Testing the Smooth Driving of a Train Using a Neural Network
Abstract
:1. Introduction
2. State of the Art
2.1. Traffic Smoothness and Driving Smoothness
2.2. Train Driving Model
- obtaining a movement authority (setting a route, sending a movement authority);
- starting the run (starting, accelerating);
- monitoring the run (driving at an authorised speed);
- coasting;
- controlling braking conditions (speed reduction and implementation of braking as required);
- end-of-travel stop (targeted braking and precise stop).
- start-up–full power (FP), where μf = 1, μb = 0, solid line;
- constant speed–partial power (PP), where μf ∈ [0–1], dotted line;
- coasting (C), μf = 0, μb = 0, dot dashed line;
- full braking (FB), μf = 0, μb = 1, dashed line.
- start-up–coasting to stop (green);
- start-up–coasting–braking (blue);
- start-up–braking (red).
2.3. Neural Train Emulator
- ATO driving strategy;
- traction characteristics of the locomotive;
- the train’s braking performance;
- track infrastructure parameters.
- the possibility to approximate any non-linear mapping;
- parallel and distributed processing;
- adaptation;
- learning;
- processing signals from multiple inputs and generating multiple outputs.
- input;
- LSTM;
- fully connected;
- regression.
- the number of input parameters ann;
- the number of output parameters ann;
- the number of hidden units in the LSTM layer.
3. Research
3.1. Smooth Driving
3.2. Model of the Train
- length;
- mass;
- braking mass;
- traction characteristics;
- braking characteristics;
- maximum design speed of the train;
- delay in service braking;
- emergency braking delay;
- maximum braking distance.
- current speed;
- acceleration;
- movement authority;
- dynamic speed profile;
- train driving strategy;
- dynamic driving profile;
- location on the track;
- traction adjuster position;
- brake adjuster position.
3.3. Infrastructure Model
3.4. Artificial Neural Network of Train Emulator
- the number of input sequences;
- number of hidden states of the LSTM layer;
- the number of output sequences;
- the time step, which defines the discrete data of ann.
- the current actual speed;
- the current permitted speed;
- the current acceleration;
- the position of the traction/braking control;
- the distance of the train to the end of the movement authority.
- number of input sequences—6;
- number of output sequences—1;
- number of hidden states—400.
3.5. Learning Process
4. Test Results
4.1. Simulation of Train Driving Using a Neural Emulator
- make the ride quickly as possible;
- make the ride as economical as possible;
- follow the scheduled sustainable driving time.
- the profile of descending track;
- the profile of the ascending track;
- a track profile with many hills and descents;
- a horizontal driving profile.
- a static profile with one speed limit—maximum line speed;
- a static profile with restrictions on the station areas at the beginning and end of the drive;
- a static profile with restrictions on the route due to infrastructure malfunctions.
4.2. Driving Smoothness Indicator
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ustawa z Dnia 16 Grudnia 2010 r. o Publicznym Transporcie Zbiorowym. (Dz.U 2017 poz. 2136 z Późń. Zmianami); Kancelaria Sejmu: Warsaw, Poland, 2017.
- Rashid, K.; Safdarnejad, S.; Ellingwood, K.; Powell, K. Techno-economic evaluation of different hybridization schemes for a solar thermal/gas power plant. Energy 2019, 181, 91–106. [Google Scholar] [CrossRef]
- Imran, T.; Munawir, T.; Abqari, A.; Samah, A. A comparison study on the assessment of ride comfort for LRT passengers. Mater. Sci. Eng. 2017, 226, 012039. [Google Scholar]
- EN 62290-1:2014 Railway Applications. Urban Guided Transport Management and Command/Control Systems. System Principles and Fundamental Concepts; BSI: London, UK, 2014.
- Haykin, S. Neural Networks a Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Korbicz, J.; Obuchowicz, A.; Uciński, D. Sztuczne Sieci Neuronowe. Podstawy i Zastosowania; Akademicka Oficyna Wydawnicza PLJ: Warszawa, Poland, 1994. [Google Scholar]
- Sobota, A.; Karoń, G. Próba zdefiniowania pojazdu zakłóconego na wybranych odcinkach dróg wielopasowych w aspekcie płynności ruchu. Zesz. Nauk. Politech. Śląskiej Transp. 2010, 66, 98–106. [Google Scholar]
- Dmochowski, P.A.; Mycka, M.; Skorupski, J. Analiza zależności między wielkością a płynnością ruchu w kontekście zarządzania przepływem strumieni ruchu lotniczego. In Współczesne Problemy Inżynierii Ruchu Lotniczego—Modele; Jacek, S., Ed.; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2014. [Google Scholar]
- Dmochowski, P.A.; Mycka, M.; Skorupski, J. Możliwość Implementacji Metody Szacowania Płynności do Operacyjnego Zarządzania Przepływem Ruchu Lotniczego. Pr. Nauk. Politech. Warsz. Transp. 2016, 109–120. [Google Scholar]
- Woch, J. Podstawy Inżynierii Ruchu Kolejowego; Wydawnictwo Komunikacji i Łączności: Warsaw, Poland, 1983. [Google Scholar]
- Andersson, E.V.; Peterson, A.; Krasemann, J.T. Quantifying railway timetable robustness in critical points. J. Rail Transp. Plan. Manag. 2013, 3, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Cavone, G.; Dotoli, M.; Epicoco, N.; Seatzu, C. A decision making procedure for robust train rescheduling based on mixed integer linear programming and data envelopment analysis. Appl. Math. Model. 2017, 52, 255–273. [Google Scholar] [CrossRef]
- Kwaśnikowski, J.; Gramza, G. Analiza wybranych zakłóceń w ruchu kolejowym. Probl. Eksploat. 2007, 89–96. [Google Scholar]
- Twaróg, J. Mierniki i Wskaźniki Logistyczne; Biblioteka Logistyka: Poznań, Poland, 2004. [Google Scholar]
- BS EN 12299:2009 Railway Applications. Ride Comfort for Passengers. Measurement and Evaluation; BSI: London, UK, 2009.
- Xu, X.; Yang, L.; Gao, Z.; Long, J. Simulations for train traffic flow on single-track railways with speed limits and slopes. J. Simul. 2017, 11, 346–356. [Google Scholar] [CrossRef]
- Amrani, A.; Hamida, A.; Liu, T.; Langlois, O. Train speed profiles optimization using a genetic algorithm based on a random-forest model to estimate energy consumption. In Proceedings of the Transport Research Arena (TRA), Vienne, Austria, 16–19 April 2018. [Google Scholar]
- Huang, K.; Wu, J.; Yang, X.; Gao, Z.; Liu, F.; Zhu, Y. Discrete train speed profile optimization for urban rail transit: A data-driven model and integrated algorithms based on machine learning. J. Adv. Transp. 2019, 2019, 7258986. [Google Scholar] [CrossRef]
- De Martinis, V.; Gallo, M. Models and methods to optimise train speed profiles with and without energy recovery systems: A suburban test case. Procedia-Soc. Behav. Sci. 2013, 87, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Roberts, C.; Hillmansen, S.; Western, P.; Chen, L.; Tian, Z.; Xin, T.; Su, S. Train trajectory optimisation of ATO systems for metro lines. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 1796–1801. [Google Scholar] [CrossRef]
- Jong, J.C.; Chang, S. Algorithms for generating train speed profiles. J. East. Asia Soc. Transp. Stud. 2005, 6, 356–371. [Google Scholar]
- Domínguez, M.; Fernández, A.; Cucala, A.; Blanquer, J. Efficient design of automatic train operation speed profiles with on board energy storage devices. Wit Trans. Built Environ. 2010, 114, 509–520. [Google Scholar]
- Woch, J. Kształtowanie Płynności Ruchu w Gęstych Sieciach Transportowych; PAN: Kielce, Poland, 1998. [Google Scholar]
- Bergiel, K.; Karbowiak, H. Automatyzacja Prowadzenia Pociągu; EMI-PRESS: Łódź, Poland, 2005. [Google Scholar]
- Tang, H.; Dick, C.; Feng, X. Optimization of train speed profiles for a metro transit system by genetic algorithms. In Proceedings of the 6th International Conference on Railway Operations Modelling and Analysis Planning, Simulation and Optimisation Approaches, Tokyo, Japan, 23–26 March 2015. [Google Scholar]
- Morais, V.A.; Rocha, A.A.; Afonso, J.L.; Martins, A.P. Martins: Heuristic-based Speed Profile Generation for Multi-Train Simulator. In Proceedings of the International Conference on Intelligent Systems, Funchal-Madeira, Portugal, 25–27 September 2018. [Google Scholar]
- Kochan, A.; Koper, E. Mathematical model of the movement authority in the ERTMS/ETCS system. In ISCT21 2019: Research Methods and Solutions to Current Transport Problems; Siergiejczyk, M., Krzykowska, K., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 1032. [Google Scholar]
- Koper, E.; Kochan, A.; Gruba, Ł. Simulation of the Effect of Selected National Values on the Braking Curves of an ETCS Vehicle. In Development of Transport by Telematics; Mikulski, W.J., Mikulski, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 17–31. [Google Scholar] [CrossRef]
- Jia, C.; Xu, H.; Wang, L. Nonlinear hybrid multipoint model of high-speed train with traction/braking dynamic and speed estimation law. Math. Probl. Eng. 2019, 2019, 1364657. [Google Scholar] [CrossRef]
- Farooqia, H.; Incremona, G.P.; Colaneri, P. Railway collaborative ecodrive via dissension based switching nonlinear model predictive control. Eur. J. Control 2019, 50, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Shinde, P.; Yadav, S.; Rudrake, S.; Kumbhar, P. Smart Traffic Control System using YOLO. Int. Res. J. Eng. Technol. 2019, 6. [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Jesús, O.D. An introduction to the use of neural networks in control systems. Int. J. Robust Nonlinear Control 2002, 12, 959–985. [Google Scholar] [CrossRef]
- Ke, Q.; Zhang, Y. Research on automatic operation control algorithm of high speed train based on artificial neural network. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 042046. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://en.wikipedia.org/wiki/Long_short-term_memory#History (accessed on 15 April 2020).
- MathWorks, M. Deep Learning Toolbox; Technical Documentation. 2019. Available online: https://www.mathworks.com/help/deeplearning/ (accessed on 1 June 2020).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Madej, J. Teoria Ruchu Pojazdów Szynowych; Oficyna wydawnicza Politechniki Warszawskiej Warszawa: Warsaw, Poland, 2012. [Google Scholar]
Related to Spatial Distance | Related to Time | Related to the Object of Transport |
---|---|---|
|
|
|
No. | Feature | Ranking of Quality Measures (%) |
---|---|---|
1 | punctuality | 19.37 |
2 | directness | 14.37 |
3 | frequency | 14.03 |
4 | rhythmicity | 13.95 |
5 | low cost | 11.82 |
6 | comfort | 6.98 |
7 | travel safety | 6.81 |
8 | speed and travel time | 6.39 |
Section | I | II | III | IV |
---|---|---|---|---|
standard deviation | 2.05 | 0.79 | 0.56 | 1.42 |
average | 2.65 | 0.39 | 0.17 | 2.39 |
k | 0.77 | 2.03 | 3.24 | 0.59 |
ranking | III | II | I | IV |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koper, E.; Kochan, A. Testing the Smooth Driving of a Train Using a Neural Network. Sustainability 2020, 12, 4622. https://doi.org/10.3390/su12114622
Koper E, Kochan A. Testing the Smooth Driving of a Train Using a Neural Network. Sustainability. 2020; 12(11):4622. https://doi.org/10.3390/su12114622
Chicago/Turabian StyleKoper, Emilia, and Andrzej Kochan. 2020. "Testing the Smooth Driving of a Train Using a Neural Network" Sustainability 12, no. 11: 4622. https://doi.org/10.3390/su12114622
APA StyleKoper, E., & Kochan, A. (2020). Testing the Smooth Driving of a Train Using a Neural Network. Sustainability, 12(11), 4622. https://doi.org/10.3390/su12114622