Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach
Abstract
:1. Introduction
2. Study Area: Four Megacities of India
3. Materials
Satellite Data
4. Methodology
4.1. PM10 Concentration
4.1.1. Conversion from DN Value to Top of the Atmosphere (TOA) Reflectance
4.1.2. Sun Angle Correction
4.1.3. Regression Analysis and PM10 Concentration Calculation
4.2. LST Retrieval
4.2.1. Digital Number to Spectral Radiance Conversion
4.2.2. Spectral Radiance to At-Satellite Brightness Temperatures
4.2.3. LST Estimation
4.2.4. Kelvin to Degree Celsius Conversion
4.3. Biophysical Indices Extraction
4.4. Fuzzy Inference System (FIS)
Fuzzy Model Setup
- (a)
- Fuzzy membership function was applied to five Environmental Quality Variables (EQV) considering their influence on urban environment.
- (b)
- Positioning Control Point (CP) in order to find out the most influential range of the five EQVs to produce Environmental Quality Index (EQI).
4.5. Fuzzy-Analytical Hierarchical Process (AHP)
4.6. EQI Generation
5. Results
5.1. Changing Patterns of PM10 Concentration
5.2. Changing Patterns of LST
5.3. Changing Patterns of Biophysical Indices
5.4. Impact of COVID-19 Lockdown on Environmental Quality
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mathur, S. Analyzing the Patterns of Delhi’s Air Pollution. In Advances in Data Sciences, Security and Applications; Springer: Singapore, 2020; pp. 33–44. [Google Scholar]
- Mukherjee, A.; Agrawal, M. Air pollutant levels are 12 times higher than guidelines in Varanasi, India. Sources and transfer. Environ. Chem. Lett. 2018, 16, 1009–1016. [Google Scholar] [CrossRef]
- Garaga, R.; Sahu, S.K.; Kota, S.H. A review of air quality modeling studies in India: Local and regional scale. Curr. Pollut. Rep. 2018, 4, 59–73. [Google Scholar] [CrossRef]
- Guo, H.; Kota, S.H.; Sahu, S.K.; Hu, J.; Ying, Q.; Gao, A.; Zhang, H. Source apportionment of PM2. 5 in North India using source-oriented air quality models. Environ. Pollut. 2017, 231, 426–436. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: http://who.int/phe/publications/airpollution-globalassessment/en/ (accessed on 20 May 2020).
- Polk, H.S. State of Global Air 2019: A Special Report on Global Exposure to Air Pollution and Its Disease Burden; Health Effects Institute: Boston, MA, USA, 2019. [Google Scholar]
- Mohan, M.; Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Singh, R.B. Air pollution and human health in Kolkata, India: A case study. Climate 2017, 5, 77. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Chakraborty, A.; Joshi, K. Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environ. Monit. Assess. 2015, 187, 4206. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, I.; Brandt, J.; Kumar, R.; Dikshit, A.K.; Patil, R.S. Air quality mapping using GIS and economic evaluation of health impact for Mumbai city, India. J. Air Waste Manag. Assoc. 2016, 66, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, A.M. Urban green-cover and the environmental performance of Chennai city. Environ. Dev. Sustain. 2011, 13, 107–119. [Google Scholar] [CrossRef]
- Partheeban, P.; Raju, H.P.; Hemamalini, R.R.; Shanthini, B. Real-Time Vehicular Air Quality Monitoring Using Sensing Technology for Chennai. In Transportation Research; Springer: Singapore, 2020; pp. 19–28. [Google Scholar]
- Sathyakumar, V.; Ramsankaran, R.; Bardhan, R. Geospatial approach for assessing spatiotemporal dynamics of urban green space distribution among neighbourhoods: A demonstration in Mumbai. Urban For. Urban Green. 2020, 48, 126585. [Google Scholar] [CrossRef]
- Liang, B.; Weng, Q. Assessing urban environmental quality change of Indianapolis, United States, by the remote sensing and GIS integration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 43–55. [Google Scholar] [CrossRef]
- Akbari, H.; Rosenfeld, A.H.; Taha, H. Summer heat islands, urban trees, and white surfaces. ASHRAE Trans. 1990, 96, 1381–1388. [Google Scholar]
- Akbari, S.; Rose, H.L.S.; Taha, H. Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc. Urban Plan. 2003, 63, 1–14. [Google Scholar] [CrossRef]
- De Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Spreeuwenberg, Natural environments—Healthy environments? An exploratory analysis of relationship between green space and Health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef] [Green Version]
- Nichol, J.; Wong, M.S. Modeling urban environmental quality in a tropical city. Landsc. Urban Plan. 2005, 73, 49–58. [Google Scholar] [CrossRef]
- Heynen, N. Green urban political ecologies: Toward a better understanding of inner-city environmental change. Environ. Plan A 2006, 38, 499–516. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Weng, Q.; Liu, H.; Liang, B.; Lu, D. The spatial variations of urban land surface temperatures: Pertinent factors, zoning effect, and seasonal variability. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 154–166. [Google Scholar] [CrossRef]
- Rajasekar, U.; Weng, Q. Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM+ imagery. Int. J. Remote Sens. 2009, 30, 3531–3548. [Google Scholar] [CrossRef]
- Li, G.; Weng, Q. 15 Integration of Remote Sensing and Census Data for Assessing Urban Quality of Life: Model Development. In Urban Remote Sensing; Weng, Q., Quattrochi, D.A., Eds.; CRC Press: Boca Raton, FL, USA, 2006; p. 311. [Google Scholar]
- Li, G.; Weng, Q. Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. Int. J. Remote Sens. 2007, 28, 249–267. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Li, E.; Xu, C. Assessment model of ecoenvironmental vulnerability based on improved entropy weight method. Sci. World J. 2014, 2014, 797814. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Mohan, M.; Dagar, L.; Gurjar, B.R. Preparation and validation of gridded emission inventory of criteria air pollutants and identification of emission hotspots for megacity Delhi. Environ. Monit. Assess. 2007, 130, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, I.; Mishra, R.K.; Kumar, A. Estimation of PM10 concentration from Landsat 8 OLI satellite imagery over Delhi, India. Remote Sens. Appl. Soc. Environ. 2017, 8, 251–257. [Google Scholar] [CrossRef]
- Landsat Missions: Using the USGS Landsat 8 Product. Available online: https://landsat.usgs.gov/using-usgs-landsat-8-product (accessed on 15 December 2016).
- Landsat Project Science Office. Landsat 7 Science Data User’s Handbook; Goddard Space Flight Center, NASA, 2002. Available online: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html (accessed on 20 May 2020).
- Nichol, J.E. A GIS-based approach to microclimate monitoring in Singapore’s high-rise housing estates. Photogramm. Eng. Remote Sens. 1994, 60, 1225–1232. [Google Scholar]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Purevdorj, T.S.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Nguyen, A.K.; Liou, Y.A.; Li, M.H.; Tran, T.A. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 2016, 69, 100–117. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sens. Appl. Soc. Environ. 2019, 13, 191–203. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Sarmadian, F.; Heidari, A.; Omid, M. Land suitability evaluation using fuzzy continuous classification (a case study: Ziaran region). Mod. Appl. Sci. 2010, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Hembram, T.K.; Saha, S. Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environ. Dev. Sustain. 2018, 6, 1–28. [Google Scholar] [CrossRef]
- Ahmed, R.; Sajjad, H.; Husain, I. Morphometric parameters-based prioritization of sub-watersheds using fuzzy analytical hierarchy process: A case study of lower Barpani Watershed, India. Nat. Resour. Res. 2017, 27, 67–75. [Google Scholar] [CrossRef]
- Mamdani, E.H. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 1977, 12, 1182–1191. [Google Scholar] [CrossRef]
- Bojadziev, G. Fuzzy Logic for Business, Finance, and Management; World Scientific: Singapore, 2007; Volume 23. [Google Scholar]
- Sarkar, S.; Parihar, S.M.; Dutta, A. Fuzzy risk assessment modelling of East Kolkata Wetland Area: A remote sensing and GIS based approach. Environ. Model. Softw. 2016, 75, 105–118. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytical Hierarchy Process; McGraw Hill: New York, NY, USA, 1980; p. 350. [Google Scholar]
- Saha, S. Groundwater potential mapping using analytical hierarchical process: A study on Md. Bazar Block of Birbhum District, West Bengal. Spat. Inf. Res. 2017, 25, 615–626. [Google Scholar] [CrossRef]
- Satty, T.L.; Vargas, L.G. Models, methods, concepts and applications of the analytic hierarchy process. Int. Ser. Oper. Res. Manag. Sci. 2001, 34, 1–352. [Google Scholar]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Richardson, C.; Amankwatia, K. GIS-based analytic hierarchy process approach to watershed vulnerability in Bernalillo County, New Mexico. J. Hydrol. Eng. 2018, 23, 04018010. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 20, 138820. [Google Scholar] [CrossRef]
Study Area | Date | Sensor | Image ID | % of Cloud | Remarks | |
---|---|---|---|---|---|---|
Mumbai | Same time of pre-lockdown, 2019 | 10\04\2019 | LANDSAT 8 OLI | LC08_L1TP_148047_20190410_20190422_01_T1 | 0.72 | No cloud cover on the study area |
Pre-lockdown, 2020 | 11\03\2020 | LC08_L1TP_148047_20200311_20200325_01_T1 | 5.77 | 7.29% on land but very less on the study area | ||
During lockdown, 2020 | 12\04\2020 | LC08_L1TP_148047_20200412_20200422_01_T1 | 1.62 | No cloud cover on the study area | ||
Delhi | Same time of pre-lockdown, 2019 | 28\04\2019 | LC08_L1TP_146040_20190428_20190508_01_T1 | 0 | No cloud cover on the study area | |
Pre-lockdown, 2020 | 13\03\2020 | LC08_L1TP_146040_20200313_20200325_01_T1 | 34.4 | No cloud cover on the study area | ||
During lockdown, 2020 | 29\03\2020 | LC08_L1TP_146040_20200329_20200409_01_T1 | 0.03 | No cloud cover on the study area | ||
Kolkata | Same time of pre-lockdown, 2019 | 20\04\2019 | LC08_L1TP_138044_20190420_20190507_01_T1 | 18.64 | No cloud cover on the study area | |
Pre-lockdown, 2020 | 21\03\2020 | LC08_L1TP_138044_20200321_20200326_01_T1 | 32.57 | No cloud cover on the study area | ||
During lockdown, 2020 | 06\04\2020 | LC08_L1TP_138044_20200406_20200410_01_T1 | 0.58 | No cloud cover on the study area | ||
Chennai | Same time of pre-lockdown, 2019 | 31\03\2019 | LC08_L1TP_142051_20190331_20190404_01_T1 | 2.46 | No cloud cover on the study area | |
Pre-lockdown, 2020 | 17\03\2020 | LC08_L1TP_142051_20200317_20200326_01_T1 | 3.54 | No cloud cover on the study area | ||
During lockdown, 2020 | 02\04\2020 | LC08_L1TP_142051_20200402_20200410_01_T1 | 0.28 | No cloud cover on the study area |
Band Description | ||
---|---|---|
Band | Spectral Resolution (μm) | Spatial Resolution (m) |
Band 1-Coastal/Aerosol | 0.433 to 0.453 | 30 |
Band 2-Visible blue (BLUE) | 0.450 to 0.515 | 30 |
Band 3-Visible green (GREEN) | 0.525 to 0.600 | 30 |
Band 4-Visible red (RED) | 0.630 to 0.680 | 30 |
Band 5-Near-infrared (NIR) | 0.845 to 0.885 | 30 |
Band 6-Short wavelength infrared1 (SWIR1) | 1.56 to 1.66 | 30 |
Band 7-Short wavelength infrared2 (SWIR2) | 2.10 to 2.30 | 30 |
Band 8-Panchromatic | 0.50 to 0.68 | 15 |
Band 9-Cirrus | 1.36 to 1.39 | 30 |
Band 10-Thermal Infrared (TIRS) 1 | 10.3 to 11.3 | 100 * (30) |
Band 11-Thermal Infrared (TIRS) 2 | 11.5 to 12.5 | 100 * (30) |
EQFs | Control Points | Fuzzy Membership Function | Fuzzy Membership Shape | |||
---|---|---|---|---|---|---|
a | b | c | d | |||
PM10 concentration | 1 | 281 | Monotonically increasing | Sigmoidal | ||
LST | 7 | 50 | Monotonically increasing | Sigmoidal | ||
NDVI | −0.13 | 0.65 | Monotonically Decreasing | Sigmoidal | ||
NDWI | −0.57 | 0.56 | Monotonically Decreasing | Sigmoidal | ||
NDMI | −0.65 | 0.55 | Monotonically Decreasing | Sigmoidal |
PM10 | LST | NDVI | NDWI | NDMI | |
---|---|---|---|---|---|
PM10 | 1 | ||||
LST | 0.33 | 1 | |||
NDVI | 0.20 | 0.20 | 1 | ||
NDWI | 0.14 | 0.14 | 0.33 | 1 | |
NDMI | 0.11 | 0.11 | 0.20 | 0.33 | 1 |
Consistency Ratio is 0.07 |
EQVs | Weightage |
---|---|
PM10 concentration | 0.492 |
Land Surface Temperature | 0.3136 |
NDVI | 0.1093 |
NDWI | 0.0553 |
NDMI | 0.0298 |
Study Area | Date | Very Low | Low | Medium | High | Very High |
---|---|---|---|---|---|---|
Mumbai | 2019 | 10.22759 | 19.97495 | 35.34755 | 21.62421 | 12.8257 |
Pre-lockdown | 46.19468 | 32.35018 | 18.56851 | 2.787521 | 0.099114 | |
Lockdown | 38.44749 | 31.63997 | 22.3983 | 5.484552 | 2.029686 | |
Delhi | 2019 | 1.502448 | 1.08621 | 8.639542 | 30.67348 | 58.09832 |
Pre-lockdown | 94.39192 | 5.593551 | 0.0135 | 0.0004 | 0.000629 | |
Lockdown | 71.02876 | 27.36464 | 1.565073 | 0.040099 | 0.00143 | |
Kolkata | 2019 | 52.16253 | 25.94085 | 16.33086 | 4.490782 | 1.074978 |
Pre-lockdown | 55.86787 | 37.05701 | 7.02363 | 0.019139 | 0.032355 | |
Lockdown | 35.74941 | 31.45045 | 20.39915 | 8.486124 | 3.914865 | |
Chennai | 2019 | 58.38214 | 28.33292 | 12.44535 | 0.463332 | 0.376257 |
Pre-lockdown | 44.20491 | 37.07574 | 16.24046 | 1.987608 | 0.491288 | |
Lockdown | 59.94629 | 31.48092 | 7.667207 | 0.740598 | 0.164985 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Das, A.; Hembram, T.K.; Saha, S.; Pradhan, B.; Alamri, A.M. Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach. Sustainability 2020, 12, 5464. https://doi.org/10.3390/su12135464
Ghosh S, Das A, Hembram TK, Saha S, Pradhan B, Alamri AM. Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach. Sustainability. 2020; 12(13):5464. https://doi.org/10.3390/su12135464
Chicago/Turabian StyleGhosh, Sasanka, Arijit Das, Tusar Kanti Hembram, Sunil Saha, Biswajeet Pradhan, and Abdullah M. Alamri. 2020. "Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach" Sustainability 12, no. 13: 5464. https://doi.org/10.3390/su12135464
APA StyleGhosh, S., Das, A., Hembram, T. K., Saha, S., Pradhan, B., & Alamri, A. M. (2020). Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach. Sustainability, 12(13), 5464. https://doi.org/10.3390/su12135464