On the Unbalanced Atmospheric Environmental Performance of Major Cities in China
Abstract
:1. Introduction
2. Methods and Data
2.1. Atmospheric Environmental Efficiency
2.2. Meta-Frontier Technology and Its Decomposition
2.3. Data Collection
3. Empirical Results and Discussion
3.1. Atmospheric Environmental Efficiency
3.2. Technology Heterogeneities between Regions
3.3. Benchmark for Inefficient Cities
4. Conclusions and Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics. China Statistical Yearbook 2019. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed on 28 June 2020).
- Huang, J.; Pan, X.; Guo, X.; Li, G. Health impact of China’s air pollution prevention and control action plan: An analysis of national air quality monitoring and mortality data. Lancet Planet. Health 2018, 2, e313–e323. [Google Scholar] [CrossRef] [Green Version]
- Health Effects Institute. State Of Global Air Report 2019; Health Effects Institute: Boston, MA, USA, 2019. [Google Scholar]
- Xu, P.; Chen, Y.; Ye, X. Haze, air pollution, and health in China. Lancet 2013, 382, 2067. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, J.A.; Su, J.G.; Henneman, L.R.; Zigler, C.; Neophytou, A.M.; Catalano, R.; Gondalia, R.; Chen, Y.-T.; Kaye, L.; Moyer, S.S. Improved asthma outcomes observed in the vicinity of coal power plant retirement, retrofit and conversion to natural gas. Nat. Energy 2020, 5, 398–408. [Google Scholar] [CrossRef] [PubMed]
- State Council of People’s Republic of China. Air Pollution Prevention Action Plan; State Council of People’s Republic of China: Beijing, China, 2013.
- Lee, H.S.; Choi, Y. Environmental performance evaluation of the Korean manufacturing industry based on sequential DEA. Sustainability 2019, 11, 874. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energ Policy 2017, 107, 678–687. [Google Scholar]
- Tang, L.; Qu, J.; Mi, Z.; Bo, X.; Chang, X.; Anadon, L.D.; Wang, S.; Xue, X.; Li, S.; Wang, X.; et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards. Nat. Energy 2019, 4, 929–938. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int 2016, 86, 92–106. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Choi, Y. Is it feasible for China to enhance its air quality in terms of the efficiency and the regulatory cost of air pollution? Sci Total Environ. 2020, 709, 136149. [Google Scholar] [CrossRef]
- Yin, K.; Wang, R.; An, Q.; Yao, L.; Liang, J. Using eco-efficiency as an indicator for sustainable urban development: A case study of Chinese provincial capital cities. Ecol. Indic. 2014, 36, 665–671. [Google Scholar] [CrossRef]
- Beames, A.; Broekx, S.; Heijungs, R.; Lookman, R.; Boonen, K.; Van Geert, Y.; Dendoncker, K.; Seuntjens, P. Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment. J. Clean. Prod. 2015, 101, 109–117. [Google Scholar] [CrossRef]
- Duan, H.; Hu, M.; Zhang, Y.; Wang, J.; Jiang, W.; Huang, Q.; Li, J. Quantification of carbon emissions of the transport service sector in China by using streamlined life cycle assessment. J. Clean. Prod. 2015, 95, 109–116. [Google Scholar] [CrossRef]
- Baráth, L.; Fertő, I. Heterogeneous technology, scale of land use and technical efficiency: The case of Hungarian crop farms. Land Use Policy 2015, 42, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Qi, C. Is South Korea’s emission trading scheme effective? An analysis based on the marginal abatement cost of coal-fueled power plants. Sustainability 2019, 11, 2504. [Google Scholar]
- Cerutti, A.K.; Beccaro, G.L.; Bagliani, M.; Donno, D.; Bounous, G. multifunctional ecological footprint analysis for assessing eco-efficiency: A case study of fruit production systems in Northern Italy. J. Clean. Prod. 2013, 40, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Zhang, N.; Zhou, P. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Appl. Energy 2012, 98, 198–208. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Y.; Chen, Y.; Zhu, J. Data envelopment analysis application in sustainability: The origins, development and future directions. Eur. J. Oper. Res. 2018, 264, 1–16. [Google Scholar] [CrossRef]
- Deng, G.; Li, L.; Song, Y. Provincial water use efficiency measurement and factor analysis in China: Based on SBM-DEA model. Ecol. Indic. 2016, 69, 12–18. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis. Energy Policy 2013, 56, 653–662. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y.; Wang, W. Does energy research funding work? Evidence from the Natural Science Foundation of China using TEI@I method. Technol. Forecast. Soc. Chang. 2019, 144, 369–380. [Google Scholar] [CrossRef]
- Yu, Y.; Choi, Y.; Wei, X.; Chen, Z. Did China’s regional transport industry enjoy better carbon productivity under regulations? J. Clean. Prod. 2017, 165, 777–787. [Google Scholar] [CrossRef]
- Lee, H.; Choi, Y. Greenhouse gas performance of Korean local governments based on non-radial DDF. Technol. Forecast. Soc. Chang. 2018, 135, 13–21. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Lewin, A.Y.; Morey, R.C.; Rousseau, J. Sensitivity and stability analysis in DEA. Ann. Oper. Res. 1984, 2, 139–156. [Google Scholar] [CrossRef]
- Banker, R.D. Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 1984, 17, 35–44. [Google Scholar] [CrossRef]
- Lee, H.; Choi, Y.; Seo, H. Comparative analysis of the R&D investment performance of Korean local governments. Technol. Forecast. Soc. Chang. 2020, 157, 120073. [Google Scholar]
- Choi, Y.; Yu, Y.; Lee, H. A Study on the sustainable performance of the steel industry in Korea based on SBM-DEA. Sustainability 2018, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, W.; Tian, J.; He, R.; Chen, L. Eco-efficiency assessment of coal-fired combined heat and power plants in Chinese eco-industrial parks. J. Clean. Prod. 2017, 168, 963–972. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. New Directions: Efficiency and Productivity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 3. [Google Scholar]
- Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [CrossRef] [Green Version]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data envelopment analysis. In Handbook on Data Envelopment Analysis, 1st ed.; Cooper, W.w., Seiford, L.m., Zhu, J., Eds.; Spring: Berlin/Heidelberg, Germany, 2000; pp. 1–40. [Google Scholar]
- Álvarez, I.; Barbero, J.; Zofío, J.L. A Data Envelopment Analysis Toolbox for MATLAB; Department of Economic Analysis, Universidad Autónoma de Madrid (Spain): Madrid, Spain, 2016. [Google Scholar]
- Yu, Y.; Choi, Y. Measuring environmental performance under regional heterogeneity in China: A metafrontier efficiency analysis. Comput. Econ. 2014, 46, 375–388. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2007, 34, 231–255. [Google Scholar] [CrossRef]
- Du, G.; Liu, S.; Lei, N.; Huang, Y. A test of environmental Kuznets curve for haze pollution in China: Evidence from the penal data of 27 capital cities. J. Clean. Prod. 2018, 205, 821–827. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, S.; Cai, Q.; Gao, S. Evaluating the energy-environment efficiency and its determinants in Guangdong using a slack-based measure with environmental undesirable outputs and panel data model. Sci. Total Environ. 2019, 663, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Hohhot Municipal Ecology and Environment Bureau. Annual Report of Ecology and Environment Bureau on Expenditure 2016; Hohhot Municipal Ecology and Environment Bureau: Beijing, China, 2017. (In Chinese)
- Hohhot Municipal Ecology and Environment Bureau. Annual Report of Ecology and Environment Bureau on Expenditure 2017; Hohhot Municipal Ecology and Environment Bureau: Beijing, China, 2018. (In Chinese)
- People’s Government of Jilin. Measures to Promote Ecological Progress in Jilin; People’s Government of Jilin: Changchun, China, 2016. (In Chinese)
- Department of Ecology and Environment of Guangdong Province. The Second Phase (2013–2015) of the Clean Air Action Plan in Pearl River Delta in Guangdong Province; Department of Ecology and Environment of Guangdong Province: Guangzhou, China, 2013. (In Chinese)
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Assaf, A.; Matawie, K.M. Improving the accuracy of DEA efficiency analysis: A bootstrap application to the health care foodservice industry. Appl. Econ. 2010, 42, 3547–3558. [Google Scholar] [CrossRef]
Variables | Unit | Mean | St Dev | Minimum | Maximum |
---|---|---|---|---|---|
Labor | 104 persons | 200.3 | 196.0 | 31.3 | 986.9 |
Capital | 108 RMB | 4375.5 | 2901.3 | 404.6 | 17,537.0 |
Energy | 104 Tons of SCE | 3107.6 | 2697.6 | 17.6 | 11,859.0 |
GRP | 108 RMB | 7043.6 | 5867.8 | 713.3 | 28,617.0 |
SO2 | Tons | 91,408.7 | 88,165.9 | 512.0 | 586,925.0 |
NOx | Tons | 77,611.6 | 64,585.3 | 103.0 | 336,028.0 |
PM | Tons | 56,313.8 | 43,416.4 | 113.0 | 230,995.0 |
City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | |
---|---|---|---|---|---|---|---|---|---|
Eastern | Beijing | 0.5884 | 0.5922 | 0.6023 | 0.6138 | 0.6454 | 0.7097 | 0.9399 | 0.6702 |
Fuzhou | 0.5305 | 0.5387 | 0.5221 | 0.5408 | 0.5519 | 0.5779 | 0.5845 | 0.5495 | |
Guangzhou | 0.6452 | 0.6653 | 0.6437 | 0.6437 | 0.7124 | 0.8740 | 1 | 0.7406 | |
Haikou | 1 | 0.7868 | 1 | 0.8848 | 1 | 0.8361 | 1 | 0.9297 | |
Hangzhou | 0.5786 | 0.5851 | 0.5872 | 0.5867 | 0.5983 | 0.6437 | 0.7941 | 0.6248 | |
Jinan | 0.5180 | 0.5291 | 0.5297 | 0.5408 | 0.5542 | 0.5781 | 0.6119 | 0.5517 | |
Nanjing | 0.5443 | 0.5541 | 0.5289 | 0.5357 | 0.5531 | 0.5943 | 0.6419 | 0.5646 | |
Shanghai | 0.6038 | 0.6072 | 0.6134 | 0.6058 | 0.6295 | 0.6904 | 1 | 0.6786 | |
Shijiazhuang | 0.5397 | 0.5409 | 0.5447 | 0.5438 | 0.5508 | 0.5588 | 0.5894 | 0.5526 | |
Tianjin | 0.5431 | 0.5492 | 0.5576 | 0.5631 | 0.5806 | 0.6150 | 0.6349 | 0.5776 | |
Central | Changsha | 0.6232 | 0.6546 | 0.6622 | 0.6765 | 0.7209 | 1 | 1 | 0.7625 |
Hefei | 0.5238 | 0.5220 | 0.5150 | 0.5213 | 0.5360 | 0.6376 | 0.6434 | 0.5570 | |
Nanchang | 0.5175 | 0.5302 | 0.5526 | 0.5481 | 0.5656 | 0.6023 | 0.6254 | 0.5631 | |
Taiyuan | 0.5133 | 0.4976 | 0.4857 | 0.4829 | 0.4862 | 0.5011 | 0.5797 | 0.5066 | |
Wuhan | 0.5390 | 0.5489 | 0.5656 | 0.5531 | 0.5629 | 0.6132 | 0.6341 | 0.5738 | |
Zhengzhou | 0.5331 | 0.5403 | 0.5367 | 0.5406 | 0.5478 | 0.5902 | 0.6234 | 0.5589 | |
Western | Chengdu | 0.5918 | 0.5961 | 0.6059 | 0.6071 | 0.6243 | 0.6455 | 0.6663 | 0.6196 |
Chongqing | 0.5123 | 0.4850 | 0.4861 | 0.4869 | 0.4998 | 0.5571 | 0.5771 | 0.5149 | |
Guiyang | 0.4568 | 0.4532 | 0.4806 | 0.4949 | 0.5055 | 0.5219 | 0.5245 | 0.4911 | |
Hohhot | 0.5737 | 0.5770 | 0.5676 | 0.5702 | 0.6097 | 0.6769 | 1 | 0.6536 | |
Kunming | 0.4580 | 0.4752 | 0.4786 | 0.5046 | 0.5062 | 0.5282 | 0.5360 | 0.4981 | |
Lanzhou | 0.4880 | 0.4886 | 0.4832 | 0.4898 | 0.5009 | 0.5223 | 0.5280 | 0.5001 | |
Nanning | 0.5504 | 0.5374 | 0.5488 | 0.5484 | 0.5555 | 0.5812 | 0.6002 | 0.5603 | |
Urumqi | 0.5407 | 0.5158 | 0.5110 | 0.5190 | 0.5315 | 0.5422 | 0.5501 | 0.5300 | |
Xi’an | 0.5614 | 0.5588 | 0.5558 | 0.5571 | 0.5815 | 0.6132 | 0.6122 | 0.5771 | |
Xining | 0.4737 | 0.4771 | 0.4821 | 0.4960 | 0.5096 | 0.5292 | 0.5383 | 0.5009 | |
Yinchuan | 0.4992 | 0.5022 | 0.5046 | 0.4210 | 0.4310 | 0.5323 | 0.5455 | 0.4908 | |
Northeastern | Changchun | 0.5326 | 0.5436 | 0.5291 | 0.5346 | 0.5413 | 0.5742 | 0.6044 | 0.5514 |
Harbin | 0.5311 | 0.5376 | 0.5417 | 0.5465 | 0.5519 | 0.5528 | 0.5568 | 0.5455 | |
Shenyang | 0.5678 | 0.5727 | 0.5780 | 0.5834 | 0.6070 | 0.7362 | 1 | 0.6636 |
City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | |
---|---|---|---|---|---|---|---|---|---|
Eastern | Beijing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Fuzhou | 0.9858 | 0.9827 | 0.9676 | 0.9592 | 0.9584 | 0.9614 | 0.9598 | 0.9678 | |
Guangzhou | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Haikou | 1 | 0.7868 | 1 | 1 | 1 | 0.9935 | 1 | 0.9686 | |
Hangzhou | 0.9999 | 0.9985 | 0.9984 | 0.9958 | 0.9984 | 0.8897 | 0.7941 | 0.9535 | |
Jinan | 1 | 1 | 0.9972 | 0.9929 | 0.9891 | 0.9934 | 0.9981 | 0.9958 | |
Nanjing | 0.9891 | 0.9893 | 0.9804 | 0.9816 | 0.9883 | 0.9986 | 1 | 0.9896 | |
Shanghai | 1 | 1 | 1 | 1 | 1 | 0.6904 | 1 | 0.9558 | |
Shijiazhuang | 0.9786 | 0.9744 | 0.9698 | 0.9669 | 0.9652 | 0.9662 | 0.8509 | 0.9531 | |
Tianjin | 0.9909 | 0.9895 | 0.9889 | 0.9842 | 0.9875 | 0.9298 | 0.6349 | 0.9294 | |
Central | Changsha | 0.6232 | 0.6546 | 0.6622 | 0.8677 | 0.9801 | 1 | 1 | 0.8268 |
Hefei | 0.9242 | 0.9230 | 0.9112 | 0.9316 | 0.9535 | 0.9411 | 0.9450 | 0.9328 | |
Nanchang | 0.8691 | 0.8875 | 0.9202 | 0.9322 | 0.9410 | 0.9593 | 0.9633 | 0.9247 | |
Taiyuan | 0.8327 | 0.8240 | 0.8293 | 0.8269 | 0.8409 | 0.8421 | 0.5797 | 0.7965 | |
Wuhan | 0.7982 | 0.8574 | 0.9223 | 0.9391 | 0.9498 | 0.6132 | 0.7655 | 0.8351 | |
Zhengzhou | 0.8350 | 0.8575 | 0.9097 | 0.9274 | 0.9438 | 0.9609 | 0.9574 | 0.9131 | |
Western | Chengdu | 0.7116 | 0.5961 | 0.7401 | 0.6071 | 0.6243 | 0.6455 | 0.6663 | 0.6559 |
Chongqing | 0.8409 | 0.8281 | 0.8323 | 0.8373 | 0.8419 | 0.6809 | 0.5771 | 0.7769 | |
Guiyang | 0.8048 | 0.7724 | 0.8201 | 0.8320 | 0.8308 | 0.8111 | 0.8000 | 0.8102 | |
Hohhot | 0.5737 | 0.5770 | 0.7257 | 0.7753 | 0.6097 | 0.6769 | 1 | 0.7055 | |
Kunming | 0.7865 | 0.7961 | 0.7990 | 0.7791 | 0.7734 | 0.7371 | 0.7281 | 0.7713 | |
Lanzhou | 0.8066 | 0.8269 | 0.8130 | 0.8245 | 0.8237 | 0.7697 | 0.5280 | 0.7703 | |
Nanning | 0.8626 | 0.8354 | 0.8392 | 0.8401 | 0.8087 | 0.6907 | 0.6002 | 0.7824 | |
Urumqi | 0.5407 | 0.7783 | 0.7786 | 0.7984 | 0.7248 | 0.5802 | 0.6094 | 0.6872 | |
Xi’an | 0.8985 | 0.8692 | 0.8681 | 0.8388 | 0.7946 | 0.6132 | 0.6122 | 0.7849 | |
Xining | 0.8080 | 0.8230 | 0.8385 | 0.8484 | 0.8534 | 0.8029 | 0.7755 | 0.8214 | |
Yinchuan | 0.8479 | 0.8542 | 0.8539 | 0.7465 | 0.7556 | 0.7989 | 0.7536 | 0.8015 | |
Northeastern | Changchun | 0.8668 | 0.8374 | 0.8265 | 0.8319 | 0.8334 | 0.6999 | 0.6044 | 0.7858 |
Harbin | 0.8964 | 0.8849 | 0.8824 | 0.8909 | 0.8751 | 0.8606 | 0.8368 | 0.8753 | |
Shenyang | 0.8360 | 0.8252 | 0.8380 | 0.8397 | 0.8323 | 0.8484 | 1 | 0.8599 |
City | Benchmark (Lambda Value) | Return-to-Scale | |
---|---|---|---|
Eastern | Beijing | Guangzhou 2017 (1.1154); Haikou 2017 (1.2486) | DRS |
Fuzhou | Guangzhou 2017 (0.2064); Haikou 2017 (1.4046); Hangzhou 2017 (0.0612) | DRS | |
Guangzhou | Guangzhou 2017 (1.0000) | CRS | |
Haikou | Haikou 2017 (1.0000) | CRS | |
Hangzhou | Hangzhou 2017 (1.0000) | CRS | |
Jinan | Guangzhou 2017 (0.3742); Haikou 2017 (0.1539) | IRS | |
Nanjing | Guangzhou 2017 (0.4545); Haikou 2017 (1.0524) | DRS | |
Shanghai | Shanghai 2017 (1.0000) | CRS | |
Shijiazhuang | Guangzhou 2017 (0.0148); Tianjin 2017 (0.3219) | IRS | |
Tianjin | Tianjin 2017 (1.0000) | CRS | |
Central | Changsha | Changsha 2017 (1.0000) | CRS |
Hefei | Changsha 2017 (0.6459) | IRS | |
Nanchang | Changsha 2017 (0.6759) | IRS | |
Taiyuan | Taiyuan 2017 (1.0000) | CRS | |
Wuhan | Changsha 2012 (0.2622); Changsha 2016 (0.7265); Wuhan 2016 (0.2780) | DRS | |
Zhengzhou | Changsha 2017 (1.0007) | DRS | |
Western | Chengdu | Chengdu 2017 (1.0000) | CRS |
Chongqing | Chongqing 2017 (1.0000) | CRS | |
Guiyang | Chengdu 2017 (0.1077); Nanning 2017 (0.4570) | IRS | |
Hohhot | Hohhot 2017 (1.0000) | CRS | |
Kunming | Chengdu 2014 (0.2024); Chengdu 2017 (0.0360); Nanning 2017 (0.5896) | IRS | |
Lanzhou | Lanzhou 2017 (1.0000) | CRS | |
Nanning | Nanning 2017 (1.0000) | CRS | |
Urumqi | Chengdu 2014 (0.1984); Chongqing 2017 (0.0079); Hohhot 2015 (0.1350); Hohhot 2017 (0.2345) | IRS | |
Xi’an | Xi’an 2017 (1.0000) | CRS | |
Xining | Chongqing 2017(0.0581); Nanning 2017(0.1102) | IRS | |
Yinchuan | Chongqing 2017 (0.0853); Hohhot 2017(0.0195) | IRS | |
Northeastern | Changchun | Changchun 2017 (1.0000) | CRS |
Harbin | Changchun 2017 (0.7901); Shenyang 2017 (0.2092) | IRS | |
Shenyang | Shenyang 2017 (1.0000) | CRS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Yang, F.; Lee, H. On the Unbalanced Atmospheric Environmental Performance of Major Cities in China. Sustainability 2020, 12, 5391. https://doi.org/10.3390/su12135391
Choi Y, Yang F, Lee H. On the Unbalanced Atmospheric Environmental Performance of Major Cities in China. Sustainability. 2020; 12(13):5391. https://doi.org/10.3390/su12135391
Chicago/Turabian StyleChoi, Yongrok, Fan Yang, and Hyoungsuk Lee. 2020. "On the Unbalanced Atmospheric Environmental Performance of Major Cities in China" Sustainability 12, no. 13: 5391. https://doi.org/10.3390/su12135391
APA StyleChoi, Y., Yang, F., & Lee, H. (2020). On the Unbalanced Atmospheric Environmental Performance of Major Cities in China. Sustainability, 12(13), 5391. https://doi.org/10.3390/su12135391