Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Social Housing in Uruguay
2.2. Generation of Weather Data for the Calibration and Analysis of EE Improvements
2.3. Monitoring and Calibration of the Model
2.4. Thermal and Energy Performance Indicators
2.5. Performance Analysis
3. Results
3.1. Analysis of Energy Demand and Thermal Comfort in Base Case
3.2. Analysis of Energy Savings
3.3. Analysis of Thermal Comfort Based on the Adaptive Comfort Approach
3.4. Consumption and Thermal Comfort
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ACH | Air Changes Per Hour |
ATC | Adaptive Thermal Comfort |
A2 | Family of Scenarios from the IPCC Special Report on Emission Scenarios |
CC | Climate Change |
CD | Cooling Demand |
CV(RMSE) | Square Root Coefficient Variation of the Mean Bias Error |
EC | Energy Consumption |
EE | Energy Efficiency |
FP | Fuel Poverty |
HVAC | Heating, ventilation, and air conditioning |
IPCC | Intergovernmental Panel on Climate Change |
MBE | Mean Bias Error |
PVC | Polyvinyl Chloride |
S1 | Section 1 |
S2 | Section 2 |
S3 | Section 3 |
C | Total Demand |
TMY | Typical Meteorological Year |
Tn | Neutral Temperature |
T Pma(out) | Average Outdoor Operative Temperature |
References
- Santamouris, M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Sol. Energy 2016, 128, 61–94. [Google Scholar] [CrossRef]
- UNEP Building Design and Construction: Forging Resource Efficiency and Sustainable Development. Available online: http://www.unep.org/sbci/pdfs/UNEP_SBCI_PositionPaperJune2012.pdf (accessed on 14 May 2016).
- IEA World Energy Outlook. 2013. Available online: http://www.worldenergyoutlook.org/media/weowebsite/2013/LondonNovember12.pdf (accessed on 14 May 2016).
- European Commission Directive 2002/91/EC of the European Parliament and of the council of 16 December 2002 on the energy performance of buildings. Off. J. Eur. Union 2002, 65–71. [CrossRef]
- European Commission Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off. J. Eur. Union 2010, 13–35. [CrossRef]
- Nicol, F. Comfort and energy use in buildings—Getting them right. Energy Build. 2007, 39, 737–739. [Google Scholar] [CrossRef]
- Sánchez-García, D.; Rubio-Bellido, C.; del Río, J.J.M.; Pérez-Fargallo, A. Towards the quantification of energy demand and consumption through the adaptive comfort approach in mixed mode office buildings considering climate change. Energy Build. 2019, 187, 173–185. [Google Scholar] [CrossRef]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Peacock, A.D.; Jenkins, D.P.; Kane, D. Investigating the potential of overheating in UK dwellings as a consequence of extant climate change. Energy Policy 2010, 38, 3277–3288. [Google Scholar] [CrossRef]
- Thomson, H.; Snell, C. Quantifying the prevalence of fuel poverty across the European Union. Energy Policy 2013, 52, 563–572. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Rubio-Bellido, C.; Pulido-Arcas, J.A.; Javier Guevara-García, F. Fuel Poverty Potential Risk Index in the context of climate change in Chile. Energy Policy 2018, 113. [Google Scholar] [CrossRef]
- Van Hooff, T.; Blocken, B.; Timmermans, H.J.P.; Hensen, J.L.M. Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building. Energy 2016, 94, 811–820. [Google Scholar] [CrossRef]
- Rubio-Bellido, C.; Pérez-Fargallo, A.; Pulido-Arcas, J.A.; Trebilcock, M. Application of adaptive comfort behaviors in Chilean social housing standards under the influence of climate change. Build. Simul. 2017. [Google Scholar] [CrossRef]
- Lautsen, J. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings; International Energy Agency: Paris, France, 2008. [Google Scholar]
- Fargallo, A.P.; Alés, V.F.; Rodríguez, J.M.C. Comparison of energy-saving restoration costs based on Spain’s initial constraints [single-family zone B4]. Rev. la Constr. 2015, 14, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Andrić, I.; Koc, M.; Al-Ghamdi, S.G. A review of climate change implications for built environment: Impacts, mitigation measures and associated challenges in developed and developing countries. J. Clean. Prod. 2019, 211, 83–102. [Google Scholar] [CrossRef]
- Escandón, R.; Suárez, R.; Sendra, J.J.; Ascione, F.; Bianco, N.; Mauro, G.M. Predicting the Impact of Climate Change on Thermal Comfort in A Building Category: The Case of Linear-type Social Housing Stock in Southern Spain. Energies 2019, 12, 2238. [Google Scholar] [CrossRef] [Green Version]
- Van Hooff, T.; Blocken, B.; Hensen, J.L.M.; Timmermans, H.J.P. On the predicted effectiveness of climate adaptation measures for residential buildings. Build. Environ. 2014, 82, 300–316. [Google Scholar] [CrossRef]
- Panraluk, C.; Sreshthaputra, A. Developing Guidelines for Thermal Comfort and Energy Saving during Hot Season of Multipurpose Senior Centers in Thailand. Sustainability 2019, 12, 170. [Google Scholar] [CrossRef] [Green Version]
- Petidis, I.; Aryblia, M.; Daras, T.; Tsoutsos, T. Energy saving and thermal comfort interventions based on occupants’ needs: A students’ residence building case. Energy Build. 2018, 174, 347–364. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Li, G.; Wang, J.; Zhao, D.; Chen, C. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings. Energy Convers. Manag. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fargallo, A.; Rubio-Bellido, C.; Pulido-Arcas, J.A.; Gallego-Maya, I.; Guevara-García, F.J. Influence of adaptive comfort models on energy improvement for housing in cold areas. Sustainability 2018, 10, 859. [Google Scholar] [CrossRef] [Green Version]
- García de Diego, M.D.L.; Gómez Muñoz, G.; Román López, E. Cuentas energéticas no habituales en edificación residencial. Inf. la Construcción 2015, 67, m028. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fargallo, A.; Pulido-Arcas, J.A.; Rubio-Bellido, C.; Trebilcock, M.; Piderit, M.B.; Attia, S. Development of a new adaptive comfort model for low income housing in the central-south of chile. Energy Build. 2018, 178, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, M.A.; Rijal, H.B.; Nicol, J.F. Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Build. Environ. 2013, 63, 40–55. [Google Scholar] [CrossRef]
- Attia, S.; Carlucci, S. Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build. 2015, 102, 117–128. [Google Scholar] [CrossRef] [Green Version]
- INE Encuesta Continua de Hogares. 2011. Available online: http://www.ine.gub.uy/encuesta-continua-de-hogares1 (accessed on 27 April 2020).
- MIEM Características de Sector Residencial. Datos 2013. Available online: https://www.miem.gub.uy/energia/encuesta-sobre-consumo-y-usos-de-la-energia-en-el-sector-residencial-datos-2013 (accessed on 8 May 2019).
- Triana, M.A.; Lamberts, R.; Sassi, P. Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures. Energy Build. 2018, 158, 1379–1392. [Google Scholar] [CrossRef] [Green Version]
- MIEM Balance Energético Nacional. 2018. Available online: https://ben.miem.gub.uy/demanda3.html (accessed on 26 May 2020).
- Boso, À.; Oltra, C.; Hofflinger, Á. Participation in a programme for assisted replacement of wood-burning stoves in Chile: The role of sociodemographic factors, evaluation of air quality and risk perception. Energy Policy 2019, 129, 1220–1226. [Google Scholar] [CrossRef]
- Laureiro, P. Determinantes del Consumo de Energía Eléctrica del Sector Residencial en Uruguay. Available online: http://www.iecon.ccee.edu.uy/die-05-18-determinantes-del-consumo-de-energia-electrica-del-sector-residencial-en-uruguay/publicacion/630/es/ (accessed on 8 May 2019).
- IM Normas Para Edificios Destinados a Vivienda. De la Reducción de la Demanda de Energía Para Acondicionamiento Térmico. Digesto Municipal. Volumen XV, Libro XVI, Título III.I, Capítulo Único. Available online: http://www.montevideo.gub.uy/aplicacion/resolucion?parametro=2928-09 (accessed on 12 May 2019).
- DINAVI/MVOTMA Bases del Sistema de Otorgamiento de Aptitud Técnica a Sistemas Constructivos no Tradicionales, Sección II.- Estándares de Desempeño Para la Vivienda. Available online: http://www.mvotma.gub.uy/component/k2/item/10010231-estandares-de-desempeno-y-requisitos-para-la-vivienda-de-interes-social-2011 (accessed on 5 June 2019).
- Pérez-Andreu, V.; Aparicio-Fernández, C.; Martínez-Ibernón, A.; Vivancos, J.L. Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy 2018, 165, 63–74. [Google Scholar] [CrossRef]
- Barbosa, R.; Vicente, R.; Santos, R. Climate change and thermal comfort in Southern Europe housing: A case study from Lisbon. Build. Environ. 2015. [Google Scholar] [CrossRef]
- Rubio-Bellido, C.; Pérez-Fargallo, A.; Pulido-Arcas, J.A. Optimization of annual energy demand in office buildings under the influence of climate change in Chile. Energy 2016, 114, 569–585. [Google Scholar] [CrossRef]
- INE Censo Nacional 2011. Available online: http://www.ine.gub.uy/censos-2011 (accessed on 24 June 2019).
- Carpio, M.; García-Maraver, A.; Ruiz, D.P.; Martín-Morales, M. Impact of the envelope design of residential buildings on their acclimation energy demand, CO2 emissions and energy rating. WIT Trans. Ecol. Environ. 2014, 186, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Casacuberta, C. Situación de la vivienda en Uruguay; Fondo Población las Nac. Unidas: Montevideo, Uruguay, 2006. [Google Scholar]
- Loga, T.; Stein, B.; Diefenbach, N. TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy Build. 2016, 132, 4–12. [Google Scholar] [CrossRef]
- Ballarini, I.; Corgnati, S.P.; Corrado, V. Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy 2014, 68, 273–284. [Google Scholar] [CrossRef]
- IM Disposiciones Aplicables a las Viviendas Populares. Digesto Municipal. Volumen XV, Libro XV, Título X, Capítulo I. Available online: http://normativa.montevideo.gub.uy/articulos/82706 (accessed on 26 June 2019).
- MIDES Observatorio Social. Tamaño Medio de Hogares Particulares Según Quintiles de Ingreso. Total País. Available online: http://observatoriosocial.mides.gub.uy/portal/indicadores.php# (accessed on 14 October 2019).
- Picción, A.; Camacho, M.; López, M.; Milicua, S. Pautas de Diseño Bioclimático Para Optimizar Condiciones de Confort y uso de Energía en el Sector Residencial Financiado por Organismos Públicos, Para Uruguay, Caso de Clima Complejo. Available online: http://www.fadu.edu.uy/ic/files/2019/08/PDT06.pdf (accessed on 5 May 2019).
- Picción, A.; Camacho, M.; López, M.; Milicua, S.; Cheirasco, G. Evaluación de pautas de diseño bioclimatico aplicadas en edificios de vivienda en uruguay (clima templado húmedo). Av. en Energías Renov. y Medio Ambient. 2009, 13, 187–194. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Estandar 62.1-2007: Ventilacion para una Calidad Aceptable de Aire Interior; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2007. [Google Scholar]
- Pérez Fargallo, A.; Calama Rodríguez, J.M.; Flores Alés, V. Comparativa de resultados de rehabilitación energética para viviendas en función del grado de mejora. Inf. la Construcción 2016, 68, e134. [Google Scholar] [CrossRef] [Green Version]
- INUMET. Datos Horarios de Temperatura y Humedad. Estación Meteorológica del Prado. Periodo Mayo-Junio 2019; Instituto Uruguayo de Meteorología: Montevideo, Uruguay, 2019. [Google Scholar]
- LES/UdelaR. Datos horarios de Radiación Global Horizontal. Estación FING-UdelaR. Periodo Mayo-Junio 2019; Laboratorio de Energía Solar: Montevideo, Uruguay, 2019. [Google Scholar]
- Big Ladder Software; Elements Software v.1.0.6. Available online: https://bigladdersoftware.com/projects/elements/ (accessed on 1 September 2019).
- Remund, J.; Müller, S.C.; Schilter, C.; Rihm, B. The use of Meteonorm weather generator for climate change studies. EMS Annu. Meet. Abstr. 2011, 7, 13–17. [Google Scholar]
- Rubio-Bellido, C.; Pulido, J.; Ureta-Gragera, M. Aplicabilidad de estrategias genéricas de diseño pasivo en edificaciones bajo la influencia del cambio climático en concepción y santiago, chile. Rev. Hábitat Sustentable 2015, 5, 32–41. [Google Scholar]
- ASHRAE. ASHRAEGuideline 14-2014: Measurement of Energy, Demand, and Water Savings; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2014. [Google Scholar]
- Citec/UBB; Decon/UC. Manual de Hermeticidad al Aire de Edificaciones; Trebilcock, M., Ed.; Ediciones Universidad del Bío-Bío: Concepción, Chile, 2014; ISBN 9789569275272. [Google Scholar]
- CEN. EN 16798: Indoor Environmental Input Parameters For Design and Assessment of Energy Performance of Buildings Addressing Indoor Air quality, Thermal environment, Lighting and Acoustics; European Committee for Standardization: Brussels, Belgium, 2017. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 55-2017 Thermal Environmental Conditions for Human Occupancy. Available online: https://ashrae.iwrapper.com/ViewOnline/Standard_55-2017 (accessed on 2 November 2019).
- Municipalidad de Rosario Ordenanza N°8757. Available online: https://www.rosario.gob.ar/normativa/ver/visualExterna.do?accion=verNormativaandidNormativa=75004 (accessed on 14 October 2019).
- Código Técnico de la Edificación (CTE) Documento Básico de Ahorro de Energía (DB-HE). Available online: https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DBHE.pdf (accessed on 14 October 2019).
- MINVU Estándares de Construcción Sustentable para viviendas de Chile. Tomo II Energía. Available online: https://csustentable.minvu.gob.cl/edificacion-residencial/ (accessed on 14 October 2019).
- ASHRAE. ANSI/ASHRAE Standard 62.2-2019. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2019. [Google Scholar]
- Filippín, C.; Ricard, F.; Flores Larsen, S.; Santamouris, M. Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change. Renew. Energy 2017, 101, 1226–1241. [Google Scholar] [CrossRef]
- Fosas, D.; Coley, D.A.; Natarajan, S.; Herrera, M.; Fosas de Pando, M.; Ramallo-Gonzalez, A. Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Build. Environ. 2018, 143, 740–759. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Sánchez-García, D.; Pérez-Fargallo, A.; Rubio-Bellido, C. Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature. Build. Environ. 2020, 170. [Google Scholar] [CrossRef]
Category | Description | ||
---|---|---|---|
Conventional measures | Passive measures | Constructive parameters | Additional insulation |
Improved air-tightness of the envelope | |||
Energy efficient glazing | |||
Solar shading fixed devices/overhangs | |||
Green roofs/walls | |||
Solar reflectivity/absorptivity | |||
Operation parameters | Natural ventilation/night cooling | ||
Solar shading mobile devices | |||
Active measures | Solar panels (PV panels and solar collectors) | ||
Heat pumps | |||
Connection to district heating/cooling | |||
Energy efficient lighting | |||
Energy efficient appliances | |||
Sophisticated control devices | |||
Additional measures | Thermal mass | ||
Windows-to-wall ratio | |||
Indoor comfort temperatures | |||
Redistribution of space usages | |||
Modification of interior volume |
Component | Layers | Thickness (m) | U-Value (w/m2 k) | Cp 1 (kj/m2k) | ||||
---|---|---|---|---|---|---|---|---|
Exterior wall | Interior cement plaster | 0.18 | 2.62 | 186.2 | ||||
Hollow concrete wall | ||||||||
Exterior cement plaster | ||||||||
Roof | Interior cement plaster | 0.165 | 3.42 | 225.0 | ||||
Reinforced concrete slab cast in place | ||||||||
Lightweight concrete | ||||||||
Cementitious screed | ||||||||
Aluminum bitumen membrane | ||||||||
Floor | Ceramic Tile | 0.12 | 2.60 | 150.2 | ||||
Cement mortar | ||||||||
Concrete cast in place | ||||||||
Interior wall | Interior cement plaster | 0.15 | 2.22 | 186.3 | ||||
Hollow concrete wall | ||||||||
Exterior cement plaster | ||||||||
Component | Type | Opening (%) | Frame | Glass | U (w/m2 k) | Ts 2 | Tv 3 | Solar protection |
Window (W1) | Casement | 100% | Metal | Single 4 mm | 5.87 | 0.81 | 0.89 | none |
Window (W2) | Pivot | 100% | Metal | 5.87 | 0.81 | 0.89 | none | |
Door (D1) | - | 100% | Wood | 2.82 | - | - | - | |
Door (D2) | 100% | Metal/glass | 5.89 | 0.81 | 0.89 | - |
Infiltration Rate (n50) | Ground Configuration | Error | Bedroom 1 | Living Room | Bedroom 2 |
---|---|---|---|---|---|
8,2 ACH | Ground domain | MBE | 3.5% | −1.1% | −1.6% |
RMSE | 1.2 | 0.9 | 0.7 | ||
CV(RMSE) | 6.7% | 4.5% | 3.9% |
Measures | Level | Characteristics |
---|---|---|
Construction measures | ||
Roof insulation (W/m2K) | 0.85 | EPS 3.0 cm |
0.61 | EPS 5.0 cm | |
0.47 | EPS 7.0 cm | |
0.32 | EPS 11.0 cm | |
Wall insulation (W/m2K) | 0.85 | EPS 3.0 cm |
0.61 | EPS 5.0 cm | |
0.50 | EPS 6.5 cm | |
Windows (W/m2K) | 5.80 | SG—aluminium frame |
2.70 | DGW—aluminium frame/PVC | |
Airtightness (ACH) | 5.0 | Substitution of window with improvements in air permeability |
1.0 | Substitution of window with improvements in air permeability combined with weather strips on doors and pipe pass-throughs. | |
Operational Measures | ||
Shading | 100% | Outdoor PVC roller blinds Active from November to March when Text >19 °C and the incidental solar radiation >120 W/m2 |
Ventilation | 2.7 l/s·m2 | Night cooling from December to March 10 p.m. to 9 a.m. |
5.3 l/s·m2 | Night cooling between December and March 10 p.m. to 9 a.m. |
Scenario | Heating (MWh/Year) | Cooling (MWh/Year) | Total (MWh/Year) |
---|---|---|---|
Current | 9.8 | 2.3 | 12.2 |
A2 2050 | 7.1 | 4.3 | 11.4 |
Scenario | Room | Discomfort Due to Cold (% Annual Hours) | Discomfort Due to Heat (% Annual Hours) | Total Comfort (% Annual Hours) |
---|---|---|---|---|
Current | Living Room | 31.3 % | 22.9 % | 45.8 % |
Bed 2 | 29.5 % | 21.6 % | 48.9 % | |
A2 2050 | Living Room | 23.7% | 32.2% | 44.1% |
Bed 2 | 22.2% | 30.6% | 47.2% |
Section | Case | U Wall (W/m2K) | U Roof (W/m2K) | U Vent. (W/m2K) | Inf. ACH n50 | Solar Prot. | Ventilation (lt/s·per + l/s·m2) |
---|---|---|---|---|---|---|---|
Cases with individual measures | |||||||
S1 | A (A1,A2) | 2.62 | 3.40 | 5.8 | 8.2 | - | 2.5 + 0.3 |
B | 2.62 | 3.40 | 5.8 | 8.2 | 100% | 2.5 + 0.3 | |
C | 2.62 | 3.40 | 2.7 | 5 | - | ||
D | 2.62 | 3.40 | 5.8 | 1 | - | ||
E | 2.62 | 3.40 | 2.7 | 5 | 100% | ||
S2 | F | 0.50 | 3.40 | 5.8 | 8.2 | - | 2.5 + 0.3 |
G | 2.62 | 0.32 | 5.8 | 8.2 | - | ||
Cases with combined measures chosen | |||||||
S3 | H (H1,H2) | 0.85 | 0.85 | 2.7 | 8.2 | 100% | 2.5 + 0.3 |
I (I1;I2) | 0.61 | 0.47 | 2.7 | 5 | 100% | ||
J (J1;J2) | 0.50 | 0.32 | 2.7 | 8.2 | 100% | ||
K (K1;K2) | 0.50 | 0.32 | 2.7 | 5 | 100% | ||
L (L1;L2) | 0.50 | 0.32 | 2.7 | 1 | - | ||
M (M1;M2) | 0.50 | 0.32 | 5.8 | 1 | 100% | ||
N (N1;N2) | 0.61 | 0.32 | 2.7 | 1 | 100% | ||
O (O1;O2) | 0.50 | 0.32 | 2.7 | 1 | 100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-Ruchansky, L.; Pérez-Fargallo, A. Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay. Sustainability 2020, 12, 4636. https://doi.org/10.3390/su12114636
Pereira-Ruchansky L, Pérez-Fargallo A. Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay. Sustainability. 2020; 12(11):4636. https://doi.org/10.3390/su12114636
Chicago/Turabian StylePereira-Ruchansky, Lucía, and Alexis Pérez-Fargallo. 2020. "Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay" Sustainability 12, no. 11: 4636. https://doi.org/10.3390/su12114636
APA StylePereira-Ruchansky, L., & Pérez-Fargallo, A. (2020). Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay. Sustainability, 12(11), 4636. https://doi.org/10.3390/su12114636