The Content of Selected Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 in Urban-Industrial Area
Abstract
:1. Introduction
1.1. Particulate Matter
1.2. Polycyclic Aromatic Hydrocarbons
1.3. Heavy Metals
2. Methodology
2.1. Study Area
2.2. Equipment and Analytical Procedure
3. Results
3.1. Concentration of Selected Heavy Metals in PM10
3.2. Concentrations of Selected Polycyclic Aromatic Hydrocarbons (PAHs) in PM10
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EEA. Air Quality in Europe—2019 Report; EEA Report No 10/2019; Publications Office of the European Union: Luxembourg, 2019; ISSN 1977–8449. [Google Scholar]
- Juda-Rezler, K.; Toczko, B. (Eds.) Fine Dust in Atmosphere—Compendium of Knowledge about Air Pollution in Atmosphere in Poland; Teamwork, Environmental Protection Library: Warszawa, Poland, 2016. (In Polish) [Google Scholar]
- Rogula-Kozłowska, W. Size-segregated urban particulate matter: Chemical composition, and primary and secondary matter content and mass closure. Air Qual. Atmos. Health 2016, 9, 533–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNION PEAN. Directive 2008/50/EC of the European Parliament and Council of 21 May 2008 on air quality and cleaner air in Europe. Off. J. EU 2008, L 152, 5. [Google Scholar]
- Kozielska, B.; Rogula-Kozłowska, W.; Pastuszka, J.S. Impact of Road Traffic on PM2.5, PM10 and PAH Concentrations in High and Low Municipal Emissions, Polish Environmental Engineering Five Years after Joining the European Union; Monographs of Environmental Engineering Committee, Polish Academy of Science: Lublin, Poland, 2009; Volume 58. [Google Scholar]
- Annual European Union Greenhouse Gas Inventory 1990–2017 and Inventory Report 2019; EEA Report No 6/2019; EEA: Brussels, Belgium, 2019.
- Reizer, M.; Juda-Rezler, K. Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health 2016, 9, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Dziubanek, G.; Marchwińska-Wyrwał, E. Air Pollution as a Significant Modifying Health Risk Factor; Hygeia Public Health; Department of Hygiene and Epidemiology Faculty of Medicine and Health Sciences, University of Zielona Góra: Zielona Góra, Poland, 2014; Volume 49, pp. 75–80. [Google Scholar]
- Abdel-Shafy, H.I.; Mansourb, M.S.M. A review of polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Rusin, M.; Marchwińska-Wyrwał, E. Health hazards involved with an environmental exposure to polycyclic aromatic hydrocarbons (PAHs). Environ. Med. 2014, 17, 7–13. [Google Scholar]
- Wieczorek, J.; Wieczoreki, Z. Polycyclic aromatic hydrocarbons (PAHs) in PM10 dust. Inż. Ap. Chem. 2011, 50, 26–27. (In Polish) [Google Scholar]
- Iwanek, J.; Kobus, D. Air Pollution with Polycyclic Aromatic Hydrocarbons at Urban Background Stations in 2018; Chief Inspectorate of Environmental Protection: Warszawa, Poland, 2019. [Google Scholar]
- Klejnowski, K.; Rogula-Kozłowska, W.; Łusiak, T. Some metals and polycyclic aromatic hydrocarbons in fugutive PM10 emissions from coking process. Environ. Prot. Eng. 2012, 38, 59–71. [Google Scholar]
- Skotak, K.; Prządka, Z.; Degórska, A. Impact of meteorological conditions on air pollution with polycyclic aromatic hydrocarbons contained in suspended dust in extra-urban area. Environ. Prot. 2014, 36, 55–63. [Google Scholar]
- Ociepa-Kubicka, A.; Ociepa, E. Toxic effects of heavy metals on plants, animals and people. Eng. Environ. Prot. 2012, 15, 169–180. (In Polish) [Google Scholar]
- Kostrz, M.; Satora, P. Compounds responsible for air pollution. Ecol. Eng. 2017, 18, 89–95. (In Polish) [Google Scholar] [CrossRef]
- Majewski, G.; Łykowski, B. Chemical composition of suspended dust in the Warsaw Agglomeration. Acta Sci. Pol. Form. Circumiectus 2008, 7, 81–96. (In Polish) [Google Scholar]
- National Emissions of SO2, NOx, CO, NH3, NMVOC, Dust, Heavy Metals, POP for 2015–2017; Institute of Environmental Protection—National Research Institute: Warszawa, Poland, 2019. (In Polish)
- Public Information Bulletin. Available online: https://bip.malopolska.pl/umigskawina,m,302370,demografia.html (accessed on 25 May 2020). (In Polish).
- Kondracki, J. Regional Geography of Poland; PWN: Warszawa, Poland, 2002. (In Polish) [Google Scholar]
- Kraków Development Office (Brk, A.S.). Change of Local Spatial Development Plan of Skawina Commune—Environmental Impact Forecas; Kraków Development Office (Brk, A.S.): Kraków, Poland, 2015. (In Polish) [Google Scholar]
- WHO. WHO Global Ambient Air Database. Available online: https://www.who.int/airpollution/data/en/ (accessed on 25 May 2020).
- Dębska, B.; Czarnecka, L.; Litwin, E.; Kostrzewa, M. Annual air Quality Assessment in the Lesser Poland Voivodship, Voivodship Report for 2018; Chief Inspectorate of Environmental Protection, Department of Environmental Protection, Regional Department of Environmental Protection in Cracow: Kraków, Poland, 2018. (In Polish) [Google Scholar]
- Sówka, I.; Chlebowska-Styś, A.; Pachurka, Ł.; Rogula-Kozłowska, W. Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni): First studies in Poznań (Poland). Arch. Environ. Prot. 2018, 44, 86–95. [Google Scholar]
- Sówka, I.; Chlebowska-Styś, A.; Pachurka, Ł.; Rogula-Kozłowska, W.; Mathews, B. Analysis of Particulate Matter ConcentrationVariability and Origin in Selected Urban Areas in Poland. Sunstainability 2019, 11, 5735. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency (EPA). Review of the National Ambient Air Quality Standards for Particulate Matter: Policy Assessment of Scientific and Technical information OAQPS Staff Paper; EPA-452/R-05-005; Research Triangle Park: Piedmont, NC, USA.
- Chuturkova, R. Particulate matter air pollution (PM10 and PM2.5) in urban and industrial areas. J. Sci. Educ. Innoation 2015, 5, 58–79. [Google Scholar]
- National Program Air Protection Until 2020 (with Perspective up to 2030); Ministry of the Environment Air Protection Departament: Warsaw, Poland, 2015.
- Poland Air Quality Management—Poland Final Report; Report No: AUS0000585; Document of the World Bank: Washington, DC, USA, 2019.
- Kobus, D.; Nych, A.; Sówka, I. Analysis of PM10 high concentration episodes in Warsaw, Krakow and Wroclaw in the years 2005–2017 with application of selected elements of information systems. In E3S Web of Conferences; EDP Sciences: Polanica-Zdrój, Poland, 2018; Volume 44, p. 00070. [Google Scholar]
- Mao, M.; Zhang, X.; Yin, Y. Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications. Int. J. Environ. Res. Public Health 2018, 15, 1102. [Google Scholar] [CrossRef] [Green Version]
- Giavis, G.M.; Lykoudis, S.P.; Kambezidis, H.D. Frequency distribution of particulate matter (PM10) in urban environments. Int. J. Environ. Pollut. 2009, 36, 99–109. [Google Scholar] [CrossRef]
- Kwak, H.-Y.; Ko, J.; Lee, S.; Joh, C.H. Identifying the correlation between rainfall, traffic flow performance and air pollution concentration in Seoul using a path analysis. Transp. Res. Procedia 2017, 27, 3552–3563. [Google Scholar] [CrossRef]
- Jhun, I.; Coull, B.; Schwartz, J.; Hubbell, B.; Koutrakis, P. The impact of weather changes on air quality and health in the United States in 1994–2012. Environ. Res. Lett. 2015, 10, 084009. [Google Scholar] [CrossRef] [Green Version]
- Dunea, D.; Iordache, Ş.; Ianache, C. Relationship between airborne particulate matter and weather conditions in Târgoviște urban area during cold months. Rev. Roum. De Chim. 2015, 60, 595–601. [Google Scholar]
- Galindo, N.; Varea, M.; Gil-Miltó, J.; Yubero, E.; Nicolás, J. The Influence of Meteorology on Particulate Matter Concentrations at an Urban Mediterranean Location. Water Air Soil Pollut. 2011, 215, 365–372. [Google Scholar] [CrossRef]
- Di Vaio, P.; Magli, E.; Caliendo, G.; Corvino, A.; Fiorino, F.; Frecentese, F.; Saccone, I.; Santagada, V.; Severino, B.; Onorati, G.; et al. Heavy Metals Size Distribution in PM10 and Environmental-Sanitary Risk Analysis in Acerra (Italy). Atmosphere 2018, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Romanazzi, V.; Casazza, M.; Malandrino, M.; Maurino, V.; Piano, A.; SchilirÒ, T.; Gilli, G. PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere 2014, 112, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sýkorová, B.; Kucbel, M.; Raclavská, H.; Raclavský, K.; Matýsek, D. Heavy Metals in Air Nanoparticles in Affected Industry Area. Journal of Sustainable Development of Energy. Water Environ. Syst. 2017, 5, 58–68. [Google Scholar]
- Majewski, G.; Rogula-Kozłowska, W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: First results from the short-term winter campaign. Theor. Appl. Climatol. 2016, 125, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, C.L.S.; Zereini, F. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos. Environ. 2014, 89, 282–289. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, T.; Li, Q.; Lu, L.; Lin, C. Anthropogenic Chromium Emissions in China from 1990 to 2009. PLoS ONE 2014, 9, e87753. [Google Scholar] [CrossRef]
- Samek, L.; Zwoździak, A.; Sówka, I. Chemical characterization and urban source identification of particulate matter PM10 in a rural and urban site in Poland. Environ. Prot. Eng. 2013, 39, 91–103. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Mantis, J.; Chaloulakou, A.; Samara, C. PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece. Chemosphere 2005, 59, 593–604. [Google Scholar] [CrossRef]
- Aldabe, J.; Santamaria, C.; Elustondo, D.; Parra, A.; Foan, L. Polycyclic aromatic hydrocarbons (PAHs) sampled in aresol phase at different sites of the western Pyrenees in Navarra (Spain). Environ. Eng. Manag. J. 2012, 11, 1049–1058. [Google Scholar]
- Dvorská, A.; Lammel, G.; Klánová, J. Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmos. Environ. 2011, 45, 420–427. [Google Scholar] [CrossRef]
- Slezakova, K.; Castro, D.; Pereira, M.C.; Morais, S.; Delerue-Matos, C.; Alvim-Ferraz, M.C. Influence of Traffic Emissions on the Carcinogenic Polycyclic Aromatic Hydrocarbons in Outdoor Breathable Particles. J. Air Waste Manag. Assoc. 2010, 60, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Specification | Ave ± SD | Min | Max | Median | Limit Value Exceeded 1 |
---|---|---|---|---|---|
Entire measuring period | 42.28 ± 29.66 | 4.03 (10/3/19) | 214.59 (30/11/19) | 32.25 | 85 |
Heating season | 52.68 ± 34.70 | 4.03 (10/3/19) | 214.59 (30/11/19) | 43.54 | 51 |
Non-heating season | 34.97 ± 22.96 | 7.49 (31/8/19) | 109.84 (3/4/19) | 25.42 | 34 |
February 2019 | 68.35 ± 22.37 | 42.04 (23/2/19) | 108.68 (27/2/19) | 66.36 | 5 |
March 2019 | 45.13 ± 26.75 | 4.03 (10/3/19) | 105.62 (22/3/19) | 40.04 | 10 |
April 2019 | 68.23 ± 27.14 | 25.80 (21/4/19) | 109.84 (3/4/19) | 70.34 | 17 |
Mai 2019 | 22.64 ± 7.68 | 8.95 (23/5/19) | 40.51 (8/5/19) | 21.61 | 0 |
June 2019 | 43.57 ± 23.90 | 16.35 (20/6/19) | 99.95 (5/6/19) | 37.04 | 11 |
July 2019 | 28.80 ± 10.79 | 19.40 (8/7/19) | 71.32 (1/7/19) | 24.71 | 1 |
August 2019 | 27.30 ± 13.58 | 7.49 (31/8/19) | 54.85 (22/8/19) | 22.72 | 4 |
September 2019 | 23.28 ± 12.02 | 11.85 (8/9/19) | 67.97 (24/9/19) | 20.79 | 1 |
October 2019 | 40.75 ± 18.41 | 15.99 (1/10/19) | 98.39 (31/10/19) | 40.44 | 8 |
November 2019 | 59.63 ± 42.26 | 15.57 (29/11/19) | 214.59 (30/11/19) | 46.35 | 13 |
December 2019 | 60.80 ± 42.50 | 8.35 (28/12/19) | 173.05 (12/12/19) | 42.28 | 15 |
T (°C) | RH (%) | Ws (m·s−1) | Ps (hPa) | Pt (mm) | |
---|---|---|---|---|---|
PM10 (µg·m−3) | −0.30 | 0.02 | −0.06 | 0.18 | −0.39 |
Metals Concentration [ng·m−3] | Entire Measuring Period | Heating Season | Non-Heating Season | ||||||
---|---|---|---|---|---|---|---|---|---|
Ave ± SD | Min | Max | Ave ± SD | Min | Max | Av ± SD | Min | Max | |
As | 0.85 ± 0.68 | 0.33 | 4.00 | 1.29 ± 0.89 | 0.41 | 4.00 | 0.56 ± 0.24 | 0.33 | 1.34 |
Cd | 0.62 ± 0.41 | 0.19 | 2.43 | 0.76 ± 0.47 | 0.26 | 2.43 | 0.52 ± 0.35 | 0.19 | 1.52 |
Co | 0.68 ± 0.48 | 0.13 | 2.50 | 0.78 ± 0.38 | 0.15 | 1.40 | 0.61 ± 0.54 | 0.13 | 2.50 |
Cr | 7.39 ± 5.25 | 2.41 | 27.62 | 6.86 ± 3.01 | 2.41 | 15.15 | 7.75 ± 6.35 | 2.61 | 27.62 |
Cu | 11.90 ± 7.94 | 4.21 | 45.17 | 17.47 ± 9.62 | 5.19 | 45.17 | 8.18 ± 3.21 | 4.21 | 21.36 |
Ni | 2.25 ± 1.27 | 0.88 | 7.13 | 2.51 ± 1.15 | 1.14 | 5.72 | 2.08 ± 1.34 | 0.88 | 7.13 |
Zn | 39.49 ± 23.87 | 12.29 | 114.50 | 52.98 ± 20.94 | 18.15 | 107.97 | 30.49 ± 21.62 | 12.29 | 114.50 |
Al | 425.57 ± 198.45 | 152.74 | 998.06 | 399.01 ± 114.59 | 170.10 | 561.14 | 443.28 ± 239.27 | 152.74 | 998.06 |
Pb | 11.53 ± 9.17 | 2.07 | 35.77 | 18.10 ± 9.97 | 5.98 | 35.77 | 7.14 ± 5.25 | 2.07 | 21.67 |
V | 0.95 ± 0.53 | 0.52 | 2.44 | 1.04 ± 0.44 | 0.52 | 1.76 | 0.90 ± 0.59 | 0.52 | 2.44 |
Sum of metals | 501.23 ± 219.90 | 200.88 | 1170.63 | 500.80 ± 147.26 | 211.80 | 733.67 | 501.52 ± 260.10 | 200.88 | 1170.63 |
PAHs Concentration [ng·m−3] | Entire Measuring Period | Heating Season | Non-Heating Season | ||||||
---|---|---|---|---|---|---|---|---|---|
Ave ± SD | Min | Max | Ave ± SD | Min | Max | Ave ± SD | Min | Max | |
Naph | 6.14 ± 12.90 | 0.12 | 46.71 | 9.38 ± 15.41 | 0.34 | 45.52 | 3.99 ± 10.69 | 0.12 | 46.71 |
Acy | 0.68 ± 0.95 | 0.10 | 3.90 | 0.96 ± 1.11 | 0.10 | 3.90 | 0.50 ± 0.80 | 0.12 | 3.73 |
Ace | 1.78 ± 3.51 | 0.10 | 13.27 | 2.60 ± 4.12 | 0.10 | 12.95 | 1.23 ± 2.99 | 0.12 | 13.27 |
Fl | 2.26 ± 3.72 | 0.12 | 15.11 | 3.18 ± 4.20 | 0.63 | 14.45 | 1.64 ± 3.30 | 0.12 | 15.l1 |
Phen | 7.94 ± 14.80 | 0.12 | 55.38 | 12.78 ± 16.64 | 0.77 | 55.38 | 4.71 ± 12.75 | 0.12 | 54.76 |
An | 1.90 ± 3.14 | 0.12 | 11.99 | 2.91 ± 3.58 | 0.42 | 11.00 | 1.23 ± 2.67 | 0.12 | 11.99 |
Fluo | 3.79 ± 4.66 | 0.40 | 21.36 | 7.46 ± 5.29 | 1.43 | 21.36 | 1.34 ± 1.74 | 0.40 | 6.62 |
Pyr | 4.50 ± 6.29 | 0.28 | 27.48 | 9.53 ± 7.36 | 1.52 | 27.48 | 1.16 ± 1.53 | 0.28 | 5.70 |
BaA | 6.75 ± 12.03 | 0.10 | 49.88 | 15.52 ± 15.33 | 1.99 | 49.88 | 0.91 ± 1.64 | 0.10 | 6.15 |
Chry | 4.27 ± 5.29 | 0.51 | 21.15 | 8.85 ± 5.80 | 2.61 | 21.15 | 1.21 ± 1.10 | 0.51 | 4.72 |
BbF | 5.84 ± 6.93 | 0.91 | 26.65 | 11.79 ± 7.76 | 2.43 | 26.65 | 1.88 ± 1.10 | 0.91 | 4.81 |
BkF | 2.63 ± 2.15 | 0.69 | 8.25 | 4.51 ± 2.25 | 1.61 | 8.25 | 1.38 ± 0.65 | 0.69 | 3.37 |
BaP | 4.26 ± 4.36 | 1.00 | 16.80 | 8.11 ± 4.63 | 2.61 | 16.80 | 1.70 ± 1.06 | 1.00 | 5.07 |
IcdP | 3.31 ± 3.43 | 0.70 | 13.79 | 6.30 ± 3.70 | 1.83 | 13.79 | 1.32 ± 0.79 | 0.70 | 3.67 |
DahA | 1.11 ± 0.70 | 0.12 | 3.26 | 1.59 ± 0.84 | 0.27 | 3.26 | 0.78 ± 0.32 | 0.12 | sty.37 |
BghiP | 2.97 ± 2.88 | 0.83 | 11.61 | 5.49 ± 3.14 | 1.44 | 11.61 | 1.28 ± 0.54 | 0.83 | 2.90 |
Sum of PAHs | 60.14 ± 67.17 | 9.00 | 237.91 | 110.96 ± 66.82 | 25.84 | 237.91 | 26.26 ± 41.65 | 9.00 | 177.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zioła, N.; Słaby, K. The Content of Selected Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 in Urban-Industrial Area. Sustainability 2020, 12, 5284. https://doi.org/10.3390/su12135284
Zioła N, Słaby K. The Content of Selected Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 in Urban-Industrial Area. Sustainability. 2020; 12(13):5284. https://doi.org/10.3390/su12135284
Chicago/Turabian StyleZioła, Natalia, and Krzysztof Słaby. 2020. "The Content of Selected Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 in Urban-Industrial Area" Sustainability 12, no. 13: 5284. https://doi.org/10.3390/su12135284
APA StyleZioła, N., & Słaby, K. (2020). The Content of Selected Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 in Urban-Industrial Area. Sustainability, 12(13), 5284. https://doi.org/10.3390/su12135284