Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions
Abstract
:1. Introduction
- How do electricity and natural gas grid charges impact the choice of type and size of heating systems as well as the thickness of building surface insulation?
- How are the building retrofit decisions, including natural gas and electricity grid costs, influenced by triggers such as carbon dioxide (CO2) pricing and shaped by the building stock?
- How strong is the interdependency between the investment strategy of the DNOs and building retrofit decisions in scenarios where gas grid customers leave the grid?
- How does a change in the gas DNO strategy influence the choice of building renovation measures, gas grid costs and the strategy’s profitability in scenarios with a decreasing demand?
2. State of the Art
2.1. Retrofit Decisions of Building Owners
2.2. Business Model of a Distribution Network Operator in the Regulatory Environment
2.3. Combined Planning and Operation of Building and Multi-Utility Grid Infrastructure
3. Materials and Methods
3.1. Research Approach
3.2. Grid and Building Data and Software Tools
3.3. Building Retrofit Optimization Model
3.4. Distribution Network Operator Model
- (a)
- The grid length and energy supplied are predetermined by the building owners’ decisions in each year. As the DNO has to guarantee a non-discriminatory supply to all customers [46], measures have to be applied to fulfill the supply task within technical limits.
- (b)
- The DNO has to ensure a reliable and cost efficient supply [46]: We choose an age-related renewal strategy for the low voltage and the low pressure grid.
3.5. Multi-Agent Simulation
- “Accessibility“ describes the ability of an agent to access all other agents of the network;
- “Deterministic“ describes if the cause–effect relationship of actions of agents is known or not;
- “Episodic” describes whether the simulation time steps are interrelated;
- “Dynamic” describes the possibility of environmental changes beyond the control of an agent;
- “Discrete” describes if there is a predetermined number of perceptions and actions.
3.6. Validation of the Building Model
3.7. Conception of the Case Studies
3.7.1. Case Study 1: Sensitivities of Building Retrofit Decisions
3.7.2. Case Study 2: Analysis of Possible Triggers for a Decline in Gas Demand
- Taxation and levy systems: There is a wide spread of different taxation and levies and systems. We focused on CO2 pricing, as the German government has passed a law in 2019 that sets a CO2 price of 25 €/t in 2021, rising to 65 €/t by 2026 [98].
- Grid charge models: In Germany, DNOs can reduce the electricity grid charges for interruptible grid users down to 20% of their regular value [99] (25% for the area under investigation).
- Regulatory energy efficiency constraints: In Germany, regulatory constraints for new constructions and retrofittings are listed in the energy saving regulation [100], which will be tightened in the future [101]. We set the initial final energy demand and CO2 emissions as an upper bound in all simulations. Additionally, two scenarios were modeled, where we tightened the limit and set the primary target equal to the useful energy demand, calculated based on [100]:
- ⚬
- In simulation 3, 100% of the buildings have to perform a surface insulation measure and change their heating system to obtain the target.
- ⚬
- For simulations 8–10, we oblige only 66% of buildings to retrofit their envelope and heating system. 34% can freely choose the kind of measure to reach the efficiency target of [100]. This represents a surface renovation ratio of approx. 2%, corresponding to a technical lifetime of the surface of 50 years often used in literature [32].
- State market incentive and subsidy programs: We consider the situation in Germany: For building envelope renovations, there is a state subsidy program, which on average subsidizes about 30% of investment expenditures [102]. For heat pumps, there is a market incentive program with an average subsidy rate of 40% [103].
- Technological development: The efficiency of heat pumps is highly dependent on the coefficient of performance (COP), which is predicted to increase by about 25% in the next decade [104].
- Decentralized energy generation: In recent years, heat pumps have increasingly been combined with photovoltaic plants and battery storage systems. We do not examine PV-battery systems in our analysis, as we focus on the effects on gas grids.
- Initial building insulation status, heating type and date of investment: The initial building age class and heating system largely determines the date of investment and the choice of the renovation measure. As the age and the types of heating systems and buildings are heavily weighted in our dataset, we analyze scenarios with a variation (100 seeds) of the date of investment (I), the initial building age class (B), and the initial heating system (H). For that reason, we reconfigure the initial gas and electricity grid when varying the initial heating systems.
- Objective of the analysis: We focused on the evaluation of building owners’ and electricity and gas DNO’s strategies in transformation paths with a decreasing gas demand.
- Probability of occurrence: In simulation 8, we have chosen each trigger corresponding to the situation in Germany, as there will be CO2 pricing in the future. There are subsidization programs, reduced electrical grid charges, and energy efficiency constraints.
3.7.3. Case Study 3: Interdependencies between the DNO’s Grid Charge Setting and Building Retrofit Decisions in Face of Decreasing Gas Demand
3.7.4. Case Study 4: The Influence of DNO Strategy Patterns on Grid Economy in the Face of Decreasing Gas Demand
3.8. Limits, Transferability, and Representativity of the Analysis
- The grid charges for upstream grid levels () are assumed to be constant during the planning horizon in both the electricity and gas sectors. In reality, these charges would also change with the demand.
- The operational costs for the electricity and gas grid are formulated as linearly dependent on the grid length and independent on grid age. As they include components such as personnel costs and rents for buildings, they are in reality stepped fixed costs related to the grid length, which follow a change of the grid length delayed [22].
- Costs for line closure measures of house connections in the gas grid are currently valued at 0 € per measure, as they can currently be allocated to the customer.
4. Results and Discussion
4.1. Case Study 1: Sensitivities of Building Retrofit Decisions
4.2. Case Study 2: Analysis of Possible Triggers for a Decline in Gas Demand
4.2.1. Investment Decisions of Building Owners
4.2.2. Resulting Gas and Electricity Demand
4.2.3. Impact on the Gas and Electricity Grid Charges
4.3. Case Study 3: Interdependencies between the DNO’s Grid Charge Setting and Building Retrofit Decisions in Face of Decreasing Gas Demand
4.4. Case Study 4: The Influence of DNO Strategy Patterns on Grid Economy in Face of Decreasing Gas Demand
- SRC: Due to the rise in grid charges, gas-bound systems are increasingly being substituted, resulting in a risk of a self-reinforcing effect, which in turn leads to an increased decline in the energy demand as well as network length. This could finally trigger the closure of the entire gas network.
- SGC: The initial disadvantage concerning the lower cost base for the DNO resulting from a disproportionate decline in the CAPEX becomes less pronounced during the planning horizon, as the grid length and supplied energy and with that the OPEX are higher compared to the SRC strategy. In the long run, this strategy can help secure the business model and reduce the risk of a complete shutdown, as a comparison of network lengths shows.
5. Conclusions
5.1. Implications for Building Owners
5.2. Implications for Natural Gas and Electricity Distribution Grid Opteraters
5.3. Implications for Policy Makers
5.4. Further Research
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A Nomenclature
Acronym | Name | Acronym | Name |
---|---|---|---|
AWHP | Air water heat pump | MAS | Multi-agent simulation |
BES | Building energy system | MFH | More family house |
BE | Building envelope | MILP | Mixed integer linear program |
B | Building age class | MP | Medium pressure |
BO | Building owner | MV | Medium voltage |
CAPEX | CAPEX | OCB | Oil condensing boiler |
CO2 | Carbon dioxide | OPEX | OPEX |
COP | Coefficient of performance (heat pumps) | OSM | Open street maps |
DHW | Domestic hot water | PB | Pellet burner |
DNO | Distribution network operator | PF | Present value factor |
E | Energy | RFA | Reference floor area |
EDH | Electrical direct heating | RBV | Rest book value |
EU | European Union | RC | Revenues cap |
GC | Grid charges | STE | Solar thermal plant |
GCB | Gas condensing boiler | SFH | Single family house |
GWHP | Ground water heat pump | SGC | Stable grid charges |
H | Type of heating systems | SGV | Stable grid value |
I | Date of investment | SRC | Stable revenue cap |
IQD | Inter quantile distance | STE | Solar thermal energy plant |
IWU | Institute Housing and Environment | TH | Terraced house |
LP | Low pressure | WO | Deprecations (or write-offs) |
LV | Low voltage |
Appendix B Building Retrofit Model
Appendix B.1. Nomenclature
Parameter | Description [unit] | Value | Source | |
---|---|---|---|---|
Components of the expenditures | ||||
Total expenditures for heating within the technical lifetime of the heating system [€] | ||||
Investment expenditures for the building insulation retrofit [€] | ||||
Investment expenditures for the change of the heating system and technical building equipment [€] | ||||
Expenditures for energy procurement over the technical lifetime of the heating system [€] | ||||
Expenditures for maintenance over the technical lifetime of the heating system [€] | ||||
Parameters | ||||
Building surface area [m²] | Corresponding values are shown in Table S6 in the supplementary materials, based on [61,62,100] | |||
Yearly usage hours of the heating system [h] | ||||
Design-relevant building heat load (for heating system) (thermal ventilation and transmission losses) [kW] | Thermal models are shown in parts A1, A2, A3 in the supplementary materials, based on [62,73,74,76,82,83,95] | |||
Heat load for: Radiation losses, internal wins, heat distribution losses, auxiliary energy [kW] | ||||
Heat load thermal solar plant [kW] | ||||
Heat load for domestic hot water generation [kW] | ||||
Specific yearly expenditures for maintenance of the heating in percent of investment expenditure [-] | ||||
Specific yearly expenditures for maintenance for the solar thermal plant in percent of investment expenditure [-] | ||||
Plant expenditure figure of the heating systems | ||||
Energy carrier of the heating system (Binary decision parameter) | ||||
Specific variable investment expenditures for a building surface retrofit [€/(m²·cm)] | Calculation is shown in A4 in the supplement materials; the corresponding values are shown in Tables S5, S6, S8, S9 in the supplementary materials, based on [61,62,75,100] | |||
Specific fix investment expenditures for a building surface retrofit [€/m²] | ||||
Insulation thickness [cm] | 0–30 | |||
Specific variable expenditures for the heating system [€/kW] | Calculation is shown in A5 in the supplement materials; the corresponding values are shown in Tables S3, S4, S7, S9 in the supplementary materials, based on [37,61,62,75,76,77,78,95,106,107,109] | |||
Specific fix expenditures for the heating system [€] | ||||
Specific variable expenditures for the solar thermal plant [€/kW] | ||||
Specific fix expenditures for the solar thermal plant [€] | ||||
Specific yearly energy related expenditures (tax + procurement + grid charges) [€/kWh] | ||||
Specific energy procurement costs | Electricity [€/kWh] | 7.61 | [79] | |
Natural gas [€/kWh] | 3.13 | [79] | ||
Oil [€/L] | 0.506 | [80,110,111] | ||
Pellet [€/kg] | 0.0173 | [81,112] | ||
Energy related taxes and duties | Electricity [€/kWh] | 16.02 | [79] | |
Natural gas [€/kWh] | 1.64 | [79] | ||
Oil [€/L] | 0.169 | [80,110,111] | ||
Pellet [€/kg] | 0.0173 | [81,112] | ||
Specific CO2-emissions per energy carrier [kg/kWh] | Electricity (linear decrease to 0.103 in 2050) | 0.462 | [113,114] | |
Natural gas | 0.202 | [115] | ||
Oil | 0.294 | |||
Pellet | 0.023 | |||
Heating value | Natural gas [kWh/m³] | 11.42 | [116] | |
Oil [kWh/liter] | 11.27 | [116] | ||
Pellet [kWh/kg] | 5.27 | [117] | ||
Primary energy factor | Electricity | 1.8 | [76] | |
Natural gas | 1.1 | |||
Oil | 1.1 | |||
Pellets | 0.2 | |||
Initial yearly end energy demand of a building | ||||
Initial yearly CO2 emissions of a building | ||||
Upper bound for the yearly primary energy demand considering the energy efficiency constraint | ||||
Upper bound for the heat load considering the energy efficiency constraint | ||||
Present-value factor | 31 | |||
Variables | ||||
Building surface retrofit 𝒹 in house 𝒿 (Binary decision variable) | ||||
Heating system 𝓀 in house 𝒿 (Binary decision variable) | ||||
Solar thermal plant 𝓈 in house 𝒿 (Binary decision variable) | ||||
Energy for heating applications in year 𝓉 in gas or electricity grid [kWh/a] | ||||
Grid charges gas or electricity in year 𝓉 [€/kWh] | ||||
Indices and sets | ||||
An insulation thickness standard 𝒹 of all standards | ||||
Surface part 𝓅 of all building surface parts | ||||
A sub-part of all sub-parts of a building envelope part | ||||
A heating system type 𝓀 of all heating system types | ||||
An energy carrier 𝒸 of all carriers | ||||
A solar thermal plant 𝓈 of all available types and sizes | ||||
A building 𝒿 of all buildings connected to the grid | ||||
Parameters of the supplements (derivations and tables) | ||||
Investment expenditures for heating surfaces and pipe system (per RFA) [€/m²] | ||||
Transmission heat loss [W/K] | ||||
Transmission heat loss [W/K] (Transmission) | ||||
Transmission heat loss [W/K] (Ventilation) | ||||
Heat transmission coefficient [W/(m²·K)] | ||||
Heat transmission coefficient for thermal bridges [W/(m²·K)] | ||||
Initial heat transmission coefficient [W/(m²·K)] | ||||
Heat transmission coefficient of a building surface part [W/(m²·K)] | ||||
Outdoor temperature [°C] | ||||
Indoor temperature [°C] | ||||
Design relevant temperature difference outdoor versus indoor [°C] | ||||
Building surface area [m²] | ||||
Area of a building surface component [m²] | ||||
Area of a sub-part of a building surface component [m²] | ||||
Reduction factor of the solar thermal plant [–] (reduction of the energy demand for DHW generation) | ||||
Area of the solar thermal plant [m²] | ||||
Yearly average solar yield [kWh/(m²·a)] | ||||
Capacity of the domestic hot water tank [liter] |
Appendix B.2. Constraints of the Building Retrofit Model
Appendix C Gas and Electricity Network Operator Model
Appendix C.1. Nomenclature
Parameter | Description [unit] | Value | Source | ||
---|---|---|---|---|---|
Gas | Electricity | ||||
Cost components of the revenue cap | |||||
Capital expenditures gas or electricity [€] | |||||
Operational expenditures gas or electricity [€] | |||||
Calculated return on equity gas or electricity [€] | |||||
Interest on borrowed capital gas or electricity [€] | |||||
Calculated trade tax gas or electricity [€] | |||||
Calculated interest on borrowed capital gas or electricity [€] | |||||
Operational costs gas or electricity [€] | |||||
Loss costs gas or electricity [€] | |||||
Upstream grid charges gas or electricity [€] | |||||
Concession fees gas or electricity [€] | |||||
Parameters | |||||
Interest rate equity capital of line ℓ | 0.0691 * | 0.0691 * | |||
Amount of equity capital of line ℓ | 0.40 | 0.40 | [21] | ||
Interest rate borrowed capital of line ℓ | 0.035 * | 0.035 * | |||
Amount of borrowed capital of line ℓ | 0.60 | 0.60 | [21] | ||
Trade tax rate | 0.14 * | 0.14 * | |||
Technical lifetime of a line [a] | 40 | 45 | [99,118] | ||
Planning horizon [a] | 31 | 31 | |||
Specific costs of upstream grid charges [€/kWh] | 0.0030 * | 0.025 * | |||
Specific costs for concession fees [€/kWh] | 0.0023 * | 0.011 * | |||
Specific lost costs [€/kWh] | 0.0080 * | 0.044 * | |||
Loss factor | 0.00 * | 0.026 * | |||
Specific operational costs [€/m] | 5.0 * | 7.9 * | |||
Any other energy in year 𝓉 in gas or electricity grid [kWh/a] (calculated based on the RFA) | 0 * [kWh/ (m²·a)] | 25 * [kWh/(m²·a)] | |||
Variables | |||||
Line age at the begin of planning horizon [a] * | |||||
Historical acquisition expenditures for line ℓ [€/m] * | |||||
Line length of line ℓ [m] * | |||||
Length-weighted average age of the grid [a] | |||||
Rest book value factor of line ℓ in year 𝓉 as a function of the binary decision variables | |||||
Grid charges gas or electricity in year 𝓉 [€/kWh] | |||||
Energy for heating applications in year 𝓉 in gas or electricity grid [kWh/a] | |||||
Indices and sets | |||||
A building 𝒿 of all buildings connected to the grid | |||||
A line ℓ of all lines in the grid | |||||
A year 𝓉 within the planning horizon | |||||
An energy carrier 𝒸 of all carriers | |||||
Investment expenditure for new construction of grid assets | |||||
Investment expenditures transformer substation MV/LV [€] | 0.25 MVA | 67,000 * | |||
0.4 MVA | 74,000 * | ||||
0.63 MVA | 83,000 * | ||||
Investment expenditures electrical lines [€/m] | NAYY 4x50 SE | 114 * | |||
NAYY 4x120 SE | 114 * | ||||
NAYY 4x150 SE | 114 * | ||||
Investment expenditures pressure regulator station [€] | 20,000 * | ||||
Investment expenditures gas pipes [€/m] | 40 ST | 63 * | |||
80 ST | 163 * | ||||
100 ST | 209 * | ||||
150 ST | 287 * | ||||
200 ST | 360 * | ||||
25 PE 100 SDR 11 | 40 * | ||||
50 PE 100 SDR 11 | 79 * | ||||
90 PE 100 SDR 17 | 200 * |
Appendix C.2. Flowcharts of the Investment Strategies
Appendix D Case studies
Appendix D.1. Additional Results: Possible Triggers for a Deacrease in Gas Demand
Appendix D.2. Additional Results: The Influence of DNO Strategy Patterns on Grid Economy in Face of Decreasing Gas Demand
References
- REN21 Renewable Energy Policy Network for the 21st Century. Renewables 2018—Global Status Report; REN21 Renewable Energy Policy Network for the 21st Century: Paris, France, 2018. [Google Scholar]
- Honoré, A. Decarbonisation of Heat in Europe: Implications for Natural Gas Demand; Oxford Institute for Energy Studies: Oxford, UK, 2018. [Google Scholar]
- Mateo, C.; Frías, P.; Tapia-Ahumada, K. A comprehensive techno-economic assessment of the impact of natural gas-fueled distributed generation in European electricity distribution networks. Energy 2020, 192, 116523. [Google Scholar] [CrossRef]
- Kassai, M. Prediction of the HVAC energy demand and consumption of a single family house with different calculation methods. Energy Procedia 2017, 112, 585–594. [Google Scholar] [CrossRef]
- Kassai, M. Experimental investigation on the effectiveness of sorption energy recovery wheel in ventilation system. Exp. Heat Transf. 2018, 31, 106–120. [Google Scholar] [CrossRef]
- Vazinram, F.; Hedayati, M.; Effatnejad, R.; Hajihosseini, P. Self-healing model for gas-electricity distribution network with consideration of various types of generation units and demand response capability. Energy Convers. Manag. 2020, 206, 112487. [Google Scholar] [CrossRef]
- Jianhong, Y. Analysis of sustainable development of natural gas market in China. Nat. Gas Ind. B 2018, 5, 644–651. [Google Scholar] [CrossRef]
- Ailin, J. Progress and prospects of natural gas development technologies in China. Nat. Gas Ind. B 2018, 5, 547–557. [Google Scholar] [CrossRef]
- Mastorakos, S.; Madrigal, J.; Duffy, E.; Ebertin, M.; Bosso, E. The Future of Natural Gas in the United States; United States Ecologic Institute: Washington, DC, USA, 2017. [Google Scholar]
- Feijoo, F.; Iyer, G.C.; Avraam, C.; Siddiqui, S.A.; Clarke, L.E.; Sankaranarayanan, S.; Binsted, M.T.; Patel, P.L.; Prates, N.C.; Torres-Alfaro, E.; et al. The future of natural gas infrastructure development in the United states. Appl. Energy 2018, 228, 149–166. [Google Scholar] [CrossRef]
- Costello, K.W. Why natural gas has an uncertain future. Electr. J. 2017, 30, 18–22. [Google Scholar] [CrossRef]
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- Speirs, J.; Balcombe, P.; Johnson, E.; Martin, J.; Brandon, N.; Hawkes, A. a greener gas grid: What are the options. Energy Policy 2018, 118, 291–297. [Google Scholar] [CrossRef]
- Qadrdan, M.; Fazeli, R.; Jenkins, N.; Strbac, G.; Sansorn, R. Gas and electricity supply implications of decarbonising heat sector in GB. Energy 2019, 169, 50–60. [Google Scholar] [CrossRef]
- McGlade, C.; Pye, S.; Ekins, P.; Bradshadw, M.; Watson, J. The future role of natural gas in the UK: A bridge to nowhere? Energy Policy 2018, 113, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Henning, H.M.; Palzer, A. Energiesystem Deutschland 2050; Fraunhofer-Institut für Solare Energiesysteme (ISE): Freiburg, Germany, 2013. [Google Scholar]
- Deutsch, M.; Gerhardt, N.; Sandau, F.; Becker, S.; Scholz, A.; Schumacher, P.; Schmidt, D. Wärmewende 2030—Schlüsseltechnologien zur Erreichung Der Mittel- und Langfristigen Klimaschutzziele im Gebäudesektor—Eine Studie im Auftrag Der Agora Energiewende; Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES): Bremerhaven, Germany; Fraunhofer-Institut für Bauphysik (IBP): Stuttgart, Germany, 2017. [Google Scholar]
- Ziesing, H.J.; Repenning, J.; Emele, L.; Blanck, R.; Böttcher, H.; Dehoust, G.; Förster, H.; Greiner, B.; Harthan, R.; Henneberg, K.; et al. Klimaschutzszenario 2050—2. Endbericht—Eine Studie im Auftrag des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit; Institut für Angewandte Ökologie e.V. (Öko-Institut): Berlin, Germany; Fraunhofer-Institut für System- und Innovationsforschung (ISI): Karlsruhe, Germany, 2015. [Google Scholar]
- Gerhardt, N.; Sandau, F.; Scholz, A.; Hahn, H.; Schumacher, P.; Sager, C.; Bergk, F.; Kämper, C.; Knörr, W.; Kräck, J.; et al. Interaktion EE-Strom, Wärme und Verkehr—Analyse Der Interaktion Zwischen den Sektoren Strom, Wärme/Kälte und Verkehr in Deutschland in Hinblick auf Steigende Anteile Fluktuierender Erneuerbarer Energien im Strombereich unter Berücksichtigung der Europäischen Entwicklung—Ableitung von Optimalen Strukturellen Entwiklungspfaden für den Verkehrs- und Wärmesektor; Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES): Bremerhaven, Germany; Fraunhofer-Institut für Bauphysik (IBP): Stuttgart, Germany; Institut für Energie- und Umweltforschung (ifeu): Heidelberg, Germany; Stiftung Umweltenergierecht: Würzburg, Germany, 2015. [Google Scholar]
- Seack, A.; Kays, J.; Rehtanz, C. Integral distribution grid planning process considering the impact of heat pump systems. In Proceedings of the 2016 Power Systems Computation Conference (PSCC), Genoa, Italy, 20–24 June 2016. [Google Scholar] [CrossRef]
- Däuper, O.; Strasser, T.; Lange, H.; Tischmacher, D.; Fimpel, A.; Kaspers, J.; Koulaxidis, S.; Warg, F.; Baudisch, K.; Bergmann, P.; et al. Wärmewendestudie—Die Wärmewende und Ihre Auswirkungen auf Die Gasverteilnetze; Becker Büttner Held (BBH): Berlin, Germany, 2018. [Google Scholar]
- Then, D.; Spalthoff, C.; Bauer, J.; Kneiske, T.M.; Braun, M. Impact of Natural Gas Distribution Network Structure and Operator Strategies on Grid Economy in Face of Decreasing Demand. Energies 2020, 13, 664. [Google Scholar] [CrossRef] [Green Version]
- Bothe, D.; Janssen, M.; van der Poel, S.; Eich, T.; Bongers, T.; Kellermann, J.; Lück, L.; Chan, H.; Ahlert, M.; Borrás, C.A.B.; et al. Der Wert Der Gasinfrastruktur für Die Energiewende in Deutschland—Eine Modellbasierte Analyse—Eine Studie im Auftrag Der Vereinigung Der Fernleitungsnetzbetreiber (FNB Gas e.V.); Frontier Economics: London, UK; Institut für Elektrische Anlagen und Energiewirtschaft (IAEW): Aachen, Germany; 4Management: Düsseldorf, Germany; Cologne, Germany, 2017. [Google Scholar]
- Hickey, C.; Deane, P.; McInerney, C.; Gallachóir, B.Ó. Is there a future for the gas network in a low carbon energy system? Energy Policy 2019, 126, 480–493. [Google Scholar] [CrossRef]
- Hübner, M.; Haubrich, H.-J. Long-Term Pressure-Stage Comprehensive Planning of Natural Gas Networks. In Handbook of Networks in Power Systems II.; Sorokin, A., Rebennack, S., Pardalos, P., Iliadis, N.A., Pereira, M.V.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–59. ISBN 978-3-642-44612-2. [Google Scholar]
- Zeng, Q.; Zhang, B.; Fang, J.; Chen, Z. A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system. Appl. Energy 2017, 200, 192–203. [Google Scholar] [CrossRef]
- Unishuay-Vila, C.; Marangon-Lima, J.W.; Souza, A.C.; Zambroni de; Perez-Arriaga, I.J.; Balestrassi, P.P. A Model to Long-Term, Multiarea, Multistage, and Integrated Expansion Planning of Electricity and Natural Gas Systems. IEEE Trans. Power Syst. 2010, 25. [Google Scholar] [CrossRef]
- Chaudry, M.; Jenkins, N.; Qadrdan, M.; Wu, J. Combined gas and electricity network expansion planning. Appl. Energy 2014, 113, 1171–1187. [Google Scholar] [CrossRef]
- Appen, J.V.; Braun, M. Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems. Appl. Energy 2018, 230, 540–550. [Google Scholar] [CrossRef]
- Hittinger, E.; Siddiqui, J. The challenging economics of US residential grid defection. Util. Policy 2017, 45, 27–35. [Google Scholar] [CrossRef]
- Kantamneni, A.; Winkler, R.; Gauchia, L.; Pearce, J.M. Emerging economic viability of grid defection in a northern climate using solar hybrid systems. Energy Policy 2016, 95, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Hoier, A.; Erhorn, H.; Pfnür, A.; Müller, N. Energetische Gebäudesanierung in Deutschland—Management Summary; Fraunhofer-Institut für Bauphysik (IBP): Stuttgart, Germany; Forschungscenter Betriebliche Immobilienwirtschaft: Darmstadt, Germany; Institut für Wärme und Oeltechnik (IWO): Hamburg, Germany, 2013. [Google Scholar]
- Evins, R. A review of computational optimisation methods applied to sustainable building design. Renew. Sustain. Energy Rev. 2013, 22, 230–245. [Google Scholar] [CrossRef]
- Machairas, V.; Tsangrassoulis, A.; Axarli, K. Algorithms for optimization of building design: A review. Renew. Sustain. Energy Rev. 2014, 31, 101–112. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, X.; Shi, Y.; Xia, L.; Pan, S.; Wu, J.; Han, M.; Zhao, X. A review of data-driven approaches for prediction and classification of building energy consumption. Renew. Sustain. Energy Rev. 2018, 82, 1027–1047. [Google Scholar] [CrossRef]
- van Beuzekom, I.; Gibescu, M.; Slootweg, J.G. A review of multi-energy system planning and optimization tools for sustainable urban development. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar] [CrossRef]
- Nymoen, H.; Siebert, K.; Niemann, E. Sanierungsfahrpläne für Den Wärmemarkt: Wie Können Sich Private Hauseigentümer die Energiewende Leisten? Eine Studie im Auftrag Des Zukunft ERDGAS e.V.; Nymoen Strategieberatung GmbH: Berlin, Germany, 2014. [Google Scholar]
- Odetayo, B.; MacCormack, J.; Rosehart, W.D.; Zareipour, H.; Seifi, A.R. Integrated planning of natural gas and electric power systems. Electr. Power Energy Syst. 2018, 103, 593–602. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, Z.; Hua, J.; Meng, K.; Zheng, Y.; Hill, D.J. Low Carbon Oriented Expansion Planning of Integrated Gas and Power Systems. IEEE Trans. Power Syst. 2015, 30, 1035–1046. [Google Scholar] [CrossRef]
- Saldarriaga, C.A.; Hincapié Ricardo, A.; Salazar, H. An integrated expansion planning model of electric and natural gas distribution systems considering demand uncertainty. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar] [CrossRef]
- Odetayo, B.; MacCormack, J.; Rosehart, W.D.; Zareipour, H. Integrated planning of natural gas and electricity distribution networks with the presence of distributed natural gas fired generators. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting, Boston, MA, USA, 17–21 July 2016. [Google Scholar] [CrossRef]
- Andra, B. CEER Report: Report on Regulatory Frameworks for European Energy Networks; Council of European Energy Regulators: Brussels, Belgium, 2019. [Google Scholar]
- Erdmann, G.; Zweifel, P. Energieökonomik, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-12777-9. [Google Scholar]
- Matschoss, P.; Bayer, B.; Thomas, H.; Marian, A. The German incentive regulation and its practical impact on the grid integration of renewable energy systems. Renew. Energy 2019, 134, 727–738. [Google Scholar] [CrossRef]
- Diekmann, J.; Leprich, U.; Ziesing, H.-J. Regulierung Der Stromnetze in Deutschland—Ökonomische Anreize für Effizienz und QUalität Einer Zukunftsfähigen Netzinfrastruktur; Hans-Böckler-Stiftung: Düsseldorf, Germany, 2007; ISBN 978-3-86593-067-5. [Google Scholar]
- Bundesministerium der Justiz und Verbraucherschutz; Bundesamt für Justiz. Gesetz Über Die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz—EnWG)—Energiewirtschaftsgesetz vom 7 Juli 2005; Bundesministerium der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2019. [Google Scholar]
- Bundesministerium der Justiz und Verbraucherschutz; Bundesamt für Justiz. Verordnung Über Die Anreizregulierung Der Energieversorgungsnetze (Anreizregulierungsverordnung—ARegV)—Anreizregulierungsverordnung vom 29 Oktober 2007; Bundesministerium der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2019. [Google Scholar]
- Bundesministerium der Justiz und Verbraucherschutz; Bundesamt für Justiz. Verordnung Über die Vergabe von Konzessionen (Konzessionsvergabeverordnung—KonzVgV)—Konzessionsvergabeverordnung vom 12 April 2016; Bundesministerium der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2018. [Google Scholar]
- Bakken, B.H.; Mindeberg, S.K. Linear models for optimization of interconnected gas and electricity networks. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009. [Google Scholar] [CrossRef]
- Geidl, M. Integrated Modeling and Optimization of Multi-Carrier Energy Systems; Eidgenössische Technische Hochschule Zürich (ETH Zürich): Zürich, Switzerland, 2007. [Google Scholar]
- Kienzle, F. Evaluation of Investments in Multi-Carrier Energy Systems under Uncertainty; Eidgenössische Technische Hochschule Zürich (ETH Zürich): Zürich, Switzerland, 2010. [Google Scholar]
- Fonseca, J.A.; Nguyen, T.-A.; Schlueter, A.; Marechal, F. City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts. Energy Build. 2016, 113, 202–226. [Google Scholar] [CrossRef]
- Fritz, S. Economic Assessment of the Long-Term Development of Buildings’ Heat Demand and Grid-Bound Supply; Technische Universität Wien: Vienna, Austria, 2016. [Google Scholar]
- Abeysekera, M. Combined Analysis of Coupled Energy Networks; Cardiff School of Engineering: Cardiff, UK, 2016. [Google Scholar]
- Mancarella, P.; Andersson, G.; Pecas-Lopes, J.A.; Bell, K.R.W. Modelling of integrated multi-energy systems: Drivers, requirements, and opportunities. In Proceedings of the 2016 Power Systems Computation Conference, Genoa, Italy, 20–24 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 2014, 65, 1–17. [Google Scholar] [CrossRef]
- Sterman, J.D. Business Dynamics—Systems Thinking and Modeling for a Complex World; Irwin McGraw-Hill: Boston, MA, USA, 2000; ISBN 978-0071179898. [Google Scholar]
- McArthur, S.D.J.; Davidson, E.M.; Catterson, V.M.; Dimeas, A.L.; Hatziargyriou, N.D.; Ponci, F.; Funabashi, T. Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges. IEEE Trans. Power Syst. 2007, 22, 1743–1752. [Google Scholar] [CrossRef] [Green Version]
- McArthur, S.D.J.; Davidson, E.M.; Catterson, V.M.; Dimeas, A.L.; Hatziargyriou, N.D.; Ponci, F.; Funabashi, T. Multi-Agent Systems for Power Engineering Applications—Part II: Technologies, Standards, and Tools for Building Multi-agent Systems. IEEE Trans. Power Syst. 2007, 22, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, M.; Weiss, G. (Eds.) Intelligent Agents, in Multiagent Systems—A Modern Approach to Distributed Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1999; ISBN 9780262232036. [Google Scholar]
- Loga, T.; Stein, B.; Diefenbach, N.; Born, R. Deutsche Wohngebäudetypologie—Beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von Typischen Wohngebäuden; Institut Wohnen und Umwelt (IWU): Darmstadt, Germany, 2015. [Google Scholar]
- Institut Wohnen und Umwelt (IWU). TABULA WebTool; Intelligent Energy Europe of the European Union: Brussels, Belgium; Institut Wohnen und Umwelt (IWU): Darmstadt, Germany, 2017; Available online: www.webtool.building-typology.eu/#bm (accessed on 20 May 2020).
- OpenStreetMap Contributors. Planet Dump Retrieved from https://planet.osm.org. OpenStreetMap contributors. 2019. Available online: https://wiki.openstreetmap.org/wiki/Researcher_Information (accessed on 29 April 2020).
- Statistische Ämter des Bundes und der Länder. Zensus 2011; Statistisches Bundesamt: Wiesbaden, Germany, 2020; Available online: https://ergebnisse.zensus2011.de/?locale=en (accessed on 1 May 2020).
- Thurner, L.; Scheidler, A.; Schafer, F.; Menke, J.-H.; Dollichon, J.; Meier, F.; Meinecke, S.; Braun, M. Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Trans. Power Syst. 2018, 33, 6510–6521. [Google Scholar] [CrossRef] [Green Version]
- Masad, D.; Kazil, J. Mesa: An agent-based modeling framework. In Proceedings of the 14th Python in Science Conference (SciPy 2015), Austin, Texas, 6–12 July 2015; pp. 53–60. [Google Scholar] [CrossRef] [Green Version]
- NetworkX Developers. NetworkX Documentation Reference. 2015. Available online: https://networkx.github.io/documentation/networkx-1.10/reference/index.html (accessed on 29 April 2020).
- Hart, W.E.; Laird, C.D.; Watson, J.-P.; Woodruff, D.L.; Hackebeil, G.A.; Nicholson, B.L.; Siirola, J.D. Pyomo—Optimization Modeling in Python, 2nd ed.; Springer: New York, NY, USA, 2017; ISBN 978-3-319-58821-2. [Google Scholar]
- Hart, W.E.; Watson, J.-P.; Woodruff, D.L. Pyomo: Modeling and solving mathematical programs in Python. Math. Program. Comput. 2011, 3, 219–260. [Google Scholar] [CrossRef]
- IBM. IBM ILOG CPLEX Optimization Studio; IBM: Armonk, NY, USA, 2020; Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio (accessed on 29 April 2020).
- Gurobi Optimization. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2020; Available online: http://www.gurobi.com (accessed on 1 May 2020).
- Ingenieurbüro Fischer-Uhrig. STANET Netzberechnung—Für Gas, Wasser, Strom, Fernwärme und Abwasser; Ingenieurbüro Fischer-Uhrig: Berlin, Germany, 2020; Available online: www.stafu.de/de/home.html (accessed on 29 April 2020).
- DIN—Deutsches Institut für Normung. DIN EN 12831—Energetische Bewertung von Gebäuden—Verfahren zur Berechnung der Norm-Heizlast; Beuth Verlag: Berlin, Germany, 2017. [Google Scholar]
- Loga, T.; Imkeller-Benjes, U. Energiepaß Heizung/Warmwasser—Energetische Qualität von Baukörper und Heizungssystem; Institut Wohnen und Umwelt (IWU): Darmstadt, Germany, 1997. [Google Scholar]
- Hinz, E. Kosten Energierelevanter Bau- und Anlagenteile Bei Der Energetischen Modernisierung von Altbauten—Endbericht; Institut Wohnen und Umwelt (IWU): Darmstadt, Germany, 2015. [Google Scholar]
- Streblow, R.; Ansorge, K. Genetischer Algorithmus zur Kombinatorischen Optimierung von Gebäudehülle und Anlagentechnik—Optimale Sanierungspakete für Ein- und Zweifamilienhäuser—Gebäude-Energiewende Arbeitspapier 7; Institut für Ökologische Wirtschaftsforschung (IÖW): Berlin, Germany; Brandenburgische Technische Universität Cottbus-Senftenberg (BTU CS): Cottbus, Germany; RWTH Aachen | E.ON Energieforschungszentrum, Lehrstuhl für Gebäude- und Raumklimatechnik: Aachen, Germany, 2017. [Google Scholar]
- Bettgenhäuser, K.; Boermans, T. Umweltwirkung von Heizungssystemen in Deutschland—Im Auftrag des Umweltbundesamtes; Ecofys Germany GmbH: Cologne, Germany; Umweltbundesamt: Dessau-Roßlau, Germany, 2011.
- Mailach, B.; Oschatz, B. BDEW-Heizkostenvergleich Altbau 2017; Institut für Technischen Gebäudeausrüstung (ITG): Dresden, Germany; Bundesverband der Energie- und Wasserwirtschaft (BDEW): Berlin, Germany, 2017. [Google Scholar]
- Bundesnetzagentur; Bundeskartellamt. Monitoringbericht 2018; Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahn: Bonn, Germany; Bundeskartellamt: Bonn, Germany, 2019.
- Statista. Durchschnittlicher Verbraucherpreis für Leichtes Heizöl in Deutschland in den Jahren 1960 bis 2019; Statistisches Bundesamt: Wiesbaden, Germany; Mineralölwirtschaftsverband (MWW): Berlin, Germany; Energie Informationsdienst: Munich, Germany, 2019. Available online: de.statista.com/statistik/daten/studie/2633/umfrage/entwicklung-des-verbraucherpreises-fuer-leichtes-heizoel-seit-1960/ (accessed on 29 April 2020).
- Statista. Preisentwicklung für Holzpellets in Deutschland in den Jahren 2008 bis 2018; Deutsches Pelletinstitut: Berlin, Germany, 2018; Available online: de.statista.com/statistik/daten/studie/214738/umfrage/preisentwicklung-fuer-holzpellets-in-deutschland/ (accessed on 29 April 2020).
- Deutscher Wetterdienst (DWD). Globalstrahlung in Der Bundesrepublik Deutschland—Basierend auf Satellitendaten und Bodenwerte aus dem DWD-Messnetz; Deutscher Wetterdienst (DWD): Offenbach am Main, Germany, 2020.
- Leukefeld, T.; Reitzenstein, M.; Ebert, V.; Günther, R.; Kremer, Z.; Pajor, R.; Bauer, D.; Drück, H.; Sommer, K.; Jahnke, K. Fahrplan Solarwärme—Strategie und Maßnahmen der Solarwärme-Branche für Ein Beschleunigtes Marktwachstum bis 2030; Technomar GmbH: Munich, Germany; Institut für Thermodynamik und Wärmetechnik Universität Stuttgart: Stuttgart, Germany; co2online gGmbH: Berlin, Germany; Bundesverband Solarwirtschaft e.V. (BSW): Berlin, Germany, 2012. [Google Scholar]
- Bisschop, J. AIMMS Optimization Modeling; AIMMS B.V.: Haarlem, The Netherlands, 2019. [Google Scholar]
- Balzer, G.; Schorn, C. Asset Management für Infrastrukturanlagen—Energie und Wasser, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-54938-0. [Google Scholar]
- Kays, J. Multi-agent Based Planning Considering the Behavior of Individual End-Users. Electr. Distrib. Netw. Plan. 2018, 143–165. [Google Scholar] [CrossRef]
- Carvalho, M.; Perez, C.; Granados, A. An Adaptive Multi Agent-based Approach to Smart Grids Control and Optimization. Energy Syst. 2012, 3, 61–76. [Google Scholar] [CrossRef]
- Janko, S.A.; Johnson, N.G. Scalable multi-agent microgrid negotiations for a transactive energy market. Appl. Energy 2018, 229, 715–727. [Google Scholar] [CrossRef]
- North, M.J. Multi-Agent Social and Organizational Modeling of Electric Power and Natural Gas Markets. Comput. Math. Organ. Theory 2001, 7, 331–337. [Google Scholar] [CrossRef]
- Lin, H.; Wang, Q.; Wang, Y.; Liu, Y.; Huang, N.; Wennersten, R.; Sun, Q. A multi-agent based optimization architecture for energy hub operation. Energy Procedia 2017, 142, 2158–2164. [Google Scholar] [CrossRef]
- Jennings, N.R. On agent-based software engineering. Artif. Intell. 2000, 117, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-604259-4. [Google Scholar]
- Skiena, S.S. The Algorithm Design Manual, 2nd ed.; Springer London: London, UK, 2008; ISBN 978-1-84800-069-8. [Google Scholar]
- Ansorge, K.; Streblow, R. Gebäudesteckbriefe—Exemplarische Sanierungsstrategien für Wohngebäude am Beispiel von Ausgewählten Prototypgebäuden—Gebäude-Energiewende Arbeitspapier 8; Institut für ökologische Wirtschaftsforschung (IÖW): Berlin, Germany; Brandenburgische Technische Universität Cottbus-Senftenberg (BTU CS): Cottbus, Germany; RWTH Aachen | E.ON Energieforschungszentrum, Lehrstuhl für Gebäude- und Raumklimatechnik: Aachen, Germany, 2017. [Google Scholar]
- DIN—Deutsches Institut für Normung. DIN V 4701–10—Energetische Bewertung Heiz- und Raumlufttechnischer Anlagen; Beuth Verlag: Berlin, Germany, 2003. [Google Scholar]
- Borg, A. Relationships Between Measured and Calculated Energy Demand in the Norwegian Dwelling Stock; Norwegian University of Science and Technology NTNU: Trondheim, Norway, 2015. [Google Scholar]
- Kragh, J.; Rose, J.; Knudsen, H.N.; Jensen, O.M. Possible explanations for the gap between calculated and measured energy consumption of new houses. Energy Procedia 2017, 132, 69–74. [Google Scholar] [CrossRef]
- Presse- und Informationsamt der Bundesregierung. CO2-Bepreisung; Die Bundesregierung: Berlin, Germany, 2019; Available online: https://www.bundesregierung.de/breg-de/themen/klimaschutz/co2-bepreisung-1673008 (accessed on 2 May 2020).
- Bundesministerium der Justiz und für Verbraucherschutz; Bundesamt für Justiz. Verordnung Über Die Entgelte für Den Zugang zu Elektrizitätsversorgungsnetzen (Stromnetzentgeltverordnung—StromNEV)—Stromnetzentgeltverordnung vom 25 Juli 2005; Bundesministerium der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2019.
- Bundesministerium der Justiz und für Verbraucherschutz; Bundesamt für Justiz. Verordnung Über Energiesparenden Wärmeschutz und Energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung—EnEV)—Energieeinsparverordnung vom 24.07.2007; Bundesministerium der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2015.
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Klimaschutzprogramm 2030 Der Bundesregierung zur Umsetzung des Klimaschutzplans 2050; Die Bundesregierung: Berlin, Germany; Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU): Berlin, Germany, 2019.
- Kreditanstalt für Wiederaufbau (KfW). Energieeffizient Sanieren—Kredit—Kredit für die Komplette Sanierung Oder für Einzelne Energetische Maßnahmen; Kreditanstalt für Wiederaufbau (KfW): Frankfurt am Main, Germany, 2020; Available online: https://www.kfw.de/inlandsfoerderung/Privatpersonen/Bestandsimmobilien/Finanzierungsangebote/Energieeffizient-Sanieren-Kredit-(151–152)/ (accessed on 5 May 2020).
- Bundesamt für Wirtschaft und Ausfuhrkontrolle. Förderübersicht: Heizen Mit Erneuerbaren Energien 2020; Bundesamt für Wirtschaft und Ausfuhrkontrolle: Eschborn, Germany, 2020.
- Pollard, A.; Berg, B. Heat Pump Performance; BRANZ Ltd.: Judgeford, New Zealand, 2018. [Google Scholar]
- Die Bundesregierung. Gesetzentwurf der Bundesregierung—Entwurf eines Gesetzes zur Vereinheitlichung des Energieeinsparrechts für Gebäude—Gesetz zur Einsparung von Energie und zur Nutzung erneuerbarer Energien zur Wärme- und Kälteerzeugung in Gebäuden (Gebäudeenergiegesetz—GEG); Die Bundesregierung: Berlin, Germany, 2019.
- Bundesamt für Wirtschaft und Ausfuhrkontrolle. Förderübersicht Wärmepumpe (Basis-, Innovations- und Zusatzförderung); Bundesamt für Wirtschaft und Ausfuhrkontrolle: Eschborn, Germany, 2018.
- Diefenbach, N.; Loga, T.; Born, R.; Großklos, M.; Herbert, C. Energetische Kenngrößen für Heizungsanlagen im Bestand; Institut Wohnen und Umwelt (IWU): Darmstadt, Germany, 2002. [Google Scholar]
- Hundt, M. Investitionsplanung Unter Unsicheren Einflussgrößen, 1st ed.; Springer Gabler: Wiesbaden, Germany, 2015; ISBN 978-3-658-08337-3. [Google Scholar]
- DIN—Deutsches Institut für Normung. DIN V 4701–12—Energetische Bewertung Heiz- und Raumlufttechnischer Anlagen im Bestand; Beuth Verlag: Berlin, Germany, 2004. [Google Scholar]
- Bundesministerium der Justiz und Verbraucherschutz; Bundesamt für Justiz. Energiesteuergesetz (EnergieStG)—Energiesteuergesetz vom 15 Juli 2006; Bundesministerium der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2019.
- Institut für Wärme und Oeltechnik (IWO). Wie Setzt sich Der Heizölpreis Zusammen? Institut für Wärme und Oeltechnik (IWO): Hamburg, Germany; Mineralölwirtschaftsverband (MWW): Berlin, Germany, 2020; Available online: https://www.zukunftsheizen.de/heizoel/zusammensetzung-heizoelpreis.html (accessed on 3 May 2020).
- Bundesministerium der Justiz und Verbraucherschutz; Bundesamt für Justiz. Umsatzsteuergesetz (UStG)—Umsatzsteuergesetz in Der Fassung Der Bekanntmachung vom 21 Februar 2005; Bundesministerium Der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2019.
- Icha, P. Entwicklung Der Spezifischen Kohlendioxid-Emissionen des Deutschen Strommix in den Jahren 1990–2018; Umweltbundesamt: Dessau-Roßlau, Germany, 2019.
- BMU, Arbeitsgruppe IK III 1. Klimaschutzplan 2050—Klimapolitische Grundsätze und Ziele Der Bundesregierung; Bundesministerium für Umwelt, Naturschutz und Nukleare Sicherheit (BMU): Berlin, Germany, 2019.
- Bundesamt für Wirtschaft und Ausfuhrkontrolle. Merkblatt zu den CO2-Faktoren; Bundesamt für Wirtschaft und Ausfuhrkontrolle: Eschborn, Germany, 2019.
- Bundesverband der Energie- und Wasserwirtschaft (BDEW). Erdgas—Zahlen, Daten, Fakten; Bundesverband der Energie- und Wasserwirtschaft (BDEW): Berlin, Germany, 2017. [Google Scholar]
- Hartmann, H.; Baumgartner, T.; Lermer, A.; Schön, C.; Kuptz, D. Brennstoffqualität von Holzpellets—Europaweites Holzpelletscreening mit Fokus auf den Deutschen Pelletmarkt; Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe: Straubing, Germany, 2015. [Google Scholar]
- Bundesministerium der Justiz und für Verbraucherschutz; Bundesamt für Justiz. Verordnung Über Die Entgelte für den Zugang zu Gasversorgungsnetzen (Gasnetzentgeltverordnung—GasNEV)—Gasnetzentgeltverordnung vom 7 Juli 2005; Bundesministerium der Justiz und Verbraucherschutz: Berlin, Germany; Bundesamt für Justiz: Bonn, Germany, 2019.
DNO Strategy | Explanation | Corresponding Regulatory Mechanism | Supply | |
---|---|---|---|---|
Quality | Efficiency | |||
Stable revenue cap (SRC) | The DNO tries to keep the absolute RC constant, which constraints the investment ratio. | Revenue cap | + | - |
Stable grid value (SGV) | The DNO tries to keep the grid age on a stable level, which constraints the investment ratio, respectively the RC. | Revenue cap | 0 | 0 |
Stable grid charges (SGC) | The DNO tries to keep the GC on a stable level, which constraints the investment ratio, respectively the RC. | Price cap | - | + |
Cost Component | Dependency | Initial Share of Cost Base ** (%) | ||||
---|---|---|---|---|---|---|
Grid Length | Grid Age | Energy | Gas DNO | Electricity DNO | ||
CAPEX | Calculatory return equity | + | - | 9.9 | 5.1 | |
Calculatory trade tax | + | - | 1.3 | 0.7 | ||
Interest on borrowed capital | + | - | 6.6 | 3.9 | ||
Calculatory depreciations | + | - | 15.0 | 10.3 | ||
OPEX | Operational costs | + | + * | + * | 33.6 | 29.8 |
Loss costs | + | 0.0 | 1.6 | |||
Upstream grid charges | + | 19.0 | 34.1 | |||
Concession fees | + | 14.7 | 14.7 |
Energy Carrier | Agent Type | Instances in Case-Study | Intelligence of Agents Corresponding to [58,60] |
---|---|---|---|
Electricity | Network operator | 1 | yes |
Node | 121 | no | |
Line | 250 | no | |
Transformer | 1 | no | |
MV-feed-in | 1 | no | |
Gas | Network operator | 1 | yes |
Node | 99 | yes | |
Pipe | 195 | yes | |
Pressure regulator | 1 | no | |
MP-feed-in | 1 | no | |
Electricity/Gas | Building owner | 129 | yes |
Accessibility | Deterministic | Episodic | Dynamic | Discrete | |
---|---|---|---|---|---|
Yes | DNO | Each Agent | Whole MAS | Whole MAS | Whole MAS |
No | All others | Whole MAS | No Agent | No Agent | No Agent |
Simulation Number | Simulation Name | CO2 Pricing | Energy Efficiency Constraint | State Subsidization | Improved Heat Pump Efficiency ( + 25%) | Reduced el. Grid Charges (25% of Regular Value) | Parameter Variation (100 Seeds) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Surface | Heating | Surface (30%) | El. Heat Pumps (40%) | Date of Investment (I) | Building Age-Class (B) | Heating Types (H) | |||||
1 | Base-Case | 0 €/t | no | no | 0% | 0% | 0% | no | yes | no | no |
2 | CO2-Pricing | 65 €/t | no | no | 0% | 0% | 0% | no | yes | no | no |
3 | Efficiency-Constraint | 0 €/t | 100% | yes | 0% | 0% | 0% | no | yes | no | no |
4 | Promotion | 0 €/t | no | no | yes | yes | 0% | no | yes | no | no |
5 | HP-Efficiency | 0 €/t | no | no | 0% | 0% | yes | no | yes | no | no |
6 | Reduced-GC | 0 €/t | no | no | 0% | 0% | 0% | yes | yes | no | no |
7 | Combination 1 | 65 €/t | no | no | 0% | 0% | 0% | yes | yes | no | no |
8 | Combination 2 | 65 €/t | 66% | yes | yes | yes | 0% | yes | yes | no | no |
9 | Combination 2 (I, B) | 65 €/t | 66% | yes | yes | yes | 0% | yes | yes | yes | no |
10 | Combination 2 (I, B, H) | 65 €/t | 66% | yes | yes | yes | 0% | yes | yes | yes | yes |
11 | Base-Case (I, B, H) | 0 €/t | no | no | 0% | 0% | 0% | no | yes | yes | yes |
Simulation Number | Simulation Name | Grid Charges in Building Model | Parameter Variation | |
---|---|---|---|---|
Natural Gas | Electricity | |||
8 | Combination 2 (I) | Date of investment (I) | ||
8c | Combination 2 (I) (constant GC) | |||
10 | Combination 2 (I, B, H) | Date of investment (I); Building age class (B); Heating type (H) | ||
10c | Combination 2 (I, B, H) (constant GC) |
# | Simulation Name | Parameter Variation | Gas DNO Strategy | Electricity DNO Strategy |
---|---|---|---|---|
8gc | Combination 2 (I) (SGC) | Date of investment (I) | Stable revenue cap (SRC) | Stable grid value (SGV) |
8gv | Combination 2 (I) (SGV) | Stable grid value (SGV) | ||
8rc | Combination 2 (I) (SRC) | Stable grid charges (SGC) | ||
10gc | Combination 2 (I, B, H) (SGC) | Date of investment (I); Building age class (B); Heating type (H) | Stable revenue cap (SRC) | |
10gv | Combination 2 (I, B, H) (SGV) | Stable grid value (SGV) | ||
10rc | Combination 2 (I, B, H) (SRC) | Stable grid charges (SGC) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Then, D.; Hein, P.; Kneiske, T.M.; Braun, M. Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions. Sustainability 2020, 12, 5315. https://doi.org/10.3390/su12135315
Then D, Hein P, Kneiske TM, Braun M. Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions. Sustainability. 2020; 12(13):5315. https://doi.org/10.3390/su12135315
Chicago/Turabian StyleThen, Daniel, Patrick Hein, Tanja M. Kneiske, and Martin Braun. 2020. "Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions" Sustainability 12, no. 13: 5315. https://doi.org/10.3390/su12135315
APA StyleThen, D., Hein, P., Kneiske, T. M., & Braun, M. (2020). Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions. Sustainability, 12(13), 5315. https://doi.org/10.3390/su12135315