Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction
Abstract
:1. Introduction
2. Theoretical Background of the Model
2.1. Recurrent Neural Network (RNN)
2.2. Long Short-Term Memory (LSTM)
2.3. Genetic Algorithm (GA)
2.4. Genetic Algorithm Long Short-Term Memory (GA-LSTM)
Algorithm 1: GA-optimized LSTM |
|
3. Research Data and Methods
3.1. Description of the Data Used
3.2. Model Development, Performance Assessment, and Forecast Quality Metrics
4. Results and Discussion
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Booth, D.B.; Jackson, C.R. Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. J. Am. Water Resour. Assoc. 1997, 33, 1077–1090. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Booth, D.B.; Roy, A.H.; Smith, B.; Capps, K.A. Global perspectives on the urban stream syndrome. Freshw. Sci. 2016, 35, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.D. Urbanization and stream quality impairment. J. Am. Water Resour. Assoc. 1979, 15, 948–963. [Google Scholar] [CrossRef]
- Wang, L.; Lyons, J.; Kanehl, P. Impacts of Urban Land Cover on Trout Streams in Wisconsin and Minnesota. Trans. Am. Fish. Soc. 2003, 132, 825–839. [Google Scholar] [CrossRef]
- Wallace, A.M.; Croft-White, M.V.; Moryk, J. Are Toronto’s streams sick? A look at the fish and benthic invertebrate communities in the Toronto region in relation to the urban stream syndrome. Environ. Monit. Assess. 2013, 185, 7857–7875. [Google Scholar] [CrossRef] [PubMed]
- Poole, G.C.; Berman, C.H. An Ecological Perspective on In-Stream Temperature: Natural Heat Dynamics and Mechanisms of Human-Caused Thermal Degradation. Environ. Manag. 2001, 27, 787–802. [Google Scholar] [CrossRef]
- Hester, E.T.; Doyle, M.W. Human Impacts to River Temperature and Their Effects on Biological Processes: A Quantitative Synthesis1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 571–587. [Google Scholar] [CrossRef]
- Somers, K.A.; Bernhardt, E.S.; Grace, J.B.; Hassett, B.A.; Sudduth, E.B.; Wang, S.; Urban, D.L. Streams in the urban heat island: Spatial and temporal variability in temperature. Freshw. Sci. 2013, 32, 309–326. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, G.B.; Schladow, S.G.; Reuter, J.E. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J. Hydrol. 2009, 378, 325–342. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Heffernan, J.B.; Grimm, N.B.; Stanley, E.H.; Harvey, J.W.; Arroita, M.; Appling, A.P.; Cohen, M.J.; McDowell, W.H.; Hall, R.O.; et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 2018, 63, S99–S118. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Hari, R.E. Screening procedure to assess the impact of urban stormwater temperature to populations of brown trout in receiving water. Integr. Environ. Assess. Manag. 2007, 3, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Armour, C.L. Guidance for Evaluating and Recommending Temperature Regimes to Protect Fish; US Department of the Interior, Fish and Wildlife Service: Bailey’s Crossroads, VA, USA, 1991; Volume 90.
- Steedman, R.J. Occurrence and Environmental Correlates of Black Spot Disease in Stream Fishes near Toronto, Ontario. Trans. Am. Fish. Soc. 1991, 120, 494–499. [Google Scholar] [CrossRef]
- Hasnain, S.S.; Minns, C.K.; Shuter, B.J.; Temperature, K.E.; Fishes, F. Key Ecological Temperature Metrics for Canadian Freshwater Fishes; Ontario Forest Research Institute: Sault Ste. Marie, ON, Canada, 2010. [Google Scholar]
- COSEWIC. COSEWIC Assessment and Update Status Report Clinostomus Elongatus in Canada; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2007. [Google Scholar]
- Benyahya, L.; Caissie, D.; St-Hilaire, A.; Ouarda, T.B.M.J.; Bobée, B. A Review of Statistical Water Temperature Models. Can. Water Resour. J. 2007, 32, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Stefan, H.G.; Preud’homme, E.B. Stream temperature estimation from air temperature. J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Johnson, S.L. Stream temperature: Scaling of observations and issues for modelling. Hydrol. Process. 2003, 17, 497–499. [Google Scholar] [CrossRef]
- Arismendi, I.; Safeeq, M.; Dunham, J.B.; Johnson, S.L. Can air temperature be used to project influences of climate change on stream temperature? Environ. Res. Lett. 2014, 9, 084015. [Google Scholar] [CrossRef]
- Leach, J.A.; Moore, R.D. Empirical Stream Thermal Sensitivities May Underestimate Stream Temperature Response to Climate Warming. Water Resour. Res. 2019, 55, 5453–5467. [Google Scholar] [CrossRef]
- Somers, K.A.; Bernhardt, E.S.; McGlynn, B.L.; Urban, D.L. Downstream Dissipation of Storm Flow Heat Pulses: A Case Study and its Landscape-Level Implications. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 281–297. [Google Scholar] [CrossRef]
- Bartholow, J.M. Stream Temperature Investigations: Field and Analytic Methods; Instream Flow Information Paper No. 13; US Department of the Interior, Fish and Wildlife Service: Bailey’s Crossroads, VA, USA, 1989.
- Caisse, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Janke, B.D.; Herb, W.R.; Mohseni, O.; Stefan, H.G. Application of a Runoff Temperature Model (HTSim) to a Residential Development in Plymouth, MN; St. Anthony Falls Laboratory: Minneapolis, MN, USA, 2007. [Google Scholar]
- Webb, B.W.; Hannah, D.M.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent advances in stream and river temperature research. Hydrol. Process. 2008, 22, 902–918. [Google Scholar] [CrossRef]
- Wool, T.; Ambrose, R.; Martin, J. WASP8 Temperature Model Theory and User’s Guide; US EPA: Washington, DC, USA, 2008.
- Dugdale, S.J.; Hannah, D.M.; Malcolm, I.A. River temperature modelling: A review of process-based approaches and future directions. Earth Sci. Rev. 2017, 175, 97–113. [Google Scholar] [CrossRef]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.2; U.S. Army Corps of Engineers: Washington, DC, USA, 2019.
- Chenard, J.-F.; Caissie, D. Stream temperature modelling using artificial neural networks: Application on Catamaran Brook, New Brunswick, Canada. Hydrol. Process. 2008, 22, 3361–3372. [Google Scholar] [CrossRef]
- Liu, W.C.; Chen, W.B. Prediction of water temperature in a subtropical subalpine lake using an artificial neural network and three-dimensional circulation models. Comput. Geosci. 2012, 45, 13–25. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, M.J.; Napiorkowski, J.J.; Osuch, M. Comparing various artificial neural network types for water temperature prediction in rivers. J. Hydrol. 2015, 529, 302–315. [Google Scholar] [CrossRef]
- Liu, S.; Xu, L.; Li, D. Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks. Comput. Electr. Eng. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Calamita, E.; Majone, B.; Gallice, A.; Siviglia, A.; Toffolon, M. Prediction of river water temperature: A comparison between a new family of hybrid models and statistical approaches. Hydrol. Process. 2016, 30, 3901–3917. [Google Scholar] [CrossRef]
- Ebtehaj, I.; Bonakdari, H.; Moradi, F.; Gharabaghi, B.; Khozani, Z.S. An integrated framework of Extreme Learning Machines for predicting scour at pile groups in clear water condition. Coast. Eng. 2018, 135, 1–15. [Google Scholar] [CrossRef]
- Gazendam, E.; Gharabaghi, B.; Ackerman, J.D.; Whiteley, H. Integrative neural networks models for stream assessment in restoration projects. J. Hydrol. 2016, 536, 339–350. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Shamshirband, S.; Zare Haghi, D.; Azani, A.; Bonakdari, H.; Ebtehaj, I. Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res. 2017, 172, 32–38. [Google Scholar] [CrossRef]
- Bonakdari, H.; Moeeni, H.; Ebtehaj, I.; Zeynoddin, M.; Mahoammadian, A.; Gharabaghi, B. New insights into soil temperature time series modeling: Linear or nonlinear? Theor. Appl. Clim. 2019, 135, 1157–1177. [Google Scholar] [CrossRef]
- Sabouri, F.; Gharabaghi, B.; Perera, N.; McBean, E. Evaluation of the Thermal Impact of Stormwater Management Ponds. J. Water Manag. Model. 2013, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Sabouri, F.; Gharabaghi, B.; McBean, E.; Tu, C. Thermal Investigation of Stromwater Management Ponds. J. Water Manag. Model. 2016. [Google Scholar] [CrossRef] [Green Version]
- Sabouri, F.; Gharabaghi, B.; Sattar, A.M.A.; Thompson, A.M. Event-based stormwater management pond runoff temperature model. J. Hydrol. 2016, 540, 306–316. [Google Scholar] [CrossRef]
- Sattar, A.M.A.; Gharabaghi, B.; Sabouri, F.; Thompson, A.M. Urban stormwater thermal gene expression models for protection of sensitive receiving streams. Hydrol. Process. 2017, 31, 2330–2348. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Empirical Mode Decomposition Based Deep Learning for Electricity Demand Forecasting. IEEE Access 2018, 6, 49144–49156. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, A.; Samui, P.; Jha, R.K. Forecasting monthly precipitation using sequential modelling. Hydrol. Sci. J. 2019, 64, 690–700. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chandar, S.; Sankar, C.; Vorontsov, E.; Kahou, S.E.; Bengio, Y. Towards Non-Saturating Recurrent Units for Modelling Long-Term Dependencies. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 22 January 2019. [Google Scholar] [CrossRef]
- Bandara, K.; Bergmeir, C.; Smyl, S. Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Syst. Appl. 2020, 140, 112896. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Armano, G.; Marchesi, M.; Murru, A. A hybrid genetic-neural architecture for stock indexes forecasting. Inf. Sci. 2005, 170, 3–33. [Google Scholar] [CrossRef]
- Diederik, K.; Ba, J.L. ADAM: A Method for Stochastic Optimization. AIP Conf. Proc. 2014, 1631, 58–62. [Google Scholar] [CrossRef]
- Credit Valley Conservation (CVC). Integrated Watershed Monitoring Program Biennial Report 2016 and 2017; CVC: Mississauga, ON, Canada, 2019. [Google Scholar]
- Credit Valley Conservation (CVC). Watershed Monitoring: Real-Time Water Quality. Available online: http://www.creditvalleyca.ca/watershed-science/watershed-monitoring/real-time-water-quality/ (accessed on 6 April 2017).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Chollet, F. Keras: The Python Deep Learning Library. 2015. Available online: https://keras.io/ (accessed on 5 June 2019).
- Talathi, S.S.; Vartak, A. Improving performance of recurrent neural network with relu nonlinearity. arXiv 2015, arXiv:1511.03771. [Google Scholar]
- Bodenhofer, U. Genetic Algorithms: Theory and Applications, 2nd ed.; Johannes Kepler Universit: Linz, Austria, 2001. [Google Scholar]
- Kurup, P.U.; Dudani, N.K. Neural Networks for Profiling Stress History of Clays from PCPT Data. J. Geotech. Geoenviron. Eng. 2002, 128, 569–579. [Google Scholar] [CrossRef]
- Boadu, F.K. Rock Properties and Seismic Attenuation: Neural Network Analysis. Pure Appl. Geophys. 1997, 149, 507–524. [Google Scholar] [CrossRef]
- Coulibaly, P.; Baldwin, C.K. Nonstationary hydrological time series forecasting using nonlinear dynamic methods. J. Hydrol. 2005, 307, 164–174. [Google Scholar] [CrossRef]
- Pal, M. Support vector machines-based modelling of seismic liquefaction potential. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 983–996. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Hintze, J.L.; Nelson, R.D. Violin Plots: A Box Plot-Density Trace Synergism. Am. Stat. 1998, 52, 181–184. [Google Scholar] [CrossRef]
- Glasgow, H.B.; Burkholder, J.M.; Reed, R.E.; Lewitus, A.J.; Kleinman, J.E. Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. J. Exp. Mar. Biol. Ecol. 2004, 300, 409–448. [Google Scholar] [CrossRef]
- Wang, Z.; Song, H.; Watkins, D.W.; Ong, K.G.; Xue, P.; Yang, Q.; Shi, X. Cyber-physical systems for water sustainability: Challenges and opportunities. IEEE Commun. Mag. 2015, 53, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Fijani, E.; Barzegar, R.; Deo, R.; Tziritis, E.; Skordas, K. Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Sci. Total Environ. 2019, 648, 839–853. [Google Scholar] [CrossRef]
- Meyer, A.M.; Klein, C.; Fünfrocken, E.; Kautenburger, R.; Beck, H.P. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. Sci. Total Environ. 2019, 651, 2323–2333. [Google Scholar] [CrossRef]
Cross-Validation | Window Size | No. of Units | MAE |
---|---|---|---|
1 | 28 | 2 | 0.07218 |
2 | 14 | 8 | 0.05517 |
3 | 44 | 3 | 0.05312 |
4 | 42 | 2 | 0.06185 |
5 | 34 | 9 | 0.04136 |
Quality Metric | Training | Validation | Testing | |||
---|---|---|---|---|---|---|
RNN | GA-LSTM | RNN | GA-LSTM | RNN | GA-LSTM | |
RMSE (type 1) | 1.049 | 0.654 | 1.097 | 0.467 | 1.07 | 0.755 |
RSR | 0.118 | 0.073 | 0.119 | 0.072 | 0.131 | 0.093 |
mNSE | 0.881 | 0.929 | 0.878 | 0.93 | 0.867 | 0.913 |
md (type 1) | 0.937 | 0.963 | 0.935 | 0.964 | 0.929 | 0.955 |
r2 | 0.998 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 |
KGE (Type 2) | 0.889 | 0.933 | 0.887 | 0.932 | 0.878 | 0.923 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stajkowski, S.; Kumar, D.; Samui, P.; Bonakdari, H.; Gharabaghi, B. Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction. Sustainability 2020, 12, 5374. https://doi.org/10.3390/su12135374
Stajkowski S, Kumar D, Samui P, Bonakdari H, Gharabaghi B. Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction. Sustainability. 2020; 12(13):5374. https://doi.org/10.3390/su12135374
Chicago/Turabian StyleStajkowski, Stephen, Deepak Kumar, Pijush Samui, Hossein Bonakdari, and Bahram Gharabaghi. 2020. "Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction" Sustainability 12, no. 13: 5374. https://doi.org/10.3390/su12135374
APA StyleStajkowski, S., Kumar, D., Samui, P., Bonakdari, H., & Gharabaghi, B. (2020). Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction. Sustainability, 12(13), 5374. https://doi.org/10.3390/su12135374