COVID-19 Healthcare Planning: Predicting Mortality and the Role of the Herd Immunity Barrier in the General Population
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baker, T. Mathematical modeling draws more accurate picture of coronavirus cases 2020. Available online: https://www.eurekalert.org/pub_releases/2020-04/mcog-mmd041020.php (accessed on 20 June 2020).
- Red Nacional de Vigilancia Epidemiológica-[Spanish epidemiological surveillance network]. Informe sobre la situación de COVID-19 en España-[Report on the situation of COVID-19 in Spain]. 2020. Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Documents/INFORMES/Informes%20COVID-19/Informe%20nº%2022.%20Situación%20de%20COVID-19%20en%20España%20a%2013%20de%20abril%20de%202020.pdf (accessed on 20 June 2020).
- Ministerio de Justicia [Spanish Ministry of Justice]. MoMo-Vigilancia de los excesos de mortalidad por todas las causas [Surveillance of excess mortality from all causes (MoMo)]; Ministerio de Justicia [Spanish Ministry of Justice]: Madrid, Spain, 2020; Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/MoMo/Documents/informesMoMo2020/MoMo_Situacion%20a%2011%20de%20mayo_CNE.pdf (accessed on 20 June 2020).
- Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, J.T.; Coupland, H.; Mellan, T.A.; Zhu, H.; Berah, T.; Eaton, J.W.; Guzman, P.N.P.; et al. Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. Imp. Coll. Lond. 2020, 1–35. [Google Scholar] [CrossRef]
- Jung, S.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H. Real-time estimation of the risk of death from novel coronavirus (covid-19) infection: Inference using exported cases. J. Clin. Med. 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S.; Yuan, B.; Kinoshita, R.; Nishiura, H. Incubation period and other epidemiological characteristics of 2019 Novel Coronavirus infections with right truncation: A Statistical analysis of publicly available case data. J. Clin. Med. 2020, 9, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salje, H.; Kiem, C.T.; Lefrancq, N.; Courtejoie, N.; Paireau, J.; Andronico, A.; Hoze, N.; Richet, J.; Dubost, C.; Salje, H.; et al. Estimating the Burden of SARS-CoV-2 in France to Cite this Version: HAL Id: Pasteur-02548181; Institute Pasteur: Paris, France, 2020; Available online: https://hal-pasteur.archives-ouvertes.fr/pasteur-02548181/document (accessed on 20 June 2020).
- Instituto Nacional de Estadística (INE) [National Institute of Statistics of Spain]. Defunciones según la Causa de Muerte año 2018. Notas de prensa. Defunciones por causa muerte 2018 [Death by cause death, 2018] 2019, 2018, 1–8. Available online: https://www.ine.es/prensa/edcm_2018.pdf (accessed on 20 June 2020).
- Streeck, H.; Hartmann, G.; Exner, M.; Schmid, M. Vorläufiges Ergebnis und Schlussfolgerungen der COVID-19 Case-Cluster-Study (Gemeinde Gangelt) [Preliminary results and conclusions of the COVID-19 case group study (Gangelt municipality); University Hospital Bonn: Bonn, Germany, 2020; Available online: https://www.land.nrw/sites/default/files/asset/document/zwischenergebnis_covid19_case_study_gangelt.pdf (accessed on 20 June 2020).
- Rajgor, D.D.; Lee, M.H.; Archuleta, S.; Bagdasarian, N.; Quek, S.C. The many estimates of the COVID-19 case fatality rate. Lancet Infect. Dis. 2020, 3099, 30244. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25, 2000180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.T.; Leung, K.; Bushman, M.; Kishore, N.; Niehus, R.; de Salazar, P.M.; Cowling, B.J.; Lipsitch, M.; Leung, G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riou, J.; Hauser, A.; Counotte, M.J.; Althaus, C.L. Adjusted age-specific case fatality ratio during the COVID-19 epidemic in Hubei, China, January and February 2020. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Russell, T.W.; Hellewell, J.; Jarvis, C.I.; van Zandvoort, K.; Abbott, S.; Ratnayake, R.; Flasche, S.; Eggo, R.M.; Edmunds, W.J.; Kucharski, A.J. Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Eurosurveillance 2020, 25, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA J. Am. Med. Assoc. 2020, 323. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ma, Z.; Ning, Y.; Chen, C.; Chen, R.; Chen, Q.; Zhang, H.; Li, C.; He, Y.; Wang, T.; et al. Estimating the case fatality ratio of the COVID-19 epidemic in China. medRxiv 2020. [Google Scholar] [CrossRef]
- Oke, J.; Heneghan, C. Global Covid-19 Case Fatality Rates; Centre for Evidence-Based Medicine, Oxford University: Oxford, UK, 2020; Available online: https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/ (accessed on 20 June 2020).
- Italian Task Force COVID-19. Epidemia COVID-19 [Covid-19 epidemic]. 2020. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_26-marzo%202020.pdf (accessed on 20 June 2020).
- Weaver, M. UK coronavirus death toll reaches 1,789 amid data reporting concerns |World news| The Guardian. Available online: https://www.theguardian.com/world/2020/mar/31/uk-coronavirus-death-toll-reaches-1789-amid-data-reporting-concerns (accessed on 7 May 2020).
- London Business School. How Many People Really Die From Covid-19? Lessons from Italy. Forbes, 6 April 2020. [Google Scholar]
- Wu, J.; McCann, A.; Peltier, E. Coronavirus-missing-deaths. Available online: https://www.nytimes.com/interactive/2020/04/21/world/coronavirus-missing-deaths.html (accessed on 10 May 2020).
- Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J.M.; Ma, S.; James, L.; Gopalakrishna, G.; Chew, S.K.; Tan, C.C.; Samore, M.H.; et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003, 300, 1966–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanche, S.; Lin, Y.T.; Xu, C.; Romero-Severson, E.; Hengartner, N.; Ke, R. High Contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C. The Evolution and Emergence of RNA Viruses; Oxford University Press: Oxford, UK, 2010; Volume 16, ISBN 9780199211135. [Google Scholar]
- World Health Organization. Consensus Document on The Epidemiology of Severe Acute Respiratory Syndrome (SARS); WHO Publishing: Geneva, Switzerland, 2003; pp. 1–47. Available online: https://www.who.int/csr/sars/WHOconsensus.pdf?ua=1 (accessed on 7 May 2020).
- Boseley, S. WHO warns that few have developed antibodies to Covid-19. The Guardian. 2020. Available online: https://www.theguardian.com/society/2020/apr/20/studies-suggest-very-few-have-had-covid-19-without-symptoms (accessed on 20 June 2020).
- World Health Organization (WHO) Tech Guid #2. Health Systems Respond to COVID-19 Technical Guidance #2 Creating surge capacity for acute and intensive care Recommendations for the WHO European Region (6 April 2020). JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.; Fu, H.; et al. Estimates of the severity of COVID-19 disease. medRxiv 2020. [Google Scholar] [CrossRef]
- Wong, J.Y.; Kelly, H.; Ip, D.K.M.; Wu, J.T.; Leung, G.M.; Cowling, B.J. Case fatality risk of influenza a (H1N1pdm09): A systematic review. Epidemiology 2013, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cámara-Larrauri, A.; Jiménez-Jorge, S.; Simón-Méndez, L.; de Mateo-Ontañón, S. Vigilancia de la pandemia de la gripe 2009 (H1N1) en España [Surveillance of 2009 flu (H1N1) pandemic in Spain]. Rev. Esp. Salud Publica 2010, 24, 569–588. [Google Scholar]
- Centro de coordinación de alertas y emergencias sanitarias; R98-[Spanish centre of health alerts and emergencies. R98]. Actualización no 98. Enfermedad por el coronavirus (COVID-19)- [Update No 98. Coronavirus (Covid-19)]; Centro de coordinación de alertas y emergencias sanitarias: Madrid, Spain, 2020; Available online: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/documentos/Actualizacion_98_COVID-19.pdf (accessed on 7 May 2020).
- Bendavid, E.; Mulaney, B.; Sood, N.; Shah, S.; Ling, E.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.; Saavedra, R.; Tedrow, J.; et al. COVID-19 Antibody Seroprevalence in Santa Clara County, California. medRxiv 2020. [Google Scholar] [CrossRef]
- Regalado, A. Blood tests show 14% of people are now immune to covid-19 in one town in Germany. MIT Technology Review, 9 April 2020. [Google Scholar]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Meyerowitz-Katz, G. Here’s Why Herd Immunity Won’t Save Us From The COVID-19 Pandemic. Science Alert, 30 March 2020. [Google Scholar]
Total Cases | Expected Cases | Unexpected | Reported COVID-19 | Report Under-Estimation | |
---|---|---|---|---|---|
63,676 | 37,769 | 25,907 | 20,043 | 5864 | 29% |
Regions (CCAA) | Total Casualties | CFR PMP | Regions (CCAA) | Total Casualties | CFR PMP |
---|---|---|---|---|---|
Andalucía | 1501 | 178.7 | Valencia | 1563 | 312.7 |
Aragón | 939 | 708.6 | Extremadura | 556 | 523.4 |
Asturias | 328 | 321.8 | Galicia | 519 | 192.4 |
Baleares | 231 | 192.5 | Madrid | 10,442 | 1562.0 |
Canarias | 173 | 77.8 | Melilla | 3 | 31.3 |
Cantabria | 241 | 414.5 | Murcia | 167 | 112.0 |
Castilla La Mancha | 3071 | 1506.7 | Navarra | 568 | 870.7 |
Castilla y León | 2196 | 913.9 | Pais Vasco | 1621 | 743.1 |
Cataluña | 6019 | 790.0 | La Rioja | 415 | 1.320.3 |
Ceuta | 5 | 62.4 | |||
Spain (Overall) | 30,568 | 649.0 |
Sample Size | PCR Positive | Over Infected | Over PCR + | Over Sample | |||
True Asymp | Symp. | IFR | CFR | Casualties | |||
21% | 18% | 82% | 1.11% | 1.35% | 0.23% | ||
(n) | 3063 | 630 | 113.3 | 516.7 | 7 |
Age | Casualties | Cases | % CFR (95% CI) |
---|---|---|---|
≤9 years | 0 | 416 | 0 |
10 to 19 years | 1 | 549 | 0.18 [0.03–1.02] |
20 to 49 years | 63 | 19,790 | 0.32 [0.25–0.41] |
50 to 59 years | 130 | 10,008 | 1.3 [1.1–1.5] |
60 to 69 years | 309 | 8583 | 3.6 [3.2–4.0] |
70 to 79 years | 312 | 3918 | 8.0 [7.2–8.9] |
≥80 years | 208 | 1408 | 14.8 [13.0–16.7] |
Overall | 1023 | 44,415 | 2.30 |
Total Cases | |||||
Age Band | # Cases | % Age Band | # Death | % Death/ Age Band | % CFR |
0–9 | 424 | 0.6 | - | 0.0 | 0.00 |
10–19 | 510 | 0.7 | - | 0.0 | 0.00 |
20–29 | 2713 | 3.7 | - | 0.0 | 0.00 |
30–30 | 4959 | 6.8 | 17 | 0.2 | 0.34 |
40-49 | 9167 | 12.6 | 67 | 1.0 | 0.73 |
50–59 | 14,335 | 19.7 | 243 | 3.6 | 1.70 |
60–69 | 13,149 | 18.1 | 761 | 11.2 | 5.79 |
70–79 | 14,090 | 19.4 | 2403 | 35.3 | 17.05 |
80–89 | 10,929 | 15.0 | 2702 | 39.7 | 24.72 |
≥90 | 2517 | 3.5 | 608 | 8.9 | 24.16 |
Total | 72,793 | 100.0 | 6801 | 100.0 | 9.34 |
Males | |||||
Age Band | # Cases | % Gender | # Death | % Death/ Gender | % CFR |
0–9 | 244 | 57.5 | - | 0.0 | 0.00 |
10–19 | 261 | 51.2 | - | 0.0 | 0.00 |
20–29 | 1203 | 44.3 | - | 0.0 | 0.00 |
30–30 | 2465 | 49.7 | 14 | 82.4 | 0.57 |
40–49 | 4597 | 50.1 | 49 | 73.1 | 1.07 |
50–59 | 7998 | 55.8 | 190 | 78.2 | 2.38 |
60–69 | 8755 | 66.6 | 606 | 79.6 | 6.92 |
70–79 | 9309 | 66.1 | 1846 | 76.8 | 1.83 |
80–89 | 6195 | 56.7 | 1808 | 66.9 | 29.18 |
≥90 | 877 | 34.8 | 273 | 44.9 | 31.13 |
Total | 41,904 | 57.6 | 4786 | 70.4 | 11.42 |
Females | |||||
Age Band | # Cases | % Gender | # Death | % Death/ Gender | % CFR |
0–9 | 180 | 42.5 | - | 0.0 | 0.00 |
10–19 | 249 | 48.8 | - | 0.0 | 0.00 |
20–29 | 1510 | 55.7 | - | 0.0 | 0.00 |
30–30 | 2494 | 50.3 | 3 | 17.6 | 0.12 |
40-49 | 4570 | 49.9 | 18 | 26.9 | 0.39 |
50–59 | 6337 | 44.2 | 52 | 21.4 | 0.82 |
60-69 | 4394 | 33.4 | 154 | 20.2 | 3.50 |
70–79 | 4781 | 33.9 | 555 | 23.1 | 11.61 |
80-89 | 4734 | 43.3 | 894 | 33.1 | 18.88 |
≥90 | 1640 | 65.2 | 334 | 54.9 | 20.37 |
Total | 30889 | 42.4 | 2010 | 29.6 | 6.51 |
Category | Risk Ratio | 95% CI |
---|---|---|
Age 30–39 | 0.06 | [0.038–0.10] |
Age 40–49 | 0.14 | [0.11–0.17] |
Age 50–59 | 0.31 | [0.27–0.35] |
Age 60–69 (reference) | 1 | - |
Age 70–79 | 2.95 | [2.7–3.2] |
Age 80–89 | 4.47 | [4.1–4.8] |
Age 90+ | 4.83 | [4.4–5.3] |
Female | 1 | - |
Male | 1.66 | [1.58–1.74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marco-Franco, J.E.; Guadalajara-Olmeda, N.; González-de Julián, S.; Vivas-Consuelo, D. COVID-19 Healthcare Planning: Predicting Mortality and the Role of the Herd Immunity Barrier in the General Population. Sustainability 2020, 12, 5228. https://doi.org/10.3390/su12135228
Marco-Franco JE, Guadalajara-Olmeda N, González-de Julián S, Vivas-Consuelo D. COVID-19 Healthcare Planning: Predicting Mortality and the Role of the Herd Immunity Barrier in the General Population. Sustainability. 2020; 12(13):5228. https://doi.org/10.3390/su12135228
Chicago/Turabian StyleMarco-Franco, Julio Emilio, Natividad Guadalajara-Olmeda, Silvia González-de Julián, and David Vivas-Consuelo. 2020. "COVID-19 Healthcare Planning: Predicting Mortality and the Role of the Herd Immunity Barrier in the General Population" Sustainability 12, no. 13: 5228. https://doi.org/10.3390/su12135228
APA StyleMarco-Franco, J. E., Guadalajara-Olmeda, N., González-de Julián, S., & Vivas-Consuelo, D. (2020). COVID-19 Healthcare Planning: Predicting Mortality and the Role of the Herd Immunity Barrier in the General Population. Sustainability, 12(13), 5228. https://doi.org/10.3390/su12135228