Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia
Abstract
:1. Introduction
2. Research Methodology
2.1. Models of Green Roofs
2.2. Runoff Water Quality Monitoring
2.3. Runoff Modelling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Conti, S.; Meli, P.; Minelli, G.; Solimini, R.; Toccaceli, V.; Vichi, M. Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Environ. Res. 2005, 98, 390–399. [Google Scholar] [CrossRef]
- Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar] [CrossRef]
- Erdem, C. Thermal regulation impact of green walls: An experimental and numerical investigation. Appl. Energy 2016, 194, 247–254. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Santamouris, M.; Zerefos, S.C. Green and cool roofs’ urban heatisland mitigation potential in European climates for office buildings under freefloating conditions. Sol. Energy 2013, 74, 118–130. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Reduce Urban Heat Island Effect. 2016. Available online: https://www.epa.gov/green-infrastructure/reduce-urban-heat-island-effect (accessed on 9 June 2020).
- Carpenter, C.M.G.; Todorov, D.; Driscoll, C.T.; Montesdeoca, M. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations. Environ. Pollut. 2016, 218, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Sharma, A.; Conry, P.; Fernando, H.; Hamlet, A.; Hellmann, J.; Chen, F. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environ. Res. Lett. 2016, 11, 064004. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, X.; Liu, D.; Zhu, L.; Zhou, B.; Sun, J.; Liu, J. The capacity of greening roof to reduce storm water runoff and pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
- Population Reference Bureau. Human Population: Urbanization. Available online: http://www.prb.org/Publications/Lesson-Plans/HumanPopulation/Urbanization.aspx (accessed on 1 July 2009).
- Solcerova, A.; Ven, F.; Wang, M.; Rijsdijk, M.; Giesen, N. Do green roof cool the air? Build. Environ. 2016, 111, 249–255. [Google Scholar] [CrossRef] [Green Version]
- MacIvor, J.; Margolis, L.; Perotto, M.; Drake, J. Air temperature cooling by extensive green roofs in Toronto Canada. Ecol. Eng. 2016, 95, 36–42. [Google Scholar] [CrossRef]
- Squier, M.; Davidson, C.I. Heat flux and seasonal thermal performance of an extensive green roof. Build. Environ. 2016, 107, 235–244. [Google Scholar] [CrossRef]
- Tam, V.; Wang, J.; Le, K. Thermal insulation and cost effectiveness of green-roof systems: An empirical study in Hong Kong. Build. Environ. 2016, 44, 46–54. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Voyde, E.; Simcock, R.; Hong, Y.S. 4 Living roofs in 3locations: Does configuration affect runoff mitigation? J. Hydrol. 2013, 490, 11–20. [Google Scholar] [CrossRef]
- Deska, I.; Mrowiec, M.; Ociepa, E.; Łacisz, K. Investigation of the Influence of Hydrogel Amendment on the Retention Capacities of Green Roofs. Ecol. Chem. Eng. S 2018, 25, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Rainwater runoff retention an aged intensive green roof. Sci. Total Environ. 2013, 461–462, 28–38. [Google Scholar] [CrossRef]
- Stovin, V.; Poë, S.; De-Ville, S.; Berretta, C. The influence of substrate and vegetation configuration on green roof hydrological performance. Ecol. Eng. 2015, 85, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Versini, P.A.; Ramier, D.; Berthier, E.; de Gouvello, B. Assessment of the hydrological impacts of green roof: From building scale to basin scale. J. Hydrol. 2015, 524, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Karczmarczyk, A.; Baryła, A.; Kożuchowski, P. Design and Development of Low P-Emission Substrate for the Protection of Urban Water Bodies Collecting Green Roof Runoff. Sustainability 2017, 9, 1795. [Google Scholar] [CrossRef] [Green Version]
- MacAvoy, S.E.; Plank, K.; Mucha, S.; Williamson, G. Effectiveness of foam-based green surfaces in reducing nitrogen and suspended solids in an urban installation. Ecol. Eng. 2016, 91, 257–264. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S.; Kazemi, F. Impact of green roofs onstormwater quality in a South Australian urban environment. Sci. Total Environ. 2014, 470–471, 651–659. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; Mcnabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Barreneche, C.; de Gracia, A.; Urrestarazu, M.; Burés, S.; Cabeza, L.F. Acoustic insulation capacity of Vertical Greenery Systems for buildings. Appl. Acoust. 2016, 110, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Moghbel, M.; Erfanian, S.R. Environmental benefits of green roofs on microclimate of Tehran with specific focus on air temperature, humidity and CO2 content. Urban Clim. 2017, 20, 46–58. [Google Scholar] [CrossRef]
- Telichenko, V.; Benuzh, A.; Mochalov, I. Landscape Architecture and green spaces in Russia. Urban Habitats 2017, 117. [Google Scholar] [CrossRef] [Green Version]
- Washburn, B.; Swearingin, R.; Pullins, C.; Rice, M. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs. Environ. Manag. 2016, 57, 1230–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabah, D.; Emmanuel, B.; Rafik, B. Modeling green wall interactions with street canyons for building energy simulation in urban context. Urban Clim. 2016, 16, 75–85. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D.; Ntoulas, N.; Kargas, G.; Nektarios, P.A. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model. J. Environ. Manag. 2017, 200, 434–445. [Google Scholar] [CrossRef]
- Simůnek, J.; van Genuchten, M.T. Modeling nonequilibrium flow and transport with HYDRUS. Vadose Zone J. 2008, 7, 782–797. [Google Scholar] [CrossRef] [Green Version]
- Breitmeyer, R.J.; Stewart, M.K.; Huntington, J.L. Evaluation of gridded meteorological data for calculating water balance cover storage requirements. Vadose Zone J. 2018, 17, 180009. [Google Scholar] [CrossRef] [Green Version]
- Palla, A.; Gnecco, I.; Lanza, L.G. Compared performance of a conceptual and a mechanistic hydrologic models of a green roof. Hydrol. Process. 2012, 26, 73–84. [Google Scholar] [CrossRef]
- Sandoval, V.; Bonilla, C.A.; Gironás, J.; Vera, S.; Victorero, F.; Bustamante, W.; Rojas, V.; Leiva, E.; Pastén, P.; Suárez, F. Porous media characterization to simulate water and heat transport through green roof substrates. Vadose Zone J. 2017, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.P.; Peng, Y.N.; Tang, Q.L.; Yu, S.L. A Hydrus model for irrigation management of green roofs with a water storage layer. Ecol. Eng. 2016, 95, 399–408. [Google Scholar] [CrossRef]
- Richtlinien für Planung, Bau und Instandhaltung von begrünbaren Flächenbefestigungen. In Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau; FLL: Bonn, Germany, 2008.
- Soto, M.A.; Chang, H.K.; van Genuchten, M.T. Fractal-based models for the unsaturated soil hydraulic functions. Geoderma 2017, 306, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Sayah, B.; Rodríguez, M.G.; Juana, L. Development of one-dimensional solutions for water infiltration. Analysis and parameters estimation. J. Hydrol. 2016, 535, 226–234. [Google Scholar] [CrossRef]
- Seboong, O.; Yun, K.K.; Jun-Woo, K. Model of Hydraulic Conductivity in Korean Residual Soils. Water 2015, 7, 5487–5502. [Google Scholar] [CrossRef]
- Wosten, J.H.M.; Van Genuchten, M.T. Using texture and other soil properties to predict the unsaturated soil hydraulic conductivity. Soil Sci. Soc. Am. J. 1988, 52, 1762–1770. [Google Scholar] [CrossRef]
- Wong, G.; Jim, C.Y. Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landsc. Urban Plan. 2015, 143, 173–182. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S. Modelling green roof stormwater response for different soil depths. Landsc. Urban Plan. 2016, 153, 170–179. [Google Scholar] [CrossRef]
- Locatelli, L.; Ole, M.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Jensen, B.M.; Binning, P.J. Modelling of green roof hydrological performance for urban drainage applications. J. Hydrol. 2014, 519 Pt D, 3237–3248. [Google Scholar] [CrossRef]
- Buffam, I.; Mitchell, M.E.; Durtsche, R.D. Environmental drivers of seasonal variation in green roof runoff water quality. Ecol. Eng. 2016, 91, 506–514. [Google Scholar] [CrossRef]
- Harper, G.E.; Limmer, M.A.; Showalter, W.E.; Burken, J.G. Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecol. Eng. 2015, 78, 127–133. [Google Scholar] [CrossRef]
- Mitchell, M.; Matter, S.; Durtsche, R.; Buffam, I. Elevated phosphorus: Dynamics during four years of green roof development. Urban Ecosyst. 2017, 20, 1121–1133. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Hagner, M.; Lehvävirta, S.; Setälä, H. Biochar amendment in the green roof substrate affects runoff quality and quantity. Ecol. Eng. 2016, 88, 1–9. [Google Scholar] [CrossRef]
- Beecham, S.; Razzaghmanesh, M. Water quality and quantity investigation of green roofs in a dry climate. Water Res. 2015, 70, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Joshi, U.M. Can green roof act as a sink for contaminants. A methodological study to evaluate runoff quality from green roofs. Environ. Pollut. 2014, 194, 121–129. [Google Scholar] [CrossRef]
- Gnecco, I.; Palla, A.; Lanza, L.G.; La Barbera, P. The Role of Green Roofs as a Source/sink of Pollutants in Storm Water Outflows. Water Resour. Manag. 2013, 27, 4715–4730. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Raja, F.D. Pilot-scale evaluation of green roofs with Sargassum biomass as an additive to improve runoff quality. Ecol. Eng. 2015, 75, 70–78. [Google Scholar] [CrossRef]
- Schwager, J.; Schaal, L.; Simonnot, M.; Claverie, R.; Ruban, V.; Morel, J.L. Emission of trace elements and retention of Cu and Zn by mineral and organic materials used in green roofs. J. Soils Sediments Prot. Risk Assess. Remediat. 2015, 15, 1789–1801. [Google Scholar] [CrossRef]
Parameter | Unit | GR1 (Leca) | GR2 (Perlite) |
---|---|---|---|
Bulk density Specific density Water capacity * pF 0 pF 2.0 pF 2.9 pF 4.2 | g·cm−3 g·cm−3 mm | 0.40 1.81 37.0 16.5 13.5 3.0 | 0.27 1.85 39.0 19.8 17.0 4.4 |
Model | θr (cm3 cm−3) | θs (cm3 cm−3) | α (m m−1) | n (−) | Ks (mm min−1) |
---|---|---|---|---|---|
Substrate with leca GR1 | 0.015 | 0.731 | 0.1627 | 1.1298 | 15.95 |
Substrate with perliteGR2 | 0.001 | 0.787 | 0.0092 | 1.0137 | 0.610 |
Rainfall Event | Rain Depth (mm) | Peak of Rain Intensity (mm·min−1) | Rain Duration (min) | Retained Volume (%) | Flow Peak (mm·min−1) | Peak Reduction (%) | Moisture (Initial) (% v/v) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Leca | Perlite | Leca | Perlite | Leca | Perlite | Leca | Perlite | ||||
13.06 | 22.6 | 1.47 | 367 | 31.4 | 64.9 | 1.41 | 1.22 | 26.1 | 38.9 | 15.7 | 16.6 |
17.06 | 12.2 | 1.1 | 381 | 311 | 55.1 | 0.92 | 0.87 | 33.6 | 39 | 20.3 | 23.1 |
31.07 | 10.1 | 0.8 | 1249 | 55.8 | 63.4 | 0.57 | 0.53 | 40.5 | 47.7 | 19.1 | 21.3 |
21.08 | 21.2 | 0.4 | 466 | 43.2 | 68.3 | 0.29 | 0.26 | 44 | 62.7 | 17 | 19.1 |
5.09 | 13.9 | 1.31 | 458 | 28.9 | 50.7 | 1.19 | 1.12 | 29.1 | 38.9 | 19.9 | 22.8 |
17.09 | 20.7 | 0.22 | 686 | 54.3 | 62.2 | 0.18 | 0.16 | 42.4 | 49.8 | 22.3 | 23.6 |
3.1 | 29.8 | 0.26 | 1433 | 62.1 | 74 | 0.21 | 0.19 | 52.2 | 60 | 23.6 | 24.9 |
5.1 | 26.4 | 0.11 | 1640 | 63 | 70.1 | 0.09 | 0.08 | 51 | 59.1 | 25.3 | 27.1 |
Date of the | Rain Intensity | Substrate of Leca | Substrate of Perlite | ||
---|---|---|---|---|---|
Event | mm min−1 | NSE | RMSE | NSE | RMSE |
(−) | (%) | (−) | (%) | ||
Calibration data | |||||
13.06 | 1.47 | 0.74 | 0.16 | 0.84 | 0.12 |
Validation data | |||||
17.06 | 1.1 | 0.75 | 0.15 | 0.83 | 0.12 |
20.06 | 0.2 | 0.65 | 0.028 | 0.69 | 0.023 |
31.07 | 0.8 | 0.79 | 0.07 | 0.82 | 0.05 |
9.08 | 0.05 | 0.57 | 0.009 | 0.63 | 0.008 |
Other events | |||||
21.08 | 0.4 | 0.75 | 0.085 | 0.8 | 0.061 |
5.09 | 1.31 | 0.78 | 0.069 | 0.85 | 0.063 |
17.09 | 0.22 | 0.64 | 0.058 | 0.7 | 0.055 |
3.1 | 0.26 | 0.66 | 0.061 | 0.71 | 0.059 |
5.1 | 0.11 | 0.58 | 0.048 | 0.61 | 0.043 |
Pollution Indicators | Green Roof Substrate in Leca | Green Roof Substrate in Perlite | Control Site | Precipitation |
---|---|---|---|---|
N mg∙L−1 | 7.17 | 13.01 | 5.52 | 5.23 |
NO3–N mg∙L−1 | 1.96 | 3.93 | 1.72 | 1.68 |
NO2–N mg∙L−1 | 0.01 | 0.01 | 0.059 | 0.065 |
NH4–N mg∙L−1 | 0.15 | 0.10 | 0.128 | 0.187 |
P (total) mg∙L−1 | 0.25 | 0.26 | 0.207 | 0.246 |
PO4–P mg∙L−1 | 0.15 | 0.12 | 0.106 | 0.121 |
Pb (total) mg∙L−1 | 113.8 | 61.5 | 110.2 | 103.6 |
Zn (total) mg∙L−1 | 237.6 | 241.4 | 32.1 | 31.1 |
Cd (total) mg∙L−1 | 2.3 | 1.2 | 1.3 | 1.3 |
Cu (total) mg∙L−1 | 220.8 | 320.2 | 54.1 | 50.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pęczkowski, G.; Szawernoga, K.; Kowalczyk, T.; Orzepowski, W.; Pokładek, R. Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia. Sustainability 2020, 12, 4793. https://doi.org/10.3390/su12114793
Pęczkowski G, Szawernoga K, Kowalczyk T, Orzepowski W, Pokładek R. Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia. Sustainability. 2020; 12(11):4793. https://doi.org/10.3390/su12114793
Chicago/Turabian StylePęczkowski, Grzegorz, Katarzyna Szawernoga, Tomasz Kowalczyk, Wojciech Orzepowski, and Ryszard Pokładek. 2020. "Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia" Sustainability 12, no. 11: 4793. https://doi.org/10.3390/su12114793
APA StylePęczkowski, G., Szawernoga, K., Kowalczyk, T., Orzepowski, W., & Pokładek, R. (2020). Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia. Sustainability, 12(11), 4793. https://doi.org/10.3390/su12114793