Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China
Abstract
:1. Introduction
2. Literature Review
2.1. A Review of Road Transport Efficiency Ignoring Environmental Factors
2.2. A Review of Road Transport Efficiency Considering Environmental Factors
3. Methodology
3.1. The DDF Considering Undesirable Output
- If , then , , which means that no output can be produced without input.
- Weak disposability of undesirable outputs: If and , then .
- Null-jointness: If and , then .
- Strong disposability of desirable outputs: If and , then .
- Free disposability of inputs: If , then .
3.2. Convergence Analysis of Environmental Efficiency
3.2.1. σ Convergence
3.2.2. β Convergence
4. Empirical Results
4.1. Indicators and Data
4.2. Results and Analysis
4.2.1. Overall Environmental Efficiency Analysis
4.2.2. Environmental Efficiency Analysis in Different Areas
4.2.3. Convergence Analysis at Area Level
5. Implications and Conclusions
5.1. Implications
5.2. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Symbols | Descriptions | Symbols | Descriptions |
---|---|---|---|
DEA | Data Envelopment Analysis | OLS | Ordinary Least Squares |
DDF | Directional distance function | dB | Decibel |
SFA | Stochastic Frontier Analysis | PM2.5 | Fine particulate matter |
CE | Carbon dioxide emission | Desirable output | |
SBM | Slack Based Measure | Undesirable output | |
Standard Deviation | Random error | ||
Carbon content factor | Road transport efficiency | ||
Hydrocarbon coefficient | Energy consumption | ||
Equivalent thermal | The direction vector of desirable output | ||
GDP | Gross Domestic Product | The direction vector of undesirable output |
References
- Chai, J.; Lu, Q.; Wang, S.; Lai, K.K. Analysis of road transportation energy consumption demand in China. Transp. Res. Part D Transp. Environ. 2016, 48, 112–124. [Google Scholar] [CrossRef]
- Xu, X.; Hao, J.; Deng, Y.-R.; Wang, Y. Design optimization of resource combination for collaborative logistics network under uncertainty. Appl. Soft Comput. 2017, 56, 684–691. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. 2019. Available online: http://xxgk.mot.gov.cn/jigou/zhghs/201904/t20190412_3186720 (accessed on 12 April 2020).
- National Bureau of Statistics of the People’s Republic of China. 2019; China Statistical Yearbook. Available online: http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913 (accessed on 28 February 2020).
- Wang, D. Assessing road transport sustainability by combining environmental impacts and safety concerns. Transp. Res. Part D Transp. Environ. 2019, 77, 212–223. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhu, Q.; Chu, J. Environmental efficiency of land transportation in China: A parallel slack-based measure for regional and temporal analysis. J. Clean. Prod. 2017, 142, 867–876. [Google Scholar] [CrossRef]
- World Health Organization. Global status report on road safety. Inj. Prev. 2013, 15, 286. [Google Scholar]
- Mei, G.; Gan, J.; Zhang, N. Metafrontier environmental efficiency for China’s regions: A slack-based efficiency measure. Sustainability 2015, 7, 4004–4021. [Google Scholar] [CrossRef] [Green Version]
- Karlaftis, M.G. A DEA approach for evaluating the efficiency and effectiveness of urban transit systems. Eur. J. Oper. Res. 2004, 152, 354–364. [Google Scholar] [CrossRef]
- Jain, P.; Cullinane, S.; Cullinane, K. The impact of governance development models on urban rail efficiency. Transp. Res. Part A Policy Pract. 2008, 42, 1238–1250. [Google Scholar] [CrossRef]
- Yu, M.-M.; Fan, C.-K. Measuring the performance of multimode bus transit: A mixed structure network DEA model. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 501–515. [Google Scholar] [CrossRef]
- Kumar, S. State road transport undertakings in India: Technical efficiency and its determinants. Benchmarking Int. J. 2011, 18, 616–643. [Google Scholar] [CrossRef]
- Yang, T.; Guan, X.; Qian, Y.; Xing, W.; Wu, H. Efficiency evaluation of urban road transport and land use in Hunan Province of China based on hybrid Data Envelopment Analysis (DEA) models. Sustainability 2019, 11, 3826. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, J. The efficiency of public transport operations—An evaluation using stochastic frontier analysis. Res. Transp. Econ. 2013, 39, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Jarboui, S.; Forget, P.; Boujelbène, Y.; Boujelben, Y. Efficiency evaluation in public road transport: A stochastic frontier analysis. Transport 2013, 30, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ayadi, A.; Hammami, S. An analysis of the performance of public bus transport in Tunisian cities. Transp. Res. Part A Policy Pract. 2015, 75, 51–60. [Google Scholar] [CrossRef]
- Wang, Z.; He, W. CO2 emissions efficiency and marginal abatement costs of the regional transportation sectors in China. Transp. Res. Part D Transp. Environ. 2017, 50, 83–97. [Google Scholar] [CrossRef]
- Ma, F.; Li, X.; Sun, Q.; Liu, F.; Wang, W.; Huang, K. Regional differences and spatial aggregation of sustainable transport efficiency: A case study of China. Sustainability 2018, 10, 2399. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.; Zhao, X. Tax or subsidy? An analysis of environmental policies in supply chains with retail competition. Eur. J. Oper. Res. 2020, 283, 901–914. [Google Scholar] [CrossRef]
- Tang, T.; You, J.; Sun, H.; Zhang, H. Transportation efficiency evaluation considering the environmental impact for China’s freight sector: A parallel data envelopment analysis. Sustainability 2019, 11, 5108. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S. Directional distance functions and slacks-based measures of efficiency. Eur. J. Oper. Res. 2010, 200, 320–322. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.-M.; Zhang, X. Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis. Appl. Energy 2013, 104, 105–116. [Google Scholar] [CrossRef]
- Xie, B.-C.; Shang, L.-F.; Yang, S.-B.; Yi, B.-W. Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countries. Energy 2014, 74, 147–157. [Google Scholar] [CrossRef]
- Zhou, G.; Chung, W.; Zhang, Y. Measuring energy efficiency performance of China’s transport sector: A data envelopment analysis approach. Expert Syst. Appl. 2014, 41, 709–722. [Google Scholar] [CrossRef]
- Agarwal, S.; Yadav, S.P.; Singh, S. DEA based estimation of the technical efficiency of state transport undertakings in India. Opsearch 2010, 47, 216–230. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, C.-X.; Zhang, Y.-J. The energy-environment efficiency of road and railway sectors in China: Evidence from the provincial level. Ecol. Indic. 2016, 69, 559–570. [Google Scholar] [CrossRef]
- Pal, D.; Mitra, S.K. An application of the directional distance function with the number of accidents as an undesirable output to measure the technical efficiency of state road transport in India. Transp. Res. Part A Policy Pract. 2016, 93, 1–12. [Google Scholar] [CrossRef]
- Park, Y.S.; Lim, S.H.; Egilmez, G.; Szmerekovsky, J. Environmental efficiency assessment of U.S. transport sector: A slack-based data envelopment analysis approach. Transp. Res. Part D Transp. Environ. 2018, 61, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhu, Q.; Chu, J.; Liu, H.; Liang, L. Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transp. Res. Part D Transp. Environ. 2016, 48, 460–472. [Google Scholar] [CrossRef]
- Piccioni, D.I.C. Territorial accessibility and dynamics in road infrastructures use: An integrated planning approach. Ing. Ferrov. 2011, 66, 621–641. [Google Scholar]
- Wang, T.; Li, H.; Zhang, J.; Lu, Y. Influencing factors of carbon emission in China’s road freight transport. Proc. Soc. Behav. 2012, 43, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Omrani, H.; Shafaat, K.; Alizadeh, A. Integrated data envelopment analysis and cooperative game for evaluating energy efficiency of transportation sector: A case of Iran. Ann. Oper. Res. 2018, 274, 471–499. [Google Scholar] [CrossRef]
- Yang, H.; Pollitt, M.G. Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. Eur. J. Oper. Res. 2009, 197, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Wu, F.; Zhou, P. Efficiency measurement of Chinese airports with flight delays by directional distance function. J. Air Transp. Manag. 2014, 34, 140–145. [Google Scholar] [CrossRef]
- Chung, Y.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S.; Pasurka, C. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Martini, G.; Manello, A.; Scotti, D. The influence of fleet mix, ownership and LCCs on airports’ technical/environmental efficiency. Transp. Res. Part E Logist. Transp. Rev. 2013, 50, 37–52. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Färe, R. Profit, directional distance functions, and nerlovian efficiency. J. Optim. Theory Appl. 1998, 98, 351–364. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Solarin, S.A. Convergence in CO 2 emissions, carbon footprint and ecological footprint: Evidence from OECD countries. Environ. Sci. Pollut. Res. 2019, 26, 6167–6181. [Google Scholar] [CrossRef]
- Erdogan, S.; Acaravci, A. Revisiting the convergence of carbon emission phenomenon in OECD countries: New evidence from Fourier panel KPSS test. Environ. Sci. Pollut. Res. 2019, 26, 24758–24771. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-I-Martin, X.; Hall, O.J.B.E. Convergence across states and regions. Brook. Pap. Econ. Act. 1991, 1991, 107. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Inekwe, J.; Sadorsky, P. Convergence of energy productivity in Australian states and territories: Determinants and forecasts. Energy Econ. 2020, 85, 104538. [Google Scholar] [CrossRef]
- Miller, S.M.; Upadhyay, M.P. Total factor productivity and the convergence hypothesis. J. Macroecon. 2002, 24, 267–286. [Google Scholar] [CrossRef]
- Liu, H.; Wu, J.; Chu, J. Environmental efficiency and technological progress of transportation industry-based on large scale data. Technol. Forecast. Soc. Chang. 2019, 144, 475–482. [Google Scholar] [CrossRef]
- Gao, Y.; Li, W.D.; You, X.Y. Research on the efficiency evaluation of China’s railway transport enterprises with Network DEA. China Soft Sci. 2011, 5, 176–182. [Google Scholar]
- Song, M.; Zheng, W.; Wang, Z. Environmental efficiency and energy consumption of highway transportation systems in China. Int. J. Prod. Econ. 2016, 181, 441–449. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries. Appl. Energy 2015, 141, 209–217. [Google Scholar] [CrossRef]
- Chen, X.; Gao, Y.; An, Q.; Wang, Z.; Neralić, L. Energy efficiency measurement of Chinese Yangtze River Delta’s cities transportation: A DEA window analysis approach. Energy Effic. 2018, 11, 1941–1953. [Google Scholar] [CrossRef]
- Egbetokun, S.; Osabuohien, E.; Akinbobola, T.; Onanuga, O.T.; Gershon, O.; Okafor, V. Environmental pollution, economic growth and institutional quality: Exploring the nexus in Nigeria. Manag. Environ. Qual. Int. J. 2020, 31, 18–31. [Google Scholar] [CrossRef] [Green Version]
Variables | Unit | Maximum | Minimum | Mean | Std. dev. |
---|---|---|---|---|---|
Highway mileage | Thousand kilometer | 33 | 1.20 | 14.43 | 7.61 |
Number of employees | Person | 397,181 | 8188 | 105,493.45 | 80,737.17 |
Gasoline Consumption | 104 tons | 598.24 | 4.62 | 150.55 | 129.30 |
Diesel consumption | 104 tons | 1282.30 | 41.95 | 333.06 | 217.36 |
Tonnage of operating truck | Ton | 14,083,495 | 156,500 | 3,082,883.30 | 2,679,123 |
Passenger seating capacity | 104 seats | 168.56 | 7.91 | 70.57 | 38.33 |
Freight turnover | 100 million tons-km | 7899.32 | 75.42 | 1901.32 | 1821.26 |
Passenger turnover | 100 million person-km | 2470.11 | 40.33 | 433.81 | 367.56 |
Noise | dB(A) | 73.80 | 62.20 | 68.57 | 1.27 |
Direct property loss | 104 yuan | 11,994.80 | 362.80 | 3627.95 | 2327.55 |
CO2 emission | Ton | 5055.88 | 185.83 | 1524.72 | 989.98 |
Region | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Area | Mean | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1 | 1 | 1 | 1 | 0.8376 | 1 | 1 | 0.9678 | Eastern | 0.9757 | 9 |
Tianjin | 1 | 1 | 1 | 0.9696 | 0.8295 | 1 | 1 | 1 | Eastern | 0.9749 | 10 |
Hebei | 0.9770 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Eastern | 0.9971 | 4 |
Shanxi | 0.6028 | 0.6099 | 0.6150 | 0.7453 | 0.6850 | 0.6974 | 0.6861 | 0.7180 | Central | 0.6699 | 24 |
Inner Mongolia | 1 | 1 | 1 | 0.9102 | 1 | 1 | 1 | 1 | Central | 0.9888 | 6 |
Liaoning | 0.6846 | 0.7787 | 0.8039 | 0.9433 | 0.9556 | 1 | 1 | 1 | Eastern | 0.8958 | 16 |
Jilin | 0.6640 | 0.6579 | 0.7083 | 0.8221 | 0.7459 | 0.9166 | 0.9248 | 0.8214 | Central | 0.7826 | 21 |
Heilongjiang | 0.6257 | 0.6207 | 0.6619 | 0.7062 | 0.7092 | 0.7284 | 0.9261 | 1 | Central | 0.7473 | 23 |
Shanghai | 1 | 0.8584 | 0.8401 | 1 | 1 | 1 | 1 | 1 | Eastern | 0.9623 | 12 |
Jiangsu | 1 | 0.9815 | 1 | 1 | 1 | 1 | 1 | 1 | Eastern | 0.9977 | 3 |
Zhejiang | 0.9636 | 0.9301 | 0.8524 | 1 | 0.8873 | 1 | 1 | 1 | Eastern | 0.9542 | 13 |
Anhui | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Central | 1 | 1 |
Fujian | 0.7010 | 0.7021 | 0.7210 | 0.8805 | 0.7915 | 0.8313 | 0.8537 | 0.8288 | Eastern | 0.7887 | 20 |
Jiangxi | 0.8864 | 0.7906 | 0.8846 | 0.8868 | 0.8338 | 1 | 1 | 1 | Central | 0.9103 | 15 |
Shandong | 1 | 1 | 1 | 0.9921 | 0.9558 | 1 | 1 | 1 | Eastern | 0.9935 | 5 |
Henan | 0.9971 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Central | 0.9996 | 2 |
Hubei | 0.9697 | 1 | 0.9714 | 0.8310 | 0.7974 | 0.9699 | 0.9742 | 0.9665 | Central | 0.9350 | 14 |
Hunan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Central | 1 | 1 |
Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Eastern | 1 | 1 |
Guangxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Western | 1 | 1 |
Hainan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Eastern | 1 | 1 |
Chongqing | 0.9052 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Western | 0.9882 | 7 |
Sichuan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Western | 1 | 1 |
Guizhou | 0.8781 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Western | 0.9848 | 8 |
Yunnan | 0.6747 | 0.7225 | 0.7377 | 0.8524 | 0.7269 | 0.8025 | 0.8672 | 0.8524 | Western | 0.7795 | 22 |
Shaanxi | 0.6735 | 0.7290 | 0.7583 | 0.8179 | 0.8125 | 0.8678 | 0.9531 | 1 | Western | 0.8265 | 19 |
Gansu | 0.8376 | 0.8771 | 1 | 1 | 1 | 1 | 1 | 1 | Western | 0.9643 | 11 |
Qinghai | 0.6539 | 0.7136 | 0.8457 | 0.8084 | 0.8342 | 0.9590 | 0.9447 | 0.8887 | Western | 0.8310 | 18 |
Ningxia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Western | 1 | 1 |
Xinjiang | 0.8592 | 0.8350 | 0.7813 | 0.9866 | 0.9011 | 0.8855 | 0.9064 | 0.8568 | Western | 0.8765 | 17 |
Mean | 0.8851 | 0.8936 | 0.9060 | 0.9384 | 0.9101 | 0.9553 | 0.9679 | 0.9633 | Overall | 0.9275 | |
No. of efficient regions | 13 | 16 | 17 | 16 | 15 | 21 | 21 | 22 |
Area | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Mean |
---|---|---|---|---|---|---|---|---|---|
Overall | 0.8852 | 0.8936 | 0.9060 | 0.9384 | 0.9101 | 0.9553 | 0.9679 | 0.9633 | 0.9275 |
East | 0.9388 | 0.9319 | 0.9288 | 0.9805 | 0.9326 | 0.9846 | 0.9867 | 0.9815 | 0.9582 |
Central | 0.8607 | 0.8533 | 0.8712 | 0.8779 | 0.8634 | 0.9236 | 0.9457 | 0.9450 | 0.8926 |
West | 0.8482 | 0.8878 | 0.9123 | 0.9465 | 0.9274 | 0.9516 | 0.9671 | 0.9598 | 0.9251 |
Overall | Eastern | Central | Western | |
---|---|---|---|---|
β | −0.0995 *** | −0.1090 *** | −0.0876 *** | −0.1098 *** |
(0.0094) | (0.0145) | (0.0202) | (0.0174) | |
α | 0.0002 | −0.0004 | 0.0055 | −0.0003 |
F | 113.0249 | 56.5442 | 18.8743 | 39.7246 |
Adjusted R-squared | 0.7944 | 0.8474 | 0.6908 | 0.8114 |
Overall | Eastern | Central | Western | |
---|---|---|---|---|
β | −0.4849 *** | −0.6403 *** | −0.3466 ** | −0.4968 *** |
(0.0584) | (0.0991) | (0.1167) | (0.0844) | |
α | −0.0296 | −0.0250 | −0.0317 | −0.0258 |
F | 3.0748 | 4.4179 | 1.6160 | 4.5554 |
Adjusted R-squared | 0.2295 | 0.3310 | 0.0821 | 0.3401 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, Y.; Liu, H.; Yang, R. Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China. Sustainability 2020, 12, 4613. https://doi.org/10.3390/su12114613
Xu H, Wang Y, Liu H, Yang R. Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China. Sustainability. 2020; 12(11):4613. https://doi.org/10.3390/su12114613
Chicago/Turabian StyleXu, Hao, Yeqing Wang, Hongwei Liu, and Ronglu Yang. 2020. "Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China" Sustainability 12, no. 11: 4613. https://doi.org/10.3390/su12114613
APA StyleXu, H., Wang, Y., Liu, H., & Yang, R. (2020). Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China. Sustainability, 12(11), 4613. https://doi.org/10.3390/su12114613