Phase Angle from Bioelectric Impedance and Maturity-Related Factors in Adolescent Athletes: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Study Selection and Data Extraction
2.5. Risk of Bias
3. Results
3.1. Study Characteristics
3.2. Maturation Status Assessment
3.3. Phase Angle Differences According to Maturation Stages
3.3.1. Skeletal Maturation
3.3.2. Sexual Maturation
3.3.3. Somatic Maturation
3.4. Phase Angle Differences According to Chronological Age
3.5. Risk of Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barbieri, D.; Zaccagni, L.; Babić, V.; Rakovac, M.; Mišigoj-Duraković, M.; Gualdi-Russo, E. Body composition and size in sprint athletes. J. Sports Med. Phys. Fitness 2017, 57, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic Bioelectrical Impedance Vector Reference Values for Assessing Body Composition in Male and Female Athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.M. Structural and functional body components in athletic health and performance phenotypes. Eur. J. Clin. Nutr. 2019, 73, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Naughton, G.; Farpour-Lambert, N.J.; Carlson, J.; Bradney, M.; Van Praagh, E. Physiological issues surrounding the performance of adolescent athletes. Sport. Med. 2000, 30, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.C.M.; dos Santos, P.G.M.D.; Medeiros, R.C.D.S.; Souza, F.E.S.; Simões, T.B.D.S.; Dantas, R.P.N.D.C.; Cabral, B.G.D.A.T. Estágios maturacionais: Comparação de indicadores de crescimento e capacidade física em adolescentes. J. Hum. Growth Dev. 2018, 28, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Luiz-de-Marco, R.; Gobbo, L.A.; Castoldi, R.C.; Maillane-Vanegas, S.; da Silva Ventura Faustino-da-Silva, Y.; Exupério, I.N.; Agostinete, R.R.; Fernandes, R.A. Impact of changes in fat mass and lean soft tissue on bone mineral density accrual in adolescents engaged in different sports: ABCD Growth Study. Arch. Osteoporos. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Malina, R.M. Body Composition in Athletes: Assessment and Estimated Fatness. Clin. Sports Med. 2007, 26, 37–68. [Google Scholar] [CrossRef]
- Teixeira, A.S.; Fernandes, J.; Cristina, P.; Cesar, P.; Campos, F.D.S.; Lucas, R.D.D.; Guilherme, L.; Guglielmo, A. Relative age effect, skeletal maturation and aerobic running performance in youth soccer players. Motriz 2018, 24, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rommers, N.; Mostaert, M.; Goossens, L.; Vaeyens, R.; Witvrouw, E.; Lenoir, M.; D’Hondt, E. Age and maturity related differences in motor coordination among male elite youth soccer players. J. Sports Sci. 2018, 37, 196–203. [Google Scholar] [CrossRef]
- Torres-Unda, J.; Zarrazquin, I.; Gil, J.; Ruiz, F.; Irazusta, A.; Kortajarena, M.; Seco, J.; Irazusta, J. Anthropometric, physiological and maturational characteristics in selected elite and non-elite male adolescent basketball players. J. Sports Sci. 2013, 31, 196–203. [Google Scholar] [CrossRef]
- Trecroci, A.; Milanović, Z.; Frontini, M.; Iaia, F.M.; Alberti, G. Physical Performance Comparison between under 15 Elite and Sub-Elite Soccer Players. J. Hum. Kinet. 2018, 61, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef] [PubMed]
- Fornazari, E.; Los, N.A.; Luiz, S., Jr. Bioimpedância: Introdução e utilizações de técnicas de bioimpedância. In Proceedings of the SEA-Seminário de Eletrônica e Automação, Paraná, Brazil., 25 September 2017; pp. 1–5. [Google Scholar]
- Kumar, S.; Dutt, A.; Hemraj, S.; Bhat, S.; Manipadybhima, B. Phase Angle Measurement in Healthy Human Subjects through Bio-Impedance Analysis. Iran. J. Basic Med. Sci. 2012, 15, 1180–1184. [Google Scholar] [PubMed]
- Mundstock, E.; Amaral, M.A.; Baptista, R.R.; Sarria, E.E.; dos Santos, R.R.G.; Filho, A.D.; Rodrigues, C.A.S.; Forte, G.C.; Castro, L.; Padoin, A.V.; et al. Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clin. Nutr. 2019, 38, 1504–1510. [Google Scholar] [CrossRef]
- Langer, R.D.; da Costa, K.G.; Bortolotti, H.; Fernandes, G.A.; de Jesus, R.S.; Gonçalves, E.M. Phase angle is associated with cardiorespiratory fitness and body composition in children aged between 9 and 11 years. Physiol. Behav. 2020, 215, 112772. [Google Scholar] [CrossRef]
- Martins, P.C.; de Lima, L.R.A.; Berria, J.; Petroski, E.L.; Silva, A.M.; Silva, D.A.S. Association between phase angle and isolated and grouped physical fitness indicators in adolescents. Physiol. Behav. 2020, 217, 112825. [Google Scholar] [CrossRef]
- Carrasco-Marginet, M.; Castizo-Olier, J.; Rodríguez-Zamora, L.; Iglesias, X.; Rodríguez, F.A.; Chaverri, D.; Brotons, D.; Irurtia, A. Bioelectrical impedance vector analysis (BIVA) for measuring the hydration status in young elite synchronized swimmers. PLoS ONE 2017, 12, e0178819. [Google Scholar] [CrossRef] [Green Version]
- Koury, J.C.; Trugo, N.M.F.; Torres, A.G. Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes. Int. J. Sports Physiol. Perform. 2014, 9, 798–804. [Google Scholar] [CrossRef]
- Meleleo, D.; Bartolomeo, N.; Cassano, L.; Nitti, A.; Susca, G.; Mastrototaro, G.; Armenise, U.; Zito, A.; Devito, F.; Scicchitano, P.; et al. Evaluation of body composition with bioimpedence. A comparison between athletic and non-athletic children. Eur. J. Sport Sci. 2017, 17, 710–719. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Marra, M.; Scalfi, L. Bioelectrical impedance phase angle in sport: A systematic review. J. Int. Soc. Sports Nutr. 2019, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Koury, J.C.; de Oliveira-Junior, A.V.; Portugal, M.R.C.; de Oliveira, K.D.J.F.; Donangelo, C.M. Bioimpedance parameters in adolescent athletes in relation to bone maturity and biochemical zinc indices. J. Trace Elem. Med. Biol. 2018, 46, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Diez-Fernández, A.; Álvarez-Bueno, C.; Martínez-Vizcaíno, V.; Sotos-Prieto, M.; Recio-Rodríguez, J.I.; Cavero-Redondo, I. Total dairy, cheese and milk intake and arterial stiffness: A systematic review and meta-analysis of cross-sectional studies. Nutrients 2019, 11, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koury, J.C.; Ribeiro, M.A.; Massarani, F.A.; Vieira, F.; Marini, E. Fat-free mass in adolescent athletes: Accuracy of bioimpedance equations and identification of new predictive equations. Nutrition 2019, 60, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Silva, A.M.; Iannuzzi, V.; Mascherini, G.; Benedetti, L.; Toselli, S. The Role of Somatic Maturation on Bioimpedance Patterns and Body Composition in Male Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 4711. [Google Scholar] [CrossRef] [Green Version]
- Toselli, S.; Marini, E.; Latessa, P.M.; Benedetti, L.; Campa, F. Maturity Related Di ff erences in Body Composition Assessed by Classic and Specific Bioimpedance Vector Analysis among Male Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 729. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, A.; Vicini, M.; Pollastri, L.; Lombardi, E.; Magni, E.; Andreazzoli, A.; Orsini, M.; Bonifazi, M.; Lukaski, H.; Gatterer, H. Bioimpedance patterns and bioelectrical impedance vector analysis (BIVA) of road cyclists. J. Sports Sci. 2018, 36, 2608–2613. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Hetherington-Rauth, M.; Baptista, F.; Sardinha, L.B. BIA-assessed cellular hydration and muscle performance in youth, adults, and older adults. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Nunes, J.P.; Ribeiro, A.S.; Silva, A.M.; Schoenfeld, B.J.; Dos Santos, L.; Cunha, P.M.; Nascimento, M.A.; Tomeleri, C.M.; Nabuco, H.C.G.; Antunes, M.; et al. Improvements in phase angle are related with muscle quality index after resistance training in older women. J. Aging Phys. Act. 2019, 27, 515–520. [Google Scholar] [CrossRef]
- Nescolarde, L.; Yanguas, J.; Terricabras, J.; Lukaski, H.; Alomar, X.; Rosell-Ferrer, J.; Rodas, G. Detection of muscle gap by L-BIA in muscle injuries: Clinical prognosis. Physiol. Meas. 2017, 38, L1–L9. [Google Scholar] [CrossRef]
- Player, E.L.; Morris, P.; Thomas, T.; Chan, W.Y.; Vyas, R.; Dutton, J.; Tang, J.; Alexandre, L.; Forbes, A. Bioelectrical impedance analysis (BIA)-derived phase angle (PA) is a practical aid to nutritional assessment in hospital in-patients. Clin. Nutr. 2019, 38, 1700–1706. [Google Scholar] [CrossRef] [Green Version]
- Irurtia, A.; Carrasco-Marginet, M.; Rodríguez-Zamora, L.; Iglesias, X.; Brontos, D.; Rodriguez, F. Bioelectrical impedance vector migration induced by training in young competitive synchronized swimmers. In XIIth International Symposium for Biomechanics and Medicine in Swimming; Australian Institute of Sport: Canberra, Australian, 2014; pp. 426–430. [Google Scholar] [CrossRef]
- Milani, S.; Benso, L. Why we can’t determine reliably the age of a subject on the basis of his maturation degree. J. Forensic Leg. Med. 2019, 61, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, E.; Ramos, A.; Janeira, M.A.; Baxter-Jones, A.D.G.; Maia, J. How Does Biological Maturation and Training Experience Impact the Physical and Technical Performance of 11–14-Year-Old Male Basketball Players? Sports 2019, 7, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. The Influence of Maturation on Sprint Performance in Boys over a 21-Month Period. Med. Sci. Sports Exerc. 2016, 48, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Anja, B.W.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J. Parenter. Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef]
- Kuchnia, A.J.; Teigen, L.M.; Cole, A.J.; Mulasi, U.; Gonzalez, M.C.; Heymsfield, S.B.; Vock, D.M.; Earthman, C.P. Phase Angle and Impedance Ratio: Reference Cut-Points From the United States National Health and Nutrition Examination Survey 1999–2004 From Bioimpedance Spectroscopy Data. J. Parenter. Enter. Nutr. 2017, 41, 1310–1315. [Google Scholar] [CrossRef]
- Cumpian-Silva, J.; Rinaldi, A.E.M.; Mazzeti, C.M.D.S.; Conde, W.L. Body phenotypes in adolescence and sexual maturation. Cad. Saude Publica 2018, 34, e00057217. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.R. De Maturação Sexual e Adiposidade em Crianças e Adolescentes de duas Escolas de São Paulo. Doctoral Dissertation, Universidade de São Paulo, São Paulo, Brazil, 2010. [Google Scholar]
- Buffa, R.; Floris, G.; Marini, E. Bioelectrical impedance vector in pre- and postmenarcheal females. Nutrition 2002, 18, 474–478. [Google Scholar] [CrossRef]
- Walker, I.V.; Smith, C.R.; Davies, J.H.; Inskip, H.M.; Baird, J. Methods for determining pubertal status in research studies: Literature review and opinions of experts and adolescents. J. Dev. Orig. Health Dis. 2019, 168–187. [Google Scholar] [CrossRef]
- Cericato, G.O.; Bittencourt, M.A.V.; Paranhos, L.R. Validity of the assessment method of skeletal maturation by cervical vertebrae: A systematic review and meta-analysis. Dentomaxillofacial Radiol. 2015, 44, 20140270. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J.O.; Qiu, X.; Lu, X.; Duren, D.L.; Liu, R.W.; Dang, D.; Menendez, M.E.; Hans, S.D.; Weber, D.R.; Cooperman, D.R. The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ford, P.; Croix, M.D.S.; Lloyd, R.; Meyers, R.W. The Long-Term Athlete Development model: Physiological evidence and application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef] [PubMed]
Author/Year Publication | Country | Objectives | Sample | Sport/Level of Competition | Methods | Maturation Status Assessment |
---|---|---|---|---|---|---|
Koury et al., 2018 [22] | Brazil | To assess the associations between PhA 1 and body composition, skeletal maturity, and zinc biochemical indices. | n = 40 Male Age: 13.4 ± 0.6 years | Soccer Professional | Cross-sectional | Skeletal maturation |
Koury et al., 2019 [24] | Brazil | To evaluate the effect of biological maturity on body composition in Brazilian adolescent athletes. | n = 318 Males and Females Age: 11–16 years | Swimming, judo, badminton, athletics, soccer, volleyball, table tennis Amateur | Cross-sectional | Skeletal and sexual maturation |
Campa et al., 2019 [25] | Italy | To examine the influence of chronological age and somatic maturation on bioelectrical and body composition parameters. | n = 249 Males Age: 9–17 years | Soccer Elite | Cross-sectional | Somatic maturation |
Toselli et al., 2020 [26] | Italy | To assess the influence of maturation on body composition. | n = 178 Male Age: 12.1 ± 1.6 years | Soccer Elite | Cross-sectional | Somatic maturation |
Author/Year Publication | Country | Objectives | Sample | Sport/Level of Competition | Methods | Results |
---|---|---|---|---|---|---|
Koury et al., 2014 [19] | Brazil | To assess PhA 1 and BIVA 2 in adolescent and adult athletes practicing a variety of sports. | n = 105 Males 15.1 ± 2.1 years | Athletics, Football, Swimming, Water polo, Triathlon, Basketball Elite | Cross-sectional | Adolescents had lower PhA than adults. |
Carrasco-Marginet et al., 2017 [18] | Spain | To determine the hydration changes evoked during a training session. | n = 49 Females 14.6 ± 1.4 years | Synchronized swimming | Longitudinal (Pre-post) | PhA increases after a training session and was positively correlated with chronological age. |
Meleleo et al., 2017 [20] | Italy | To evaluate lean and FM 3 in children involved in daily competitive sports when compared to sedentary controls. | n = 29 (athletes) mean age = 9.5 years n = 190 (non-athletes) mean age = 9.3 years Males and females | Swimming and gymnastics Amateur | Longitudinal t0 t1 (after 6 months) t2 (after 1 year) | PhA was lower in competitive children in t0 and t1. |
Giorgi et al., 2018 [27] | Italy | To establish reference bioimpedance data for the road cycling population and to compare various performance levels of cyclists. | n = 138 G: youth elite 16.6 ± 1.1 G: elite 21.1 ± 2.9 Males | Road cyclists | Cross-sectional | No significant difference was related between groups. |
Authors | Instrument | Outcome Measure | Early Maturation a | On-Time Maturation a | Late maturation a | Reported Results |
---|---|---|---|---|---|---|
Koury et al. (2018) | Quantum 101, RJL System. (800µA, 50Hz) | R (Ω) Xc (Ω) R/H (Ω/m) Xc/H (Ω/m) PhA (º) | 497.0 ± 60.7 59.6 ± 9.9 300.5 ± 38.5 36.1 ± 6.8 6.8 ± 0.9 | 528.3 ± 61.2 59.9 ± 9.4 321.6 ± 37.0 37.2 ± 3.8 6.5 ± 0.6 | 645.2 ± 70.7 62.4 ± 9.6 438.0 ± 55.0 43.7 ± 5.3 5.7 ± 0.5 | ↑* = ↑* ↑* ↑ |
Mature (F/M) a | Immature (F/M) a | |||||
Koury et al. (2019) | Bia 450, Biodynamics. (800µA, 50Hz) | R (Ω) Xc (Ω) R/H (Ω/m) Xc/H (Ω/m) PhA (º) | 621.5 ± 81.0/516.3 ± 47.0 69.9 ± 10.2/61.7 ± 7.5 388.8 ± 50.5/301.3 ± 32.7 43.8 ± 6.6/36.1 ± 5.3 6.5 ± 0.9/6.8 ± 0.6 | 669.2 ± 96.3/586.6 ± 83.8 69.0 ± 11.6/63.7 ± 9.6 432.8 ± 32.0/373.6 ± 70.0 44.5 ± 7.9/40.5 ± 7.6 5.9 ± 1.0/6.3 ± 0.8 | Δ = Δ =/Δ Δ | |
Mature (F/M) b | Immature (F/M) b | |||||
R (Ω) Xc (Ω) R/H (Ω/m) Xc/H (Ω/m) PhA (º) | 634.9 ± 87.6/NR 70.9 ± 10.5/NR 397.9 ± 55.4/NR 44.5 ± 6.9/NR 6.4 ± 0.96/NR | 669.6 ± 97.9/NR 65.9 ± 10.9/NR 441.7 ± 80.6/NR 43.3 ± 8.1/NR 5.6 ± 0.95/NR | Δ Δ Δ = Δ | |||
Early maturation c | On-time maturation c | Late maturation c | ||||
Campa et al. (2019) | BIA 101, Anniversary. (50 Hz) | R/H (Ω/m) Xc/H (Ω/m) PhA (º) | NR NR NR | NR NR NR | NR NR NR | NR NR ↑ |
Toselli et al. (2020) | BIA 101, Anniversary. (50 Hz) | R/H (Ω/m) Xc/H (Ω/m) PhA (º) | 325.3 ± 76.4 35.7 ± 6.1 6.4 ± 0.8 | 387.4 ± 77.7 41.9 ± 7.9 6.3 ± 0.9 | 423.1 ± 75.3 45.1 ± 6.2 6.2 ± 0.5 | ↑* ↑* = |
Authors | Instrument | Outcome Measure | U20 | U18 | U16 | U14 | U12 * | U12+1y * | Reported Results |
---|---|---|---|---|---|---|---|---|---|
Koury et al. (2014) | Quantum 101, RJL System (800 µA, 50 Hz) | R/H (Ω/m) Xc/H (Ω/m) PhA (º) | 259.0 ± 11.0 # 257.0 ± 19.0 § 37.6 ± 3.6 # 34.3 ± 0.6 § 8.3 ± 0.6 # 7.6 ± 0.4 § | 244.0 ± 27.0 £ 242.0 ± 50.0 Ω 31.1 ± 1.5 £ 30.3 ± 6.7 Ω 7.1 ± 0.8 £ 7.2 ± 0.8 Ω | 238.0 ± 28.0 β 33.5 ± 3.5 β 7.0 ± 0.5 β | 328.0 ± 72.0 γ 36.4 ± 7.1 γ 6.3 ± 0.8 γ | - - - | - - - | Δ Δ Δ↓ |
Carrasco-Marginet et al. (2017) | Z-Metrix, Bioparhom (74 µA, 50 kHz) | R/H (Ω/m) Xc/H (Ω/m) PhA (º) | - - - | 299.9 ± 21.6 39.6 ± 2.2 7.5 ± 0.4 | 328.4 ± 38.8 40.0 ± 4.5 7.0 ± 0.5 | - - - | - - - | - - - | Δ = Δ |
Meleleo et al., (2017) | BIA 101, Akern, RJL System (250 µA, 50 Hz) | R/H (Ω/m) Xc/H (Ω/m) PhA (º) | - - - | - - - | - - - | - - - | 465.5 ± 13.6 a 418.7 ± 14.9 b 46.8 ± 1.5 a 40.5 ± 1.6 b 5.7 ± 0.1 a 5.5 ± 0.1 b | 451.9 ± 14.2 a 418.9 ± 15.5 b 47.1 ± 2.0 a 42.6 ± 2.2 b 5.9 ± 0.2 a 5.8 ± 0.2 b | = = = |
Giorgi et al. (2018) | BIA 101, Akern, RJL System (250 µA, 50 Hz) | R/H (Ω/m) Xc/H (Ω/m) PhA (º) | 284.5 ± 31.4 34.9 ± 4.1 7.0 ± 0.7 | 264.1 ± 40.7 33.7 ± 3.7 7.4 ± 1.2 | - - - | - - - | - - - | - - - | Δ = = |
Maturation | Age | |||||||
---|---|---|---|---|---|---|---|---|
Criteria | Koury 2018 | Koury 2019 | Campa 2019 | Toselli 2020 | Koury 2014 | Carrasco-Marginet 2017 | Meleleo 2017 | Giorgi 2018 |
1. Was the research question or objective in this paper clearly stated? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
2. Was the study population clearly specified and defined? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
3. Was the participation rate of eligible persons at least 50%? | NR | NR | NR | NR | NR | Yes | NR | NR |
4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants? | Yes | Yes | Yes | Yes | Yes | Yes | No | No |
5. Was a sample size justification, power description, or variance and effect estimates provided? | No | No | No | No | No | No | No | No |
6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? | No | No | No | No | No | Yes | Yes | No |
7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed? | No | No | No | No | No | Yes | Yes | No |
8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)? | NA | NA | NA | NA | NA | NA | NA | Yes |
9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes |
10. Was the exposure(s) assessed more than once over time? | No | No | No | No | No | Yes | Yes | No |
11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
12. Were the outcome assessors blinded to the exposure status of participants? | NR | NR | NR | NR | NR | NR | NR | NR |
13. Was loss to follow-up after baseline 20% or less? | NA | NA | NA | NA | NA | NA | Yes | NA |
14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)? | Yes | NA | NA | NA | Yes | NA | Yes | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo Jerônimo, A.F.; Batalha, N.; Collado-Mateo, D.; Parraca, J.A. Phase Angle from Bioelectric Impedance and Maturity-Related Factors in Adolescent Athletes: A Systematic Review. Sustainability 2020, 12, 4806. https://doi.org/10.3390/su12124806
de Araújo Jerônimo AF, Batalha N, Collado-Mateo D, Parraca JA. Phase Angle from Bioelectric Impedance and Maturity-Related Factors in Adolescent Athletes: A Systematic Review. Sustainability. 2020; 12(12):4806. https://doi.org/10.3390/su12124806
Chicago/Turabian Stylede Araújo Jerônimo, Aline Ferreira, Nuno Batalha, Daniel Collado-Mateo, and Jose Alberto Parraca. 2020. "Phase Angle from Bioelectric Impedance and Maturity-Related Factors in Adolescent Athletes: A Systematic Review" Sustainability 12, no. 12: 4806. https://doi.org/10.3390/su12124806
APA Stylede Araújo Jerônimo, A. F., Batalha, N., Collado-Mateo, D., & Parraca, J. A. (2020). Phase Angle from Bioelectric Impedance and Maturity-Related Factors in Adolescent Athletes: A Systematic Review. Sustainability, 12(12), 4806. https://doi.org/10.3390/su12124806