Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Instruments and Measures
2.4. Procedure
2.5. Statistical Analyses
3. Results
3.1. Intra-Observer and Inter-Observer Reliability
3.2. Descriptive and Normality Analyses
3.3. Pearson Correlations
3.4. Linear Regressions
3.5. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mackenzie, R.; Cushion, C. Performance analysis in football: A critical review and implications for future research. J. Sports Sci. 2013, 31, 639–676. [Google Scholar] [CrossRef]
- Sarmento, H.; Marcelino, R.; Anguera, M.T.; Campaniço, J.; Matos, N.; Leitão, J.C. Match analysis in football: A systematic review. J. Sports Sci. 2014, 32, 1831–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Zhang, S.; Lorenzo-Calvo, A.; Cui, Y. Chinese soccer association super league, 2012–2017: Key performance indicators in balance games. Int. J. Perf. Anal. Sport 2018, 18, 645–656. [Google Scholar] [CrossRef]
- Gómez, M.A.; Lago, C.; Gómez, M.T.; Furley, P. Analysis of elite soccer players’ performance before and after signing a new contract. PLoS ONE 2019, 14, e0211058. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.; Salmon, P.M.; Gorman, A.D.; Read, G.J.; Solomon, C. What’s in a game? A systems approach to enhancing performance analysis in football. PLoS ONE 2017, 12, e0172565. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.A.; Mitrotasios, M.; Armatas, V.; Lago-Peñas, C. Analysis of playing styles according to team quality and match location in Greek professional soccer. Int. J. Perf. Anal. Sport 2018, 18, 986–997. [Google Scholar] [CrossRef]
- Rein, R.; Memmert, D. Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. SpringerPlus 2016, 5, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.; Silva, P.; Duarte, R.; Davids, K.; Garganta, J. Team sports performance analysed through the lens of social network theory: Implications for research and practice. Sports Med. 2017, 47, 1689–1696. [Google Scholar] [CrossRef]
- Winter, C.; Pfeiffer, M. Tactical metrics that discriminate winning, drawing and losing teams in UEFA Euro 2012®. J. Sports Sci. 2016, 34, 486–492. [Google Scholar] [CrossRef]
- Verburgh, L.; Scherder, E.J.; Van Lange, P.A.; Oosterlaan, J. Executive functioning in highly talented soccer players. PLoS ONE 2014, 9, e91254. [Google Scholar] [CrossRef] [Green Version]
- Meylan, C.; Cronin, J.; Oliver, J.; Hughes, M. Talent identification in soccer: The role of maturity status on physical, physiological and technical characteristics. Int. J. Sports Sci. Coach. 2010, 5, 571–592. [Google Scholar] [CrossRef]
- Burgess, D.J.; Naughton, G.A. Talent development in adolescent team sports: A review. Int. J. Sports Physiol. Perform. 2010, 5, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Elferink-Gemser, M.; Visscher, C.; Lemmink, K.; Mulder, T. Relation between multidimensional performance characteristics and level of performance in talented youth field hockey players. J. Sports Sci. 2004, 22, 1053–1063. [Google Scholar] [CrossRef]
- Pesce, C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J. Sport Exerc. Psychol. 2012, 34, 766–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl. Cogn. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Faubert, J. Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Sci. Rep. 2013, 3, 1154. [Google Scholar] [CrossRef] [Green Version]
- Faubert, J.; Sidebottom, L. Perceptual-cognitive training of athletes. J. Clin. Sport Psychol. 2012, 6, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Ljac, V.; Witkowski, Z.; Gutni, B.; Samovarov, A.; Nash, D. Toward effective forecast of professionally important sensorimotor cognitive abilities of young soccer players. Percept. Mot. Ski. 2012, 114, 485–506. [Google Scholar] [CrossRef]
- Lundgren, T.; Högman, L.; Näslund, M.; Parling, T. Preliminary investigation of executive functions in elite ice hockey players. J. Clin. Sport Psychol. 2016, 10, 324–335. [Google Scholar] [CrossRef]
- Verburgh, L.; Scherder, E.J.; Van Lange, P.A.; Oosterlaan, J. Do elite and amateur soccer players outperform non-athletes on neurocognitive functioning? A study among 8-12 years old children. PLoS ONE 2016, 11, e0165741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestberg, T.; Reinebo, G.; Maurex, L.; Ingvar, M.; Petrovic, P. Core executive functions are associated with success in young elite soccer players. PLoS ONE 2017, 12, e0170845. [Google Scholar] [CrossRef] [PubMed]
- Heppe, H.; Kohler, A.; Fleddermann, M.T.; Zentgraf, K. The relationship between expertise in sports, visuospatial, and basic cognitive skills. Front. Psychol. 2016, 7, 904. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Tessitore, A.; Casella, R.; Pirritano, M.; Capranica, L. Focusing of visual attention at rest and during physical exercise in soccer players. J. Sports Sci. 2007, 25, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Schmidt, M.; Wellmann, K.; Braumann, K.M. General perceptual-cognitive abilities: Age and position in soccer. PLoS ONE 2018, 13, e0202627. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Takeuchi, H.; Ihara, N.; Ligao, B.; Suzukawa, K. Possible requirement of executive functions for high performance in soccer. PLoS ONE 2018, 13, e0201871. [Google Scholar] [CrossRef]
- Vestberg, T.; Gustafson, R.; Maurex, L.; Ingvar, M.; Petrovic, P. Executive functions predict the success of top-soccer players. PLoS ONE 2012, 7, e34731. [Google Scholar] [CrossRef]
- Huijgen, B.C.; Leemhuis, S.; Kok, N.M.; Verburgh, L.; Oosterlaan, J.; Elferink-Gemser, M.T.; Visscher, C. Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PLoS ONE 2015, 10, e0144580. [Google Scholar] [CrossRef]
- Kramer, A.F.; Hahn, S.; Cohen, N.J.; Banich, M.T.; McAuley, E.; Harrison, C.R.; Chason, J.; Vakil, E.; Bardell, L.; Boileau, R.A.; et al. Ageing, fitness and neurocognitive function. Nature 1999, 400, 418–419. [Google Scholar] [CrossRef]
- Ballester, R.; Huertas, F.; Yuste, F.J.; Llorens, F.; Sanabria, D. The relationship between regular sports participation and vigilance in male and female adolescents. PLoS ONE 2015, 10, e0123898. [Google Scholar] [CrossRef]
- Mann, D.T.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psychol. 2007, 29, 457–478. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Ploughman, M. Exercise is brain food: The effects of physical activity on cognitive function. Dev. Neurorehabil. 2008, 11, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, L.; Erickson, K.I.; Holtrop, J.L.; Voss, M.W.; Pontifex, M.B.; Raine, L.B.; Hillman, C.H.; Kramer, A.F. Aerobic fitness is associated with greater white matter integrity in children. Front. Hum. Neurosci. 2014, 8, 584. [Google Scholar]
- Voss, M.W.; Heo, S.; Prakash, R.S.; Erickson, K.I.; Alves, H.; Chaddock, L.; Szabo, A.N.; Mailey, E.L.; Wójcicki, T.R.; White, S.M.; et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Hum. Brain Mapp. 2013, 34, 2972–2985. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, N.; Kurth, S.; Doucette, M.R.; Wiseheart, M.; Deoni, S.C.; Dean, D.C., III; O’Muircheartaigh, J.; Blackwell, K.A.; Munakata, Y.; LeBourgeois, M.K. Myelination is associated with processing speed in early childhood: Preliminary insights. PLoS ONE 2015, 10, e0139897. [Google Scholar] [CrossRef] [Green Version]
- Chaddock, L.; Erickson, K.I.; Voss, M.W.; Powers, J.P.; Knecht, A.M.; Pontifex, M.B.; Castelli, D.; Hillman, C.; Kramer, A. White matter microstructure is associated with cognitive control in children. Biol. Psychol. 2013, 94, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Reigal, R.E.; González-Guirval, F.; Morillo-Baro, J.P.; Morales-Sánchez, V.; Juárez-Ruiz de Mier, R.; Hernández-Mendo, A. Effects of a computerized training on attentional capacity of young soccer players. Front. Psychol. 2019, 10, 2279. [Google Scholar] [CrossRef] [Green Version]
- Chaddock, L.; Pontifex, M.B.; Hillman, C.H.; Kramer, A.F. A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsych. Soc. 2011, 17, 975–985. [Google Scholar] [CrossRef] [Green Version]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.S.; Voss, M.W.; VanPatter, M.; Pontifex, M.B.; Raine, L.B.; Konkel, A.; Hillman, C.H.; et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Tomporowski, P.D.; Lambourne, K.; Okumura, M.S. Physical activity interventions and children’s mental function: An introduction and overview. Prev. Med. 2011, 52, S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, walking, talking: Integratory motor and cognitive brain function. Public Health Front. 2016, 4, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharfen, H.E.; & Memmert, D. The Relationship Between Cognitive Functions and Sport-Specific Motor Skills in Elite Youth Soccer Players. Front. Psychol. 2019, 10, 817. [Google Scholar] [CrossRef]
- Ato, M.; López-García, J.J.; Benavente, A. Un sistema de clasificación de los diseños de investigación en psicología. Ann. Psicol. 2013, 29, 1038–1059. [Google Scholar] [CrossRef] [Green Version]
- Ruíz, J.R.; España-Romero, V.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Cuenca-García, M.; Jiménez-Pavón, D.; Chillón, P.; Girela-Rejón, M.; Mora, J.; et al. Batería ALPHA-Fitness: Test de campo para la evaluación de la condición física relacionada con la salud en niños y adolescentes. Nutr. Hosp. 2011, 26, 1210–1214. [Google Scholar]
- Leger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Brickenkamp, R.; Cubero, N. d2: Test de atención: Manual; TEA: Madrid, Spain, 2009. [Google Scholar]
- Blanca, M.J.; Zalabardo, C.; Rando, B.; López-Montiel, D.; Luna, R. AGL, Atención Global-Local. Madrid; TEA: Madrid, Spain, 2005. [Google Scholar]
- Wechsler, D. Escala de inteligencia de Wechsler para niños (WISC-IV): Manual técnico y de interpretación; TEA: Madrid, Spain, 2005. [Google Scholar]
- Oslin, J.L.; Mitchell, S.A.; Griffin, L.L. The game performance assessment instrument (GPAI): Development and preliminary validation. J. Teahc. Phys. Educ. 1998, 17, 231–243. [Google Scholar] [CrossRef]
- Mitchell, S.A.; Oslin, J.L.; Griffin, L.L. The effects of two instructional approaches on game performance. Pedagog. Pract. Teach. Coach. Phys. Educ. Sports 1995, 1, 36–48. [Google Scholar]
- Wright, S.; McNeill, M.; Fry, J.; Wang, J. Teaching teachers to play and teach games. Phys. Educ. Sport Pedagog. 2005, 10, 61–82. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014, 81, 14–18. [Google Scholar]
- Hernández-Mendo, A.; López-López, J.; Castellano, J.; Morales-Sánchez, V.; Pastrana, J.L. Programa informático para uso en metodología observacional. Cuad. de Psicol. del Deporte 2012, 12, 55–78. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sport Exer. 2004, 36, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Sporis, G.; Jukic, I.; Ostojic, S.M.; Milanovic, D. Fitness profiling in soccer: Physical and physiologic characteristics of elite players. J. Strength Cond. Res. 2009, 23, 1947–1953. [Google Scholar] [PubMed] [Green Version]
- Hill-Haas, S.V.; Dawson, B.; Impellizzeri, F.M.; Coutts, A.J. Physiology of small-sided games training in football. Sports Med. 2011, 41, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Jeunet, C.; Tonin, L.; Albert, L.; Chavarriaga, R.; Bideau, B.; Argelaguet, F.; Millán, J.D.R.; Lécuyer, A.; Kulpa, R. Uncovering eeG correlates of covert Attention in Soccer Goalkeepers: Towards innovative Sport training procedures. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Roca, A.; Ford, P.R.; Memmert, D. Creative decision making and visual search behavior in skilled soccer players. PLoS ONE 2018, 13, e0199381. [Google Scholar] [CrossRef] [Green Version]
- Rusciano, A.; Corradini, G.; Stoianov, I. Neuroplus biofeedback improves attention, resilience, and injury prevention in elite soccer players. Psychophysiology 2017, 54, 916–926. [Google Scholar] [CrossRef]
- De la Vega, M.R. La importancia del entrenamiento de la concentración en el fútbol base: Una perspectiva aplicada. Cuad. de Psicol. del Deporte 2003, 3, 67–82. [Google Scholar]
- Papanikolaou, Z. Attention in young soccer players: The development of an attentional focus training program. J. Life Sci. 2011, 3, 1–12. [Google Scholar] [CrossRef]
- Cardoso, F.D.; González-Víllora, S.; Guilherme, J.; Teoldo, I. Young soccer players with higher tactical knowledge display lower cognitive effort. Percept. Mot. Ski. 2019, 126, 499–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romeas, T.; Guldner, A.; Faubert, J. 3D-Multiple Object Tracking training task improves passing decision-making accuracy in soccer players. Psychol. Sport Exerc. 2016, 22, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Appelbaum, L.G.; Erickson, G. Sports vision training: A review of the state-of-the-art in digital training techniques. Int. Rev. Sport Exerc. Psychol. 2018, 11, 160–189. [Google Scholar] [CrossRef]
Intra-Observer Concordance | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | ρ | tb (F) | tb (I) | Cohen’s Kappa | Phi Coefficient | |||||||
±1 | ±3 | ±5 | ±7 | ±1 | ±3 | ±5 | ±7 | |||||
Under 14 | 0.99 | 0.95 | 0.92 | 0.91 | 0.79 | 0.89 | 0.92 | 0.92 | 0.80 | 0.88 | 0.91 | 0.92 |
Under 16 | 0.99 | 0.97 | 0.94 | 0.94 | 0.78 | 0.90 | 0.92 | 0.93 | 0.79 | 0.90 | 0.92 | 0.92 |
Inter-Observer Matching | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | ρ | tb (F) | tb (I) | Cohen’s Kappa | Phi Coefficient | |||||||
±1 | ±3 | ±5 | ±7 | ±1 | ±3 | ±5 | ±7 | |||||
Under 14 | 0.99 | 0.88 | 0.88 | 0.86 | 0.65 | 0.79 | 0.82 | 0.84 | 0.66 | 0.79 | 0.81 | 0.83 |
Under 16 | 0.99 | 0.91 | 0.85 | 0.84 | 0.70 | 0.80 | 0.83 | 0.84 | 0.70 | 0.79 | 0.82 | 0.83 |
M | SD | S | K | K–S | |
---|---|---|---|---|---|
Age | 13.87 | 1.33 | 0.15 | −1.19 | 0.21 |
Physical fitness test | |||||
Body fat % | 17.65 | 4.69 | 1.45 | 2.78 | 1.28 |
Standing long jump | 197.42 | 24.93 | 0.12 | −0.65 | 0.80 |
VO2 max | 48.27 | 7.05 | 0.62 | 0.60 | 0.83 |
Speed test | 10.46 | 1.18 | −0.23 | −0.09 | 1.32 |
Attention test | |||||
D2-TE | 62.00 | 20.03 | −0.21 | −0.38 | 0.71 |
D2-TH | 58.41 | 20.28 | −0.05 | 0.03 | 0.77 |
D2-O | 42.61 | 20.83 | −0.04 | −0.02 | 0.74 |
D2-C | 44.92 | 17.73 | −0.60 | −0.08 | 1.31 |
D2-TET | 59.99 | 19.74 | −0.09 | −0.16 | 0.65 |
D2-CON | 56.22 | 21.26 | −0.15 | 0.02 | 0.64 |
D2-TE(+) | 65.35 | 19.65 | −0.51 | 0.45 | 0.84 |
D2-TE(−) | 59.87 | 24.66 | −0.08 | −0.61 | 0.89 |
D2-VAR | 58.25 | 21.54 | −0.43 | 0.01 | 0.97 |
GLA-Local Execution | 54.52 | 37.27 | −0.29 | −1.49 | 1.27 |
GLA-Global Execution | 49.02 | 36.21 | −0.06 | −1.53 | 1.34 * |
GLA-Total Execution | 51.49 | 36.71 | −0.14 | −1.60 | 1.42 * |
GLA-Relative Execution | 58.99 | 33.75 | −0.32 | −1.35 | |
Processing speed test | |||||
WISC IV-Coding | 10.09 | 2.71 | −0.17 | −0.33 | 1.00 |
WISC IV-Symbol Search | 10.48 | 4.25 | −0.27 | −0.23 | 1.08 |
WISC IV-Processing Speed Index | 102.66 | 15.67 | −0.20 | −0.53 | 0.71 |
Playing behavior | |||||
GPAI-DMI | 0.76 | 0.10 | −0.91 | 2.19 | 0.88 |
GPAI-SEI | 0.72 | 0.10 | −0.25 | 0.21 | 0.65 |
GPAI-SI | 0.93 | 0.07 | −1.09 | 0.56 | 1.76 ** |
GPAI-PI | 25.76 | 5.84 | −0.12 | −0.44 | 0.47 |
GPAI-GPI | 0.81 | 0.07 | −0.82 | 2.52 | 1.03 |
GPAI | |||||
---|---|---|---|---|---|
DMI | SEI | SI | PI | GPI | |
Age | 0.20 | 0.19 | −0.21 | 0.05 | 0.09 |
Physical fitness test | |||||
Body fat % | −0.11 | −0.03 | 0.01 | −0.20 | 0.02 |
Standing long jump | 0.05 | 0.03 | −0.19 | 0.11 | −0.08 |
VO2 max | 0.18 | 0.18 | 0.06 | 0.03 | 0.19 |
Speed test | −0.16 | −0.20 | 0.02 | −0.04 | −0.14 |
Attention test | |||||
D2-TE | 0.19 | 0.28 ** | 0.23 ** | 0.20 | 0.29 ** |
D2-TH | 0.23 * | 0.27* | 0.15 | 0.15 | 0.29 ** |
D2-O | 0.13 | 0.01 | −0.07 | 0.05 | 0.08 |
D2-C | 0.09 | 0.06 | 0.11 | 0.10 | 0.06 |
D2-TET | 0.24 * | 0.31 ** | 0.22 * | 0.17 | 0.33 ** |
D2-CON | 0.23 * | 0.24 * | 0.17 | 0.12 | 0.27 * |
D2-TE(+) | −0.03 | 0.13 | 0.18 | 0.16 | 0.10 |
D2-TE(−) | 0.22 * | 0.21 | 0.15 | 0.20 | 0.26 * |
D2-VAR | 0.25 * | 0.11 | 0.01 | 0.02 | 0.20 |
GLA-Local Execution | 0.07 | 0.13 | −0.03 | 0.16 | 0.09 |
GLA-Global Execution | 0.16 | 0.13 | 0.14 | 0.12 | 0.15 |
GLA-Total Execution | 0.16 | 0.14 | 0.11 | 0.17 | 0.14 |
GLA-Relative Execution | 0.15 | 0.08 | 0.09 | 0.07 | 0.12 |
Processing speed test | |||||
WISC IV-Coding | 0.16 | 0.20 | 0.03 | 0.17 | 0.15 |
WISC IV-Symbol Search | 0.30 ** | 0.23* | −0.02 | 0.27 * | 0.23 * |
WISC IV-PS Index | 0.29 ** | 0.26* | −0.03 | 0.28 ** | 0.24 * |
Criterion Variable | ANOVA | R | R2 Adjusted | D–W | Predictor Variable | Beta | t | T | VIF |
---|---|---|---|---|---|---|---|---|---|
DMI | 5.91 ** | 0.36 | 0.11 | 2.15 | WISC IV-PSI | 0.23 | 2.16 * | 0.94 | 1.06 |
D2-VAR | 0.22 | 2.09 | 0.94 | 1.06 | |||||
SEI | 8.84 * | 0.31 | 0.09 | 1.95 | D2-TET | 0.31 | 2.97 ** | 1.00 | 1.00 |
PI | 11.07 ** | 0.35 | 0.11 | 2.26 | WISC IV-PSI | 0.35 | 3.32 ** | 1.00 | 1.00 |
GPI | 10.25 ** | 0.33 | 0.10 | 2.17 | D2-TET | 0.33 | 3.20 ** | 1.00 | 1.00 |
G1 | G2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | S | K | S–W | M | SD | S | K | S–W | |
GPAI-DMI | 0.80 | 0.08 | −0.10 | 0.19 | 0.98 | 0.72 | 0.11 | −1.06 | 1.86 | 0.92 * |
GPAI-SEI | 0.75 | 0.09 | 0.04 | −0.60 | 0.98 | 0.67 | 0.09 | −0.52 | 0.31 | 0.97 |
GPAI-SI | 0.95 | 0.06 | −1.53 | 3.31 | 0.82 *** | 0.91 | 0.08 | −0.55 | −0.94 | 0.89 ** |
GPAI-PI | 26.88 | 5.70 | 0.04 | −0.67 | 0.97 | 24.32 | 5.78 | −0.31 | −0.55 | 0.98 |
GPAI-GPI | 0.83 | 0.06 | 0.31 | −0.58 | 0.96 | 0.77 | 0.07 | −1.41 | 2.69 | 0.89 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabarit, A.; Reigal, R.E.; Morillo-Baro, J.P.; Juárez-Ruiz de Mier, R.; Franquelo, A.; Hernández-Mendo, A.; Falcó, C.; Morales-Sánchez, V. Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players. Sustainability 2020, 12, 5245. https://doi.org/10.3390/su12135245
Sabarit A, Reigal RE, Morillo-Baro JP, Juárez-Ruiz de Mier R, Franquelo A, Hernández-Mendo A, Falcó C, Morales-Sánchez V. Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players. Sustainability. 2020; 12(13):5245. https://doi.org/10.3390/su12135245
Chicago/Turabian StyleSabarit, Alejandro, Rafael E. Reigal, Juan P. Morillo-Baro, Rocío Juárez-Ruiz de Mier, Auxiliadora Franquelo, Antonio Hernández-Mendo, Coral Falcó, and Verónica Morales-Sánchez. 2020. "Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players" Sustainability 12, no. 13: 5245. https://doi.org/10.3390/su12135245
APA StyleSabarit, A., Reigal, R. E., Morillo-Baro, J. P., Juárez-Ruiz de Mier, R., Franquelo, A., Hernández-Mendo, A., Falcó, C., & Morales-Sánchez, V. (2020). Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players. Sustainability, 12(13), 5245. https://doi.org/10.3390/su12135245