technol. 2016, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Iyer, P.V.R.; Kandpal, T.C. A Techno-economic evaluation of biomass briquetting in India. Biomass Bioenergy 1998, 14, 479–488. [Google Scholar] [CrossRef]
- Chen, H. Lignocellulose biorefinery product engineering. In Lignocellulose Biorefinery Engineering, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 125–165. [Google Scholar]
- Trubetskaya, A.; Leahy, J.J.; Yazhenskikh, E.; Müller, M.; Layden, P.; Johnson, R.; Ståhl, K.; Monaghan, R.F.D. Characterization of woodstove briquettes from torrefied biomass and coal. Energy 2019, 171, 853–865. [Google Scholar] [CrossRef]
- Christoforou, E.; Fokaides, P.A. Advances in Solid Biofuels. Green Energy and Technology; Springer: Cham, Switzerland, 2019; pp. 1–130. [Google Scholar]
- Andrić, I.; Jamali-Zghal, N.; Santarelli, M.; Lacarrière, B.; Le Corre, O. Environmental performance assessment of retrofitting existing coal fired power plants to co-firing with biomass: Carbon footprint and emergy approach. J. Clean Prod. 2015, 103, 13–27. [Google Scholar] [CrossRef]
- Christoforou, E.; Fokaides, P.A. A review of olive mill solid wastes to energy utilization techniques. Waste Manag. 2016, 49, 346–363. [Google Scholar] [CrossRef]
- Mitchual, S.J.; Katamani, P.; Afrifa, K.A. Fuel characteristics of binder free briquettes made at room temperature from blends of oil palm mesocarp fibre and Ceiba pentandra. Biomass Convers. Biorefinery 2019, 541–551. [Google Scholar] [CrossRef]
- ISO 16559. Solid Biofuels—Terminology, Definitions and Descriptions; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Danjuma, M.N.; Maiwada, B.; Tukur, R. Disseminating Biomass Briquetting Technology in Nigeria: A case for Briquettes Production Initiatives in Katsina State. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 2–20. [Google Scholar]
- Shabani, N.; Sowlati, T. A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Appl. Energy 2013, 104, 353–361. [Google Scholar] [CrossRef]
- Ramamoorthy, N.K.; Tr, T.R.; Sahadevan, R. Production of bioethanol by an innovative biological pre-treatment of a novel mixture of surgical waste cotton and waste card board. Energy Sources Part A Recover Util Env. Eff. 2020, 42, 942–953. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Convers. Biorefinery 2018, 8, 799–812. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–320. [Google Scholar] [CrossRef]
- Brunerová, A.; Roubík, H.; Brožek, M. Bamboo fiber and sugarcane skin as a bio-briquette fuel. Energies 2018, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- Onoja, E.; Chandren, S.; Abdul Razak, F.I.; Mahat, N.A.; Wahab, R.A. Oil Palm (Elaeis guineensis) Biomass in Malaysia: The Present and Future Prospects. Waste Biomass Valorization 2019, 10, 2099–2117. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A review of densified solid biomass for energy production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- ISO 17225-1. Solid Biofuels—Fuel Specifications and Classes—Part. 1: General Requirements; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Njenga, M.; Karanja, N.; Prain, G.; Malii, J.; Munyao, P.; Gathuru, K. Community-Based Energy Briquette Production from Urban. Organic Waste at Kahawa Soweto Informal Settlement, Nairobi; Urban Harvest Working Paper Series No. 5; International Potatoe Center: Lima, Peru, 2009. [Google Scholar]
- Sugumaran, P.; Seshadri, S. Biomass Charcoal Briquetting, Technology for Alternative Energy Based Income Generation in Rural Areas; Shri AMM Murugappa Chettiar Research Centre: Taramani, Chennai, 2010; pp. 1–20. [Google Scholar]
- Muazu, R.I.; Stegemann, J.A. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process. Technol. 2015, 133, 137–145. [Google Scholar] [CrossRef]
- Dinesha, P.; Kumar, S.; Rosen, M.A. Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. Energy Technol. 2018, 1, 1–21. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Baredar, P.; Shukla, A. A review on biomass energy resources, potential, conversion and policy in India. Renew. Sustain. Energy Rev. 2015, 45, 530–539. [Google Scholar] [CrossRef]
- Mwampamba, T.H.; Owen, M.; Pigaht, M. Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa. Energy Sustain. Dev. 2013, 17, 158–170. [Google Scholar] [CrossRef]
- World Energy Council. Biomass. World Energy Resources. 2016. Available online: https://www.worldenergy.org/data/resources/resource/biomass/ (accessed on 25 October 2018).
- Rath, S.S.; Rao, D.S.; Tripathy, A.; Biswal, S.K. Biomass briquette as an alternative reductant for low grade iron ore resources. Biomass Bioenergy 2018, 108, 447–454. [Google Scholar] [CrossRef]
- Maninder Kathuria, R.S.; Grover, S. Using Agricultural Residues as a Biomass Briquetting: An Alternative Source of Energy. Iosr J. Electr Electron. Eng. 2012, 1, 11–15. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H.; Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol. 2006, 87, 467–472. [Google Scholar] [CrossRef]
- Fei, H.; Shi, J.M.; Li, Y.L.; Luo, K. Study on Kinetics of Straw Stalk Gasification in CO2 with Random Pore Model. Appl Mech Mater. 2014, 618, 316–320. [Google Scholar] [CrossRef]
- Križan, M.; Krištof, K.; Angelovič, M.; Jobbágy, J. The use of maize stalks for energy purposes and emissions measurement during their combustion. Agron Res. 2017, 15, 456–467. [Google Scholar]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the life cycle greenhouse gas emissions from different biomass feedstock electricity generation systems. Sustainability 2016, 8, 1181. [Google Scholar] [CrossRef] [Green Version]
- Muazu, R.I.; Stegemann, J.A. Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel 2017, 194, 339–347. [Google Scholar] [CrossRef]
- Gill, N.; Dogra, R.; Dogra, B. Influence of Moisture Content, Particle Size, and Binder Ratio on Quality and Economics of Rice Straw Briquettes. Bioenergy Res. 2018, 11, 54–68. [Google Scholar] [CrossRef]
- Sette, C.R.; Hansted, A.L.S.; Novaes, E.; Lima, P.A.F.; Rodrigues, A.C.; Souza Santos, D.R.; Yamaji, F.M. Energy enhancement of the eucalyptus bark by briquette production. Ind. Crop. Prod. 2018, 122, 209–213. [Google Scholar] [CrossRef]
- Gendek, A.; Aniszewska, M.; Malaťák, J.; Velebil, J. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenergy 2018, 117, 173–179. [Google Scholar] [CrossRef]
- Katimbo, A.; Kiggundu, N.; Kizito, S.; Kivumbi, H.B.; Tumutegyereize, P. Potential of densification of mango waste and effect of binders on produced briquettes. Agric. Eng. Int Cigr J. 2014, 16, 146–155. [Google Scholar]
- Zanella, K.; Gonçalves, J.L.; Taranto, O.P. Charcoal Briquette Production Using Orange Bagasse and Corn Starch. Chem Eng. Trans. 2016, 49, 313–318. [Google Scholar]
- Brunerová, A.; Roubík, H.; Brožek, M.; Herák, D.; Šleger, V.; Mazancová, J. Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example. Energies 2017, 10, 2119. [Google Scholar] [CrossRef] [Green Version]
- Sawadogo, M.; Kpai, N.; Tankoano, I.; Tanoh, S.T.; Sidib, S. Cleaner production in Burkina Faso: Case study of fuel briquettes made from cashew industry waste. J. Clean Prod. 2018, 195, 1047–1056. [Google Scholar] [CrossRef]
- Onukak, I.; Mohammed-Dabo, I.; Ameh, A.; Okoduwa, S.; Fasanya, O. Production and Characterization of Biomass Briquettes from Tannery Solid Waste. Recycling 2017, 2, 17. [Google Scholar] [CrossRef]
- Oyelaran, O.A.; Sani, F.M.; Sanusi, O.M.; Balogun, O.; Fagbemigun, A.O. Energy Potentials of Briquette Produced from Tannery Solid Waste. Makara J. Technol. 2017, 21, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Ward, B.J.; Yacob, T.W.; Montoya, L.D. Evaluation of solid fuel char briquettes from human waste. Env. Sci. Technol. 2014, 48, 9852–9858. [Google Scholar] [CrossRef]
- Avelar, N.V.; Rezende, A.A.P.; Carneiro, A.D.C.O.; Silva, C.M. Evaluation of briquettes made from textile industry solid waste. Renew. Energy 2016, 91, 417–424. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalao, J.P.S. Economic and environmental benefits of using textile waste for the production of thermal energy. J. Clean Prod. 2018, 171, 1353–1360. [Google Scholar] [CrossRef]
- Gado, I.H.; Ouiminga, S.K.; Daho, T.; Yonli, A.H.; Sougoti, M.; Koulidiati, J. Characterization of Briquettes Coming From Compaction of Paper and Cardboard Waste at Low and Medium Pressures. Waste Biomass Valorization 2014, 5, 725–731. [Google Scholar] [CrossRef]
- Brožek, M. Evaluation of selected properties of briquettes from recovered paper and board. Res. Agric. Eng. 2015, 61, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Lela, B.; Barišić, M.; Nižetić, S. Cardboard/sawdust briquettes as biomass fuel: Physical-mechanical and thermal characteristics. Waste Manag. 2016, 47, 236–245. [Google Scholar] [CrossRef]
- Srivastava, N.S.L.; Narnaware, S.L.; Makwana, J.P.; Singh, S.N.; Vahora, S. Investigating the energy use of vegetable market waste by briquetting. Renew. Energy 2014, 68, 270–275. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Physical and chemical evaluation of furniture waste briquettes. Waste Manag. 2016, 49, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Kpalo, S.Y.; Zainuddin, M.F.; Halim, H.B.A.; Ahmad, A.F.; Abbas, Z. Physical characterization of briquettes produced from paper pulp and Mesua ferrea mixtures. Biofuels 2019, 1–8. [Google Scholar] [CrossRef]
- Sing, C.Y.; Aris, M.S. An experimental investigation on the handling and storage properties of biomass fuel briquettes made from oil palm mill residues. J. Appl. Sci. 2012, 12, 2621–2625. [Google Scholar] [CrossRef]
- Ugwu, K.; Agbo, K. Evaluation of binders in the production of briquettes from empty fruit bunches of Elais Guinensis. Int. J. Renew. Sustain. Energy 2013, 2, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Bazargan, A.; Rough, S.L.; McKay, G. Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy 2014, 70, 489–497. [Google Scholar] [CrossRef]
- Hamid, M.F.; Idroas, M.Y.; Ishak, M.Z.; Zainal Alauddin, Z.A.; Miskam, M.A.; Abdullah, M.K. An Experimental Study of Briquetting Process of Torrefied Rubber Seed Kernel and Palm Oil Shell. Biomed. Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nwabue, F.I.; Unah, U.; Itumoh, E.J. Production and characterization of smokeless bio-coal briquettes incorporating plastic waste materials. Env. Technol Innov. 2017, 8, 233–245. [Google Scholar] [CrossRef]
- Garrido, M.A.; Conesa, J.A.; Garcia, M.D. Characterization and production of fuel briquettes made from biomass and plastic wastes. Energies 2017, 10, 1–12. [Google Scholar]
- Adekunle, J.O.; Ibrahim, J.S.; Kucha, E.I. Proximate and Ultimate Analyses of Biocoal Briquettes of Nigerian’s Ogboyaga and Okaba Sub-bituminous Coal. Br. J. Appl Sci Technol. 2015, 7, 114–123. [Google Scholar] [CrossRef]
- Manyuchi, M.M.; Mbohwa, C.; Muzenda, E. Value addition of coal fines and sawdust to briquettes using molasses as a binder. South. Afr. J. Chem Eng. 2018, 26, 70–73. [Google Scholar] [CrossRef]
- Tian, B.; Ji, Z.; Chen, F. Preparation and Properties of Black liquor briquettes. Bioresour 2018, 13, 1801–1813. [Google Scholar] [CrossRef]
- Li, F.; Zhang, M. Technological parameters of biomass briquetting of macrophytes in Nansi Lake. Energy Procedia 2011, 5, 2449–2454. [Google Scholar]
- Davies, R.M.; Davies, O.A. Physical and combustion characteristics of briquettes made from water hyacinth and phytoplankton scum as binder. J. Combust. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Carnaje, N.P.; Talagon, R.B.; Peralta, J.P.; Shah, K.; Paz-Ferreiro, J. Development and characterisation of charcoal briquettes from water hyacinth (Eichhornia crassipes)-molasses blend. PLoS ONE 2018, 13, 1–14. [Google Scholar] [CrossRef]
- Oladeji, J. Theoretical Aspects of Biomass Briquetting: A Review Study. J. Energy Technol. Policy 2015, 5, 72–82. [Google Scholar]
- Said, N.; Bishara, T.; García-Maraver, A.; Zamorano, M. Effect of water washing on the thermal behavior of rice straw. Waste Manag. 2013, 33, 2250–2256. [Google Scholar] [CrossRef]
- Solano, D.; Vinyes, P.; Arranz, P. Biomass Briquetting Process; UNDP-CEDRO Publication: Beirut, Lebanon, 2016. [Google Scholar]
- Grover, P.D.; Mishra, S.K. Biomass Briquetting: Technology and Practices. Regional Wood Energy Development Programme In Asia; Field Document No 46; Food and Agriculture Organization: Rome, Italy, 1996. [Google Scholar]
- Purohit, P.; Chaturvedi, V. Techno-Economic Assessment of Biomass Pellets for Power Generation in India; CEEW: New Delhi, India, 2016. [Google Scholar]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 2004, 27, 339–352. [Google Scholar] [CrossRef]
- Tumuluru, S.J.; Christopher, W.T.; Kenny, K.L.; Hess, J.R. A Review on Biomass Densification Technologies for Energy Application; Idaho National Laboratory: Idaho Falls, ID, USA, 2010. [Google Scholar]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- ISO 17827-1. Solid Biofuels—Determination of Particle Size Distribution for Uncompressed Fuels—Part. 1: Oscillating Screen Method Using Sieves with Apertures of 3,15 mm and above; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- ISO 17827-2. Solid Biofuels—Determination of Particle Size Distribution for Uncompressed Fuels—Part. 2: Vibrating Screen Method Using Sieves with Aperture of 3,15 mm and below; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Tumuluru, J.S.; Heikkila, D.J. Biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm. Bioengineering 2019, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Newbolt, G. Modelling of Biomass Milling. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2018. [Google Scholar]
- Asamoah, B.; Nikiema, J.; Gebrezgabher, S.; Odonkor, E.; Njenga, M. A Review on Production, Marketing and Use of Fuel Briquettes. 2016. Available online: http://www.iwmi.cgiar.org/Publications/wle/rrr/resource_recovery_and_reuse-series_7.pdf (accessed on 18 October 2018).
- Zhang, G.; Sun, Y.; Xu, Y. Review of briquette binders and briquetting mechanism. Renew. Sustain. Energy Rev. 2018, 82, 477–487. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D.; Xu, Z.; Cheng, Q. The effect of different treatment conditions on biomass binder preparation for lignite briquette. Fuel Process. Technol. 2001, 73, 185–196. [Google Scholar] [CrossRef]
- Lumadue, M.R.; Cannon, F.S.; Brown, N.R. Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel 2012, 97, 869–875. [Google Scholar] [CrossRef]
- Massaro, M.M.; Son, S.F.; Groven, L.J. Mechanical, pyrolysis, and combustion characterization of briquetted coal fines with municipal solid waste plastic (MSW) binders. Fuel 2014, 115, 62–69. [Google Scholar] [CrossRef]
- Altun, N.E.; Hicyilmaz, C.; Kök, M.V. Effect of Different Binders on the Combustion Properties of Lignite Part I. Effect on thermal properties. J. Anal. Calorim. 2001, 65, 787–795. [Google Scholar] [CrossRef]
- Onchieku, J.M.; Chikamai, B.N.; Rao, M.S. Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder. Eur. J. Sustain. Dev. 2012, 1, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Shao, J.; Yang, H.; Yao, D.; Wang, X.; Chen, H. Effects of binders on the properties of bio-char pellets. Appl. Energy 2015, 157, 508–516. [Google Scholar] [CrossRef]
- Bonassa, G.; Schneider, L.T.; Canever, V.B.; Cremonez, P.A.; Frigo, E.P.; Dieter, J.; Teleken, J.G. Scenarios and prospects of solid biofuel use in Brazil. Renew. Sustain. Energy Rev. 2018, 82, 2365–2378. [Google Scholar] [CrossRef]
- Eriksson, S.; Prior, M. The Briquetting of Agricultural Wastes for Fuel, 11th ed.; Food and Agricuture Organization: Rome, Italy, 1990; p. 137. [Google Scholar]
- Tumuluru, J.S.; Tabil, L.G.; Song, Y.; Iroba, K.L.; Meda, V. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy Res. 2015, 8, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Surendra, K.C.; Khanal, S.K.; Shrestha, P.; Lamsal, B. Current status of renewable energy in Nepal: Opportunities and challenges. Renew. Sustain. Energy Rev. 2011, 15, 4107–4417. [Google Scholar]
- Tiwari, C. Producing fuel briquettes from sugarcane waste. In Proceedings of the EWB-UK National Resources Education Conference, University of Sheffield, Sheffield, UK, 4 March 2011; pp. 39–45. [Google Scholar]
- Ngusale, G.K.; Luo, Y.; Kiplagat, J.K. Briquette making in Kenya: Nairobi and peri-urban areas. Renew. Sustain. Energy Rev. 2014, 40, 749–759. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour. Technol. 2010, 101, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Manickam, I.N.; Ravindran, D.; Subramanian, P. Biomass densification methods and mechanism. Cogener. Distrib. Gener J. 2006, 21, 33–45. [Google Scholar] [CrossRef]
- El-Haggar, S.M. Sustainability of Agricultural and Rural Waste Management. In Sustainable Industrial Design and Waste Management; Elsevier: Amsterdam, The Netherlands, 2007; pp. 223–260. [Google Scholar]
- Gilvari, H.; de Jong, W.; Schott, D.L. Quality parameters relevant for densification of bio-materials: Measuring methods and affecting factors—A review. Biomass Bioenergy 2019, 120, 117–134. [Google Scholar] [CrossRef]
- ISO 17225-3. Solid Biofuels—Fuel Specifications and Classes—Part. 3: Graded Wood Briquettes; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- ISO 17225-7. Solid Biofuels—Fuel Specifications and Classes—Part. 7: Graded Non-Woody Briquettes; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- ASTM D2444-16. Standard Test. Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ISO 18134-2, 2017. Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part. 2: Total Moisture—Simplified Method; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Antwi-Boasiako, C.; Acheampong, B.B. Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass Bioenergy 2016, 85, 144–152. [Google Scholar] [CrossRef]
- ASTM D2395-17. Standard Test. Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ISO 18847, 2016. Solid Biofuels—Determination of Particle Density of Pellets and Briquettes; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Mendoza-Martinez, C.L.; Sermyagina, E.; Carneiro, O.A.D.C.; Vakkilainen, E.; Cardoso, M. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenergy 2019, 123, 70–77. [Google Scholar] [CrossRef]
- Richards, S.R. Physical Testing of Fuel Briquettes. Fuel Process. Technol. 1990, 25, 89–100. [Google Scholar] [CrossRef]
- ASTM D870-15. Standard Practice for Testing Water Resistance of Coatings Using Water Immersion; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Borowski, G.; Stȩpniewski, W.; Wójcik-Oliveira, K. Effect of starch binder on charcoal briquette properties. Int. Agrophysics 2017, 31, 571–574. [Google Scholar] [CrossRef] [Green Version]
- ASTM D440-86. Standard Test. Method of Drop Shatter Test. for Coal; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- ISO 616, 1995. Coke—Determination of Shatter Indices; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Ujjinappa, S.; Sreepathi, L.K. Production and quality testing of fuel briquettes made from pongamia and tamarind shell. Sadhana 2018, 43, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Borowski, G.; Hycnar, J.J. Utilization of fine coal waste as a fuel briquettes. Int. J. Coal Prep. Util. 2013, 33, 194–204. [Google Scholar] [CrossRef]
- ASTM D2166-85. Standard Test. Method of Compressive Strength of Wood; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ISO 17831-2, 2015. Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- ASTM D5865-13. Standard Test. Method for Gross Calorific Value of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ISO 18125, 2017. Solid Biofuels—Determination of Calorific Value; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- ASTM D3174-12. Standard Test. Method for Ash in the Analysis Sample of Coal and Coke from Coal; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ISO 18122, 2015. Solid Biofuels—Determination of Ash Content; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Sotannde, O.A.; Oluyege, A.O.; Abah, G.B. Physical and combustion properties of briquettes from sawdust of Azadirachta indica. J. Res. 2010, 21, 63–67. [Google Scholar] [CrossRef]
- ASTM D3175-18. Standard Test. Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ISO 18123, 2015. Solid Biofuels—Determination of the Content of Volatile Matter; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- DIN51731. Testing of solid fuels—Compressed untreated wood—Requirements and testing. German Institute for Standardisation; Deutsches Institut für Normung: Berlin, Germany, 1996. [Google Scholar]
- ASTM D3176-15. Standard Practice for Ultimate Analysis of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ISO 16948, 2015. Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- ISO 16994, 2015. Solid Biofuels—Determination of Total Content of Sulfur and Chlorine; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Ahmed, S.A.; Kumari, A.; Mandavgane, K. A Review on Briquettes as an Alternative Fuel. Int J. Innov Eng. Technol. 2014, 3, 139–144. [Google Scholar]
- Kristoferson, L.A.; Bokalders, V. Renewable Energy Technologies-Their Applications in Developing Countries; Pergamon Press: Oxford, UK, 1986; p. 319.
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Kaliyan, N.; Vance Morey, R. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Chin, O.C.; Siddiqui, K.M. Characteristics of some biomass briquettes prepared under modest die pressures. Biomass Bioenergy 2000, 18, 223–238. [Google Scholar] [CrossRef]
- Yank, A.; Ngadi, M.; Kok, R. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy 2016, 84, 22–30. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, V.A. Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renew. Energy 2017, 111, 532–542. [Google Scholar] [CrossRef]
- Okot, D.K.; Bilsborrow, P.E.; Phan, A.N. Effects of operating parameters on maize COB briquette quality. Biomass Bioenergy 2018, 112, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Prasanna Kumar, G.V.; Bhattacharya, T.K.; Tanna, H.R.; Jena, P.C. Briquetting of Pine Needles (Pinus roxburgii) and Their Physical, Handling and Combustion Properties. Waste Biomass Valorization 2019, 10, 2415–2424. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. An overview of compaction of biomass grinds. Powder Handl Process. 2003, 15, 160–168. [Google Scholar]
- Brožek, M. The effect of moisture of the raw material on the properties briquettes for energy use. Acta Univ Agric. Silv. Mendel. Brun. 2016, 64, 1453–1458. [Google Scholar] [CrossRef] [Green Version]
- Matúš, M.; Križan, P.; Šooš, L.; Beniak, J. Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes. Int. J. Environ. Ecol. Eng. 2015, 9, 1227–1233. [Google Scholar]
- Zhang, J.; Guo, Y. Physical properties of solid fuel briquettes made from Caragana korshinskii Kom. Powder Technol 2014, 256, 293–299. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, X.; Liu, H. Experimental research on shape and size distribution of biomass particle. Fuel 2012, 94, 551–554. [Google Scholar] [CrossRef]
- Sutrisno Anggono, W.; Suprianto, F.D.; Kasrun, A.W.; Siahaan, I.H. The effects of particle size and pressure on the combustion characteristics of Cerbera manghas leaf briquettes. Arpn J. Eng. Appl. Sci. 2017, 12, 931–936. [Google Scholar]
- Ndindeng, S.A.; Mbassi, J.E.G.; Mbacham, W.F.; Manful, J.; Graham-Acquaah, S.; Moreira, J.; Dossou, J.; Futakuchi, K. Quality optimization in briquettes made from rice milling by-products. Energy Sustain. Dev. 2015, 29, 24–31. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Sun, Y. Effects of raw material particle size on the briquetting process of rice straw. J. Energy Inst. 2018, 91, 153–162. [Google Scholar] [CrossRef]
- Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S. Physiochemical characterization of briquettes made from different feedstocks. Biotechnol. Res. Int. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchual, S.J.; Frimpong-Mensah, K.; Darkwa, N.A. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. Int. J. Energy Environ. Eng. 2013, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Emerhi, E.A. Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Adv. Appl. Sci. Res. 2011, 2, 236–246. [Google Scholar]
- Rahaman, S.A.; Salam, P.A. Characterization of cold densified rice straw briquettes and the potential use of sawdust as binder. Fuel Process. Technol. 2017, 158, 9–19. [Google Scholar] [CrossRef]
- Brunerová, A.; Brožek, M. Optimal feedstock particle size and its influence on final briquette quality. In Proceedings of the 6th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic, 7–9 September 2016; pp. 95–101. [Google Scholar]
- Yumak, H.; Ucar, T.; Seyidbekiroglu, N. Briquetting soda weed (Salsola tragus) to be used as a rural fuel source. Biomass Bioenergy 2010, 34, 630–636. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry; W. H. Freeman and Company: New York, NY, USA, 2005. [Google Scholar]
- Miranda, T.; Montero, I.; Sepúlveda, F.; Arranz, J.; Rojas, C.; Nogales, S. A Review of Pellets from Different Sources. Materials 2015, 8, 1413–1427. [Google Scholar] [CrossRef] [Green Version]
- Obi, O.F.; Akubuo, C.O.; Nwankwo, V. Development of an Appropriate Briquetting Machine for Use in Rural Communities. Int. J. Eng. Adv. Technol. 2013, 2, 578–582. [Google Scholar]
- Malladi, K.T.; Sowlati, T. Biomass logistics: A review of important features, optimization modeling and the new trends. Renew. Sustain. Energy Rev. 2018, 94, 587–599. [Google Scholar] [CrossRef]
- Wilaipon, P. The effects of briquetting pressure on banana-peel briquette and the banana waste in northern Thailand. Am. J. Appl. Sci. 2009, 6, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Xing, L.; Han, L. Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renew. Sustain. Energy Rev. 2009, 13, 2689–2695. [Google Scholar] [CrossRef]
- Kaur, A.; Roy, M.; Kundu, K. Densification of Biomass by Briquetting: A Review. Int. J. Recent Sci. Res. 2017, 8, 20561–20568. [Google Scholar]
- Yehia, K.A. Estimation of roll press design parameters based on the assessment of a particular nip region. Powder Technol. 2007, 177, 148–153. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V.; White, M.D.; Doering, A. Roll press briquetting and pelleting of corn stover and switchgrass. Trans. Asabe. 2009, 52, 543–555. [Google Scholar] [CrossRef]
- Legacy Foundation. Fuel Briquette Press Kit—A Construction Manual; Legacy Foundation: Ashland, OR, USA, 2003. [Google Scholar]
- Sen, R.; Wiwatpanyaporn, S.; Annachhatre, A.P. Influence of binders on physical properties of fuel briquettes produced from cassava rhizome waste. Int. J. Environ. Waste Manag. 2016, 17, 158–175. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyzaniak, M.; Gulczyński, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- Żarski, W. Economic Aspects of Production of Fuel Briquette From Agro Biomass; University of Technology and Life Sciences in Bydgoszcz: Bydgoszcz, Poland, 2012; pp. 183–190. [Google Scholar]
- Tippayawong, K.Y.; Santiteerakul, S.; Ramingwong, S.; Tippayawong, N. Cost analysis of community scale smokeless charcoal briquette production from agricultural and forest residues. Energy Procedia 2019, 160, 310–316. [Google Scholar] [CrossRef]
- Jingura, R.M.; Musademba, D.; Kamusoko, R. A review of the state of biomass energy technologies in Zimbabwe. Renew. Sustain. Energy Rev. 2013, 26, 652–659. [Google Scholar] [CrossRef]
- Onchieku, J.M. Cost Benefit Analysis of Making Charcoal Briquettes Using Screw Press Machine Locally Designed and Fabricated. Int. Adv. Res. J. Sci. Eng. Technol. 2018, 5, 57–65. [Google Scholar]
- Adeoti, O.; Ilori, M.O.; Oyebisi, T.O.; Adekoya, L.O. Engineering design and economic evaluation of a family-sized biogas project in Nigeria. Technovation 2000, 20, 103–138. [Google Scholar] [CrossRef]
- Walekhwa, P.N.; Lars, D.; Mugisha, J. Economic viability of biogas energy production from family-sized digesters in Uganda. Biomass Bioenergy 2014, 70, 26–39. [Google Scholar] [CrossRef]
- Sengar, S.H.; Patil, S.S.A.; Chendake, D. Economic Feasibility of Briquetted Fuel. Glob. J. Res. Eng. Chem Eng. 2013, 13, 21–26. [Google Scholar]
- Jean de Dieu, K.H.; Kim, H.-T. Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda. Energy 2016, 102, 453–464. [Google Scholar]
- Feng, C.; Yu, X.; Tan, H.; Liu, T.; Hu, T.; Zhang, Z. The economic feasibility of a crop-residue densification plant: A case study for the city of Jinzhou in China. Renew. Sustain. Energy Rev. 2013, 24, 172–180. [Google Scholar] [CrossRef]
- Hu, J.; Lei, T.; Wang, Z.; Yan, X.; Shi, X.; Li, Z. Economic, environmental and social assessment of briquette fuel from agricultural residues in China—A study on flat die briquetting using corn stalk. Energy 2014, 64, 557–566. [Google Scholar] [CrossRef]
- Rattanongphisat, W.; Chindaruksa, S. A bio-fuel briquette from durian peel and rice straw: Properties and Economic feasibility. Nu Sci. J. 2011, 8, 1–11. [Google Scholar]
- Odeh, I.; Yohanis, Y.G.; Norton, B. Economic viability of photovoltaic water pumping systems. Sol. Energy 2006, 80, 850–860. [Google Scholar] [CrossRef]
- Sahoo, K.; Bilek, E.; Bergman, R.; Mani, S. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Appl. Energy. 2019, 235, 578–590. [Google Scholar] [CrossRef]
- Felfli, F.F.; Mesa, P.J.M.; Rocha, J.D.; Filippetto, D.; Luengo, C.A.; Pippo, W.A. Biomass briquetting and its perspectives in Brazil. Biomass Bioenergy 2011, 35, 236–242. [Google Scholar] [CrossRef]
Material | Waste Composition | Binder Used | Reference |
---|---|---|---|
Agricultural residue | • Rice husks, corn cobs and sugarcane bagasse. • Rice straw. | • Starch, biosolids, microalgae. • Cotton stalk. | • [52]. • [53] |
Woody biomass | • Wood and bark • Shredded cones | • None. • None. | • [54]. • [55] |
Fruit waste | • Mango seed. • Orange bagasse. • Durian, coconut, coffee, cacao, banana and rambutan. • Cashew press cake. | • Starch, Clay soil, Red soil’ • Corn starch. • None. • Cassava starch. | • [56]. • [57]. • [58] • [59] |
Tannery solid waste | • Hair, flesh, chrome shavings and buffing dust. • Buffing dust, chrome shavings, fleshing and hair | • Cassava starch. • Cassava starch. | • [60]. • [61] |
Human waste | • Fecal matter | • Starch, molasses, lime | • [62] |
Textile industry solid waste | • Biosludge, cotton residue. • Cotton waste | • None. • None. | • [63]. • [64] |
Paper and cardboard | • Office and commercial printing paper, newsprints, and cardboard • Cardboards, magazines, newspapers, office paper, books. • Cardboards. | • None. • None. • None. | • [65] • [66] • [67]. |
Vegetable market waste | • Cauliflower/cabbage leaves, coriander stalk and leaves, field beans and green pea pods | • None. | • [68] |
Furniture waste | • Wood and upholstery foam | • None. | • [69] |
Garden waste | • Mesua ferrea leaves, | • Wastepaper | • [70] |
Oil palm waste | • Palm kernel shell, palm fiber • Empty fruit bunch. • Palm kernel shell. • Rubber seed kernel and palm oil shell. | • Wastepaper. • Starch, asphalt. • Starch. • Starch. | • [71]. • [72]. • [73]. • [74]. |
Biomass and plastic waste | • Sachet water bags, polythene bags, saw dust, maize husk, coal. • Sawdust, date palm trunk, wire, printed circuit boards, automotive shredder residues. | • Starch, limestone, laterite • None. | • [75]. • [76] |
Biomass and coal | • Sawdust and coal. • Coal fines, sawdust. • Woodchips, olive stone, anthracites, and coal | • Cassava starch • Molasses. • Starch, resin | • [77]. • [78] • [24] |
Black liquor | • Straw pulp black liquor | • Starch. | • [79] |
Aquatic biomass | • Giant reed (Arundo donax L.) and reed (Phragmites australis) • Water hyacinth. • Water hyacinth. | • Loess, lime • Phytoplankton scum. • Molasses | • [80] • [81]. • [82] |
Parameter | Guiding Value | Test Standards | Purpose/Significance | Measurement Equipment |
---|---|---|---|---|
Moisture content | ≤12% *, ≤15% **. [113], [114] | ASTM D2444 [115] ISO 18134-2 [116] | • To evaluate possible changes in the physical conditions of briquettes during storage and transport. ⮚ Could influence mechanical strength [117] durability [69] and thermal efficiency [60]. | Thermogravimetric analyzer, drying oven with temperature range of 105 ± 2 °C, Digital weighing scale |
Density | ≥0.9 gcm−3 *, ≥1.0 gcm−3 ** [113] ≥0.6 gcm−3 *, ≥0.9 gcm−3 ** [114] | ASTM D2395 [118] ISO 18847 [119] | • To determine the mass of particles per unit volume of a sample briquette ⮚ Influences transportation cost and energy density [120] | Digital weighing scale, Digital or manual Caliper |
Water resistance | 95%. [121] | ASTM D870-15 [122] | • To determine the rate at which briquettes can withstand degeneration in humidity or water exposure. ⮚ The ability of briquette to resist moisture penetration when exposed which could affect combustion and durability in storage | Digital weighing scale, Digital or manual Caliper |
Shatter index | ≥90%. [123] | ASTM D440-86 [124] ISO 616 [125] | • To gauge the strength of briquettes for the purposes of handling, transportation, and storage ⮚ It indicates briquette’s ability to produce fewer fines during handling. [126] and high durability to gravitational deterioration [117] | Digital weighing scale, Meter rule, Steel plate, Sieve |
Compressive strength | 1.0 MPa. [127] | ASTM D2166-85 [128] | • To determine the maximum crushing loads a briquette can withstand before cracking or breaking. ⮚ Make briquettes safe to store, transported without breaking [75]. | Universal Testing Machine |
Durability | 95%. [121] | ISO 17831-2 [129] | • To determine the rate at which briquettes can withstand degeneration when handled and transported. ⮚ The test simulates mechanical or pneumatic handling [90] which shows briquettes ability to resist abrasion. | Durability tester |
Calorific value | ≥14.9 MJ/kg *, ≥15.5 MJ/kg **. [113] ≥14.5 MJ/kg *, ≥14.5 MJ/kg ** [114] | ASTM D5865-13 [130] ISO 18125 [131] | • To determine the amount of thermal energy in the combustion of one kilogram of briquette. ⮚ This indicates the energy recovery potential of biomass during thermos-chemical conversion [90] | Bomb calorimeter |
Ash content | ≤1.0% *, ≤3.0% ** [113].≤6.0% *, ≤10.0% ** [114] | ASTM D3174-12 [132] ISO 18122 [133] | • To determine the percentage ash content briquette may produce after combustion. ⮚ Ash content in the briquette causes increase in the combustion remnant in form of ash which lowers the heating effect of the briquette [134] and may cause slagging [86] | Furnace with a temperature range of 550 ± 10 °C |
Volatile matter | Not specified | ASTM D3175-18 [135] ISO 18123 [136] | • To simulate the practical aspect of combustion of the biomass in the boiler. ⮚ It enhances sporadic burning and an indication of ignition rate in briquettes [134] | Furnace with a temperature range of 900 ± 10 °C |
Carbon (C)Hydrogen (H)Nitrogen (N) | 48–50% [137] 6.2% [137]. ≤0.3% *, ≤1.0% ** [113].≤1.5% *, ≤2.0% ** [114]. | ASTM 3176-15 [138] ISO 16948 [139] | • To determine combustion properties of briquettes and undesirable amount of emission i.e., NOx. ⮚ These elements suggestive of the fuel properties of briquettes. They influence combustion. | Element analyzer |
Sulphur (S) | ≤0.04% *, ≤0.05% ** [113]. ≤0.20% *, ≤0.30% ** [114]. | ASTM D3176-15 [138] ISO 16994 [140] | • To determine the amount of undesirable emissions, i.e., SOx. ⮚ Sulfur is oxidized and converted to SO2 gas during combustion in furnaces. Sulfur pollutants are harmful to the environment. | Atomic emission spectrometer |
Screw Press | Roller Press | Piston Press (Hydraulic/Mechanical) | |
---|---|---|---|
Optimum moisture content of raw material (%) | 4–8 | 10–15 | 10–15 |
Particle size required (mm) | 2.6 | Less than 4 | 6–12 |
Shape | Cylindrical | Generally, elliptical (depends on the shape of the die) | Cylindrical |
Dimensions (mm) | Length: 1940 Width: 750 Height: 1310 (similar dies produce smaller extruded logs) | Almond shaped briquettes dimension: 31.75 (length) × 20.32 (width) × 11.16 (depth). (depends on the shape of the die | 32 (dial) × 25 (thick) |
Wear of contact parts | High | Low | Low |
Output from machine | Continuous | Continuous | In strokes |
Specific energy consumption (KWh/ton) | 36.8–150 | 29.91–83.1 | 37.4–77 |
Throughput (ton/h) | 0.5–1 | 5–10 | 2.5 |
Unit density (g/cm3) | 1–1.4 | No information | Less than 0.1 |
Bulk density (g/cm3) | 0.5–0.6 | 0.48–0.53 | 0.4–0.5 |
Combustion performance of briquettes | Very good | Moderate | Moderate |
Maintenance | Low | High | High |
Homogeneity of densified biomasss | Homogenous | Not homogenous | Not homogenous |
Briquette Press | Reference | Output Capacity | Briquettes’ Shape and Dimension | Raw Material Used | Study Outcome |
---|---|---|---|---|---|
Screw extruder | • [175] | • 120 kg/h | Hexagonal. 100 mm length. | • Cassava rhizome waste | • The briquettes had higher density (0.69 to 0.91 g/cm3), compressive strength (8.51 to 14.94 kg/cm2), Impact resistance index (153.7 to 416.7) and calorific value (21,670 to 24,367 KJ/kg). |
• [74] | • 200 kg/h | Hexagonal. 50 mm length, 20 mm inner diameter | • Rubber seed kernel (RSK), Palm oil shell (POS) | • The maximum compressive load of the POS briquette was 101.11 N and the calorific value was 16.05 MJ/kg whereas the RSK briquette was 141 N for compressive load and 16.03 MJ/kg for calorific value. | |
Mechanical piston press | • [68]. | • 500 kg/h. | Cylindrical. 50 mm diameter. | • Vegetable market waste (VMW) | • The bulk densities for VMW briquettes increased substantially to 509 to 747 kg/m3 from initial bulk densities of 44.2 to 60 kg/m3 of dried and loose vegetable market waste. The calorific values of different VMW briquettes were in the range of 10.26 to 16.60 MJ/kg. |
• [53] | • 1200 kg/h | Cylindrical. 70 mm | • Rice straw | • Briquettes were produced with high-density (1030.38–1159.22 kg/m3), durability ranging from 71.9 to 92.3%, maximum calorific value of 15.61 MJ/kg, and minimum ash content (16.34%). | |
Hydraulic piston press | • [69] | • Not available | Cylindrical. 50 mm diameter. | • Furniture wood waste, Foam. | • Briquettes produced from combining furniture wood waste and foam generated more heat and energy. Durability of briquette with 20% of polyurethane foam was like a common briquette of furniture wood waste. |
• [78] | • Not available | Rectangular. 30 mm length, 25 mm width, 15 mm height | • Saw dust, Coal fines | • The addition of saw dust as well as molasses as a binder resulted in a briquette with a calorific value of 26 MJ/kg, fixed carbon of 76% and high compressive strength of 0.25 kN/cm2 which is not easily shattered | |
Roller press | • [173] | • Not available | Almond shaped. Maximum size of 31.3 mm length, 23.3 mm width, 17.9 mm depth. | • Corn stover, Switch grass | • Briquettes produced with the roll press briquetting machine had bulk densities (351 to 527 kg/m3), durability (39% to 90%), and crushing strengths (28 to 277 N) |
• [123] | • Not available | Pillow shaped. 60 mm width, 50 mm height, 30 mm depth. | • Charcoal powder | • The machine produced briquettes whose physical properties were satisfactory, regardless of the type of binder and showed adequacy for use in barbecues. |
No | Industry | Possible Application |
---|---|---|
1 | Domestic use | Cooking, water heating, and space heating |
2 | Commercial and institutional catering | Cooking, water heating, grilling |
3 | Hospitality | Cooking, water heating, space heating (outdoor dining areas) |
4 | Industrial Boilers | Generation of heat and steam |
5 | Food processing | Distilleries, bakeries, canteens, restaurants, drying |
6 | Textiles | Dyeing, bleaching |
7 | Crop processing | Tobacco curing, tea drying, oil milling |
8 | Ceramic production | Brick kilns, tile making, pot firing, etc. |
9 | Gasification | Fuel for gasifiers to produce electricity |
10 | Charcoal production | Initiating pyrolysis to make charcoal production more efficient |
11 | Poultry | Incubation and heating of chicks |
Economic Indicator | Definition | Equation |
---|---|---|
Net Present Value (NPV) | The present value of the benefit minus the present value of the cost | |
Payback Period (PBP) | The number of years that it will take, from day one of a project, before the investment cost is fully recovered | |
Internal Rate of Return (IRR) | The cut-off discount rate that makes the NPV equal to zero | |
Benefit-Cost Ratio (BCR) | The ratio of the equivalent worth of benefits to the equivalent worth of costs. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability 2020, 12, 4609. https://doi.org/10.3390/su12114609
Kpalo SY, Zainuddin MF, Manaf LA, Roslan AM. A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability. 2020; 12(11):4609. https://doi.org/10.3390/su12114609
Chicago/Turabian StyleKpalo, Sunday Yusuf, Mohamad Faiz Zainuddin, Latifah Abd Manaf, and Ahmad Muhaimin Roslan. 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting" Sustainability 12, no. 11: 4609. https://doi.org/10.3390/su12114609
APA StyleKpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020). A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability, 12(11), 4609. https://doi.org/10.3390/su12114609