Physical Activity and Social Cognition in the Elderly
Abstract
:1. Introduction
1.1. ToM and its Relation with Other Cognitive Abilities
1.2. ToM and Aging
1.3. Physical Activity as a Stimulus-Generating Element for the Formation of ToM
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion and Conclusions
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Conflicts of Interest
References
- Schaafsma, S.M.; Pfaff, D.W.; Spunt, R.P.; Adolphs, R. Deconstructing and reconstructing theory of mind. Trends Cogn. Sci. Regul. Ed. 2015, 19, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.M. Lifespan development: The effects of typical aging on theory of mind. Behav. Brain Res. 2013, 237, 32–40. [Google Scholar] [CrossRef]
- Estes, D.; Bartsch, K. Theory of mind: A foundational component of human general intelligence. Behav. Brain Sci. 2017, 40, e201. [Google Scholar] [CrossRef]
- Baksh, R.A.; Abrahams, S.; Auyeung, B.; MacPherson, S.E. The Edinburgh Social Cognition Test (ESCoT): Examining the effects of age on a new measure of theory of mind and social norm understanding. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Spunt, R.P.; Adolphs, R. The neuroscience of understanding the emotions of others. Neurosci. Lett. 2019, 693, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Tirapu-Ustarroz, J.; Perez-Sayes, G.; Erekatxo-Bilbao, M.; Pelegrin-Valero, C. What is theory of mind? Rev. Neurol. 2007, 44, 479–489. [Google Scholar] [PubMed]
- Ekman, P.; Cordaro, D. What is Meant by Calling Emotions Basic. Emot. Rev. 2011, 3, 364–370. [Google Scholar] [CrossRef]
- Arango de Montis, I.; Bruene, M.; Fresan, A.; Ortega Font, V.; Villanueva, J.; Saracco, R.; Muñoz-Delgado, J. Recognition of facial expression of the emotions and their relation to attachment styles and psychiatric symptoms. Preliminary study on Psychiatric Residents. Salud Ment. 2013, 36, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Ruffman, T.; Henry, J.D.; Livingstone, V.; Phillips, L.H. A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neurosci. Biobehav. Rev. 2008, 32, 863–881. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Hill, J.; Raste, Y.; Plumb, I. The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 2001, 42, 241–251. [Google Scholar] [CrossRef]
- Richell, R.A.; Mitchell, D.G.V.; Newman, C.; Leonard, A.; Baron-Cohen, S.; Blair, R.J.R. Theory of mind and psychopathy: Can psychopathic individuals read the ‘language of the eyes’? Neuropsychologia 2003, 41, 523–526. [Google Scholar] [CrossRef] [Green Version]
- Dodell-Feder, D.; Ressler, K.J.; Germine, L.T. Social cognition or social class and culture? On the interpretation of differences in social cognitive performance. Psychol. Med. 2020, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholl, B.J.; Leslie, A.M. Minds, modules, and meta-analysis. Child Dev. 2001, 72, 696–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, V.E.; Gerrans, P. What’s domain-specific about theory of mind? Soc. Neurosci. 2006, 1, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Nolaker, E.J.; Murray, K.; Happe, F.; Charlton, R.A. Cognitive and Affective Associations with an Ecologically Valid Test of Theory of Mind across the Lifespan. Neuropsychology 2018, 32, 754–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltzman, J.; Strauss, E.; Hunter, M.; Archibald, S. Theory of mind and executive functions in normal human aging and Parkinson’s disease. J. Int. Neuropsychol. Soc. 2000, 6, 781–788. [Google Scholar] [CrossRef]
- Bora, E.; Walterfang, M.; Velakoulis, D. Theory of mind in behavioural-variant frontotemporal dementia and Alzheimer’s disease: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 714–719. [Google Scholar] [CrossRef]
- Charness, N. Aging and human performance. Hum. Factors 2008, 50, 548–555. [Google Scholar] [CrossRef]
- Heyn, P.C.; Johnson, K.E.; Kramer, A.F. Endurance and strength training outcomes on cognitively impaired and cognitively intact older adults: A meta-analysis. J. Nutr. Health Aging. 2008, 12, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Bamidis, P.D.; Vivas, A.B.; Styliadis, C.; Frantzidis, C.; Klados, M.; Schlee, W.; Siountas, A.; Papageorgiou, S.G. A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 2014, 44, 206–220. [Google Scholar] [CrossRef]
- Drag, L.L.; Bieliauskas, L.A. Contemporary review 2009: Cognitive aging. J. Geriatr. Psychiatry Neurol. 2010, 23, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Kramer, A.F. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br. J. Sports Med. 2009, 43, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voelcker-Rehage, C.; Godde, B.; Staudinger, U.M. Physical and motor fitness are both related to cognition in old age. Eur. J. Neurosci. 2010, 31, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F.; Colcombe, S.J. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study-Revisited. Perspect. Psychol. Sci. 2018, 13, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Gordon, B.A.; Rykhlevskaia, E.I.; Brumback, C.R.; Lee, Y.; Elavsky, S.; Konopack, J.F.; McAuley, E.; Kramer, A.F.; Colcombe, S.; Gratton, G.; et al. Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology 2008, 45, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Hindin, S.B.; Zelinski, E.M. Extended Practice and Aerobic Exercise Interventions Benefit Untrained Cognitive Outcomes in Older Adults: A Meta-Analysis. J. Am. Geriatr. Soc. 2012, 60, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Liu-Ambrose, T.; Nagamatsu, L.S.; Graf, P.; Beattie, B.L.; Ashe, M.C.; Handy, T.C. Resistance training and executive functions: A 12-month randomized controlled trial. Arch. Intern. Med. 2010, 170, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Martin-Contero, M.C.; Secades-Villa, R.; Aparicio-Migueza, A.; Tirapu-Ustarroz, J. Empathy in severe mental disorders. Rev. Neurol. 2017, 64, 145–152. [Google Scholar] [CrossRef] [PubMed]
- ARC Tests. Available online: https://www.autismresearchcentre.com/arc_tests (accessed on 14 September 2019).
- Wechsler, D. WAIS-IV: Escala de Inteligencia de Wechsler para Adultos-IV; Pearson: Madrid, Spain, 2012. [Google Scholar]
- Santos-Lozano, A.; Marín, P.J.; Torres-Luque, G.; Ruiz, J.R.; Lucía, A.; Garatachea, N. Technical variability of the GT3X accelerometer. Med. Eng. Phys. 2012, 34, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.E.; Hagströmer, M.; Pober, D.M.; Bowles, H.R. Best practices for using physical activity monitors in population-based research. Med. Sci. Sports Exerc. 2012, 44 (Suppl. 1), S68–S76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, S.G.; McIver, K.L.; Pate, R.R. Conducting Accelerometer-Based Activity Assessments in Field-Based Research. Med. Sci. Sports Exerc. 2005, 37, S531–S543. [Google Scholar] [CrossRef] [PubMed]
- Plasqui, G.; Bonomi, A.; Westerterp, K. Daily physical activity assessment with accelerometers: New insights and validation studies. Obes. Rev. 2013, 14, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Scafoglieri, A.; Clarys, J.P. Dual energy X-ray absorptiometry: Gold standard for muscle mass? J. Cachexia Sarcopenia Muscle 2018, 9, 786–787. [Google Scholar] [CrossRef]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Hedden, T.; Gabrieli, J.D.E. Insights into the ageing mind: A view from cognitive neuroscience. Nat. Rev. Neurosci. 2004, 5, 87–96. [Google Scholar] [CrossRef]
- Phillips, L.H.; MacLean, R.D.J.; Allen, R. Age and the understanding of emotions: Neuropsychological and sociocognitive perspectives. J. Gerontol. B Psychol. Sci. Soc. Sci. 2002, 57, P526–P530. [Google Scholar] [CrossRef]
- Bailey, P.E.; Henry, J.D. Growing less empathic with age: Disinhibition of the self-perspective. J. Gerontol. B Psychol. Sci. Soc. Sci. 2008, 63, P219–P226. [Google Scholar] [CrossRef] [Green Version]
- Pardini, M.; Nichelli, P.F. Age-Related Decline in Mentalizing Skills Across Adult Life Span. Exp. Aging Res. 2009, 35, 98–106. [Google Scholar] [CrossRef]
- Slessor, G.; Phillips, L.H.; Bull, R. Exploring the specificity of age-related differences in theory of mind tasks. Psychol. Aging. 2007, 22, 639–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, C.; Piolino, P.; Bejanin, A.; Eustache, F.; Desgranges, B. Age effects on different components of theory of mind. Conscious. Cogn. 2011, 20, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.E.; Henry, J.D.; Von Hippel, W. Empathy and social functioning in late adulthood. Aging Ment. Health 2008, 12, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, K.; Wang, F.; Tao, Q.; Xie, Y.; Cheng, Q. Aging of theory of mind: The influence of educational level and cognitive processing. Int. J. Psychol. 2013, 48, 715–727. [Google Scholar] [CrossRef]
- Castelli, I.; Baglio, F.; Blasi, V.; Alberoni, M.; Falini, A.; Liverta-Sempio, O.; Nemni, R.; Marchetti, A. Effects of aging on mindreading ability through the eyes: An fMRI study. Neuropsychologia 2010, 48, 2586–2594. [Google Scholar] [CrossRef]
- Grady, C.L.; Springer, M.V.; Hongwanishkul, D.; McIntosh, A.R.; Winocur, G. Age-related changes in brain activity across the adult lifespan. J. Cogn. Neurosci. 2006, 18, 227–241. [Google Scholar] [CrossRef]
- Grady, C. Brain ageing. The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 2012, 13, 491–505. [Google Scholar] [CrossRef]
- Pezzuti, L.; Longobardi, E.; Milletti, K.; Ovidi, A. A study about the Theory of Mind in primary and secondary aging. Life Span Disabil. 2011, 14, 31–44. [Google Scholar]
- Strachan, S.M.; Brawley, L.R.; Spink, K.; Glazebrook, K. Older adults’ physically-active identity: Relationships between social cognitions, physical activity and satisfaction with life. Psychol. Sport Exerc. 2010, 11, 114–121. [Google Scholar] [CrossRef]
- Quintana, D.S.; Guastella, A.J.; Outhred, T.; Hickie, I.B.; Kemp, A.H. Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition. Int. J. Psychophysiol. 2012, 86, 168–172. [Google Scholar] [CrossRef]
- Mortimer, J.A.; Ding, D.; Borenstein, A.R.; DeCarli, C.; Guo, Q.H.; Wu, Y.G.; Zhao, Q.; Chu, S. Changes in Brain Volume and Cognition in a Randomized Trial of Exercise and Social Interaction in a Community-Based Sample of Non-Demented Chinese Elders. J. Alzheimers Dis. 2012, 30, 757–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merom, D.; Cumming, R.; Mathieu, E.; Anstey, K.J.; Rissel, C.; Simpson, J.M.; Morton, R.L.; Cerin, E.; Sherrington, C.; Lord, S.R. Can social dancing prevent falls in older adults? a protocol of the Dance, Aging, Cognition, Economics (DAnCE) fall prevention randomised controlled trial. BMC Public Health 2013, 13, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soubelet, A. The Role of Social Activity in Age-Cognition Relations. Educ. Gerontol. 2013, 39, 558–568. [Google Scholar] [CrossRef]
- Gyurcsik, N.C.; Brawley, L.R.; Spink, K.S.; Glazebrook, K.E.; Anderson, T.J. Is Level of Pain Acceptance Differentially Related to Social Cognitions and Behavior? The Case of Active Women with Arthritis. J. Health Psychol. 2011, 16, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Valecchi, D.; Bacci, D.; Abbate, R.; Gensini, G.F.; Casini, A.; Macchi, C. Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. J. Intern. Med. 2011, 269, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Chida, Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol. Med. 2009, 39, 3–11. [Google Scholar] [CrossRef]
- Kattenstroth, J.C.; Kalisch, T.; Holt, S.; Tegenthoff, M.; Dinse, H.R. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front. Aging Neurosci. 2013, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Ruscheweyh, R.; Willemer, C.; Krueger, K.; Duning, T.; Warnecke, T.; Sommer, J.; Völker, K.; Ho, H.V.; Mooren, F.; Knecht, S.; et al. Physical activity and memory functions: An interventional study. Neurobiol. Aging 2011, 32, 1304–1319. [Google Scholar] [CrossRef]
Variable | Mean | SD |
---|---|---|
Age | 71.40 | 4.94 |
WM | 17.01 | 3.37 |
RMET DIFF | 33.70 | 7.49 |
LPA | 705.40 | 139.07 |
MPA | 287.27 | 79.70 |
VPA | 65.29 | 48.44 |
VVPA | 7.27 | 8.65 |
MVPA | 359.83 | 107.43 |
LEAN | 38,457.09 | 4921.54 |
MASS | 71,258.48 | 9697.72 |
%FAT | 45.78 | 4.78 |
BMD | 0.81 | 0.08 |
Age | WM | RMET DIFF | LPA | MPA | VPA | VVPA | MVPA | LEAN | MASS | %FAT | |
---|---|---|---|---|---|---|---|---|---|---|---|
WM | −0.131 | ||||||||||
RMET DIFF | 0.038 | 0.659 ** | |||||||||
LPA | 0.164 | −0.111 | −0.123 | ||||||||
MPA | −0.140 | −0.039 | 0.056 | −0.726 ** | |||||||
VPA | −0.496 ** | 0.158 | 0.118 | −0.475 ** | 0.321* | ||||||
VVPA | −0.355 ** | 0.214 * | 0.134 | −0.257 * | 0.134 | 0.639 ** | |||||
MVPA | −0.329* | 0.182 | 0.124 | −0.755 ** | 0.868 ** | 0.731 ** | 0.532 ** | ||||
LEAN | −0.213 | 0.002 | −0.054 | 0.018 | 0.060 | 0.106 | 0.063 | 0.137 | |||
MASS | −0.376 ** | 0.061 | 0.074 | 0.108 | −0.093 | 0.257 | 0.200 | 0.056 | 0.712 ** | ||
%FAT | −0.285 * | 0.126 | 0.139 | 0.156 | −0.222 | 0.168 | 0.131 | −0.109 | −0.157 | 0.423 ** | |
BMD | −0.323 * | −0.036 | −0.069 | −0.119 | 0.148 | 0.268 | 0.247 | 0.262 | 0.569 ** | 0.504 ** | −0.203 |
Variable | B | B SE | β |
---|---|---|---|
Age | 0.264 | 0.155 | 0.174 |
WM | 0.966 | 0.162 | 0.645 ** |
VVPA | 0.092 | 0.093 | 0.106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón-Jiménez, J.J.; Nielsen-Rodríguez, A.; Romance, R.; Gómez-Huelgas, R.; Bernal-López, M.R. Physical Activity and Social Cognition in the Elderly. Sustainability 2020, 12, 4687. https://doi.org/10.3390/su12114687
Alarcón-Jiménez JJ, Nielsen-Rodríguez A, Romance R, Gómez-Huelgas R, Bernal-López MR. Physical Activity and Social Cognition in the Elderly. Sustainability. 2020; 12(11):4687. https://doi.org/10.3390/su12114687
Chicago/Turabian StyleAlarcón-Jiménez, Juan José, Adriana Nielsen-Rodríguez, Ramón Romance, Ricardo Gómez-Huelgas, and M. Rosa Bernal-López. 2020. "Physical Activity and Social Cognition in the Elderly" Sustainability 12, no. 11: 4687. https://doi.org/10.3390/su12114687
APA StyleAlarcón-Jiménez, J. J., Nielsen-Rodríguez, A., Romance, R., Gómez-Huelgas, R., & Bernal-López, M. R. (2020). Physical Activity and Social Cognition in the Elderly. Sustainability, 12(11), 4687. https://doi.org/10.3390/su12114687