Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process
Abstract
:1. Introduction
2. Literature Review
2.1. Baseline Study on GI
2.2. Critical Elements for the Creation of GI
3. Research Methodology: AHP
4. Results and Discussion
4.1. Tier 1 Evaluation
4.2. Tier 2 Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UK Green Building Council. Demystifying Green Infrastructure; UK Green Building Council: London, UK, 2015. [Google Scholar]
- Berardi, U.; GhaffarianHoseini, A.; Ali, G. State-of- the-art analysis of the environmental benefits of green roofs. J. Appl. Energy 2013, 115, 411–428. [Google Scholar] [CrossRef]
- Vandermeulen, V.; Verspecht, A.; Vermeire, B.; Van Huylenbroeck, G.; Gellynck, X. The use of economic valuation to create public support for green infrastructure investments in urban areas. Landsc. Urban Plan. 2011, 103, 198–206. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Shen, J.-K.; Xiang, W.-N. Ecosystem service of green infrastructure for adaptation to urban growth: Function and configuration. Ecosyst. Health Sustain. 2018, 4, 132–143. [Google Scholar] [CrossRef]
- Engström, G.; Gren, A. Capturing the value of green space in urban parks in a sustainable urban planning and design context: Pros and cons of hedonic pricing. Ecol. Soc. 2017, 22, 21. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.; Zingoni de Baro, M.E. Green Infrastructure in the Urban Environment: A Systematic Quantitative Review. Sustainability 2019, 11, 3182. [Google Scholar] [CrossRef] [Green Version]
- Colding, J. The role of ecosystem services in contemporary urban planning. Urban Ecol. Patterns Process. Appl. 2011, 228–237. [Google Scholar]
- Ahern, J.; Cilliers, S.; Niemelä, J. The concept of ecosystem services in adaptive urban planning and design: A framework for supporting innovation. Landsc. Urban Plan. 2014, 125, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Benedict, M.; McMahon, E. Green Infrastructure: Smart Conservation for the 21st Century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; et al. The nexus between air pollution, green infrastructure and human health. Environ. Int. 2019, 133, 105181. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.Y.; Byrne, J.A. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Lovell, S.T.; Taylor, J.R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Albert, C.; Von Haaren, C. Implications of Applying the Green Infrastructure Concept in Landscape Planning for Ecosystem Services in Peri-Urban Areas: An Expert Survey and Case Study. Plan. Pract. Res. 2017, 32, 227–242. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Perception and Attitude of Residents toward Urban Green Spaces in Guangzhou (China). Environ. Manag. 2006, 38, 338–349. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Silvennoinen, H.; Kolehmainen, O. Ecological and aesthetic values in urban forest management. Urban For. Urban Green. 2003, 1, 135–149. [Google Scholar] [CrossRef]
- Zhou, X.; Parves Rana, M. Social benefits of urban green space: A conceptual framework of valuation and accessibility measurements. Manag. Environ. Qual. Int. J. 2012, 23, 173–189. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [Green Version]
- Grahn, P.; Stigsdotter, U.A. Landscape planning and stress. Urban For. Urban Green. 2003, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Schilling, J.; Logan, J. Greening the Rust Belt: A Green Infrastructure Model for Right Sizing America’s Shrinking Cities. J. Am. Plan. Assoc. 2008, 74, 451–466. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Song, S.-K. Case Study on Community Benefits of Green Infrastructure. J. Korea Plan. Assoc. 2017, 52, 185. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Erell, E. The Application of Urban Climate Research in the Design of Cities. Adv. Build. Energy Res. 2008, 2, 95–121. [Google Scholar] [CrossRef]
- Porse, E. Open data and stormwater systems in Los Angeles: Applications for equitable green infrastructure. Local Environ. 2018, 23, 505–517. [Google Scholar] [CrossRef]
- Kambites, C.; Owen, S. Renewed prospects for green infrastructure planning in the UK 1. Plan. Pract. Res. 2006, 21, 483–496. [Google Scholar] [CrossRef]
- Hansen, R.; Pauleit, S. From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Haq, S.M.A. Urban Green Spaces and an Integrative Approach to Sustainable Environment. J. Environ. Prot. 2011, 2, 601–608. [Google Scholar] [CrossRef] [Green Version]
- EPA. The Causal Analysis/Diagnosis Decision Information System (CADDIS); EPA: New York, NY, USA, 2017.
- Alves, A.; Patiño Gómez, J.; Vojinovic, Z.; Sánchez, A.; Weesakul, S. Combining Co-Benefits and Stakeholders Perceptions into Green Infrastructure Selection for Flood Risk Reduction. Environments 2018, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Mell, I.C. Can green infrastructure promote urban sustainability? Proc. Inst. Civ. Eng. Eng. Sustain. 2009, 162, 23–34. [Google Scholar] [CrossRef]
- Mell, I.C. Green Infrstructure: Concepts and planning. FORUM ejournal 2008, 8, 69–80. [Google Scholar]
- Martinelli, L.; Battisti, A.; Matzarakis, A. Multicriteria analysis model for urban open space renovation: An application for Rome. Sustain. Cities Soc. 2015, 14, e10–e20. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T.; Jia, H.; Xu, M.; Xu, T.; Liu, Z.; Long, Y.; Zhang, R. Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Yang, J.K.; Lee, C.G.; Jeon, J.H.; Lee, H.K. Selection and management factor analysis of urban infrastructure for U-City construction. KSCE J. Civ. Eng. 2013, 17, 1637–1643. [Google Scholar] [CrossRef]
- Haider, H.; Chumman, A.R.; Al-Salamah, I.S.; Ghazaw, Y.; Abdel-Maguid, R.H. Sustainability Evaluation of Rainwater Harvesting-Based Flood Risk Management Strategies: A Multilevel Decision-Making Framework for Arid Environments. Arab. J. Sci. 2019, 44, 8465–8488. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; The McGraw Hill Building: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer: New York, NY, USA, 2012. [Google Scholar]
- Erden, T.; Karaman, H. Analysis of earthquake parameters to generate hazard maps by integrating AHP and GIS for Küçükçekmece region. Nat. Hazards Earth Syst. Sci. 2012, 12, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Song, K.-W.; Lee, Y. Re-scaling for Improving the Consistency of the AHP Method. Soc. Sci. Res. Rev. 2013, 29, 271–288. [Google Scholar]
- Kim, B. Analytic Hierarchy Process (AHP) Analysis Method; Kim’s inforamtion: Seoul, Korea, 2015. [Google Scholar]
- Ahn, S.H.; Shim, S.D.; Jang, J.K.; Kim, S.Y. General Guidelines for Preliminary Feasibility Studies, 5th ed.; Korea Development Institute: Sejong, Korea, 2008. [Google Scholar]
- Kim, D.; Song, S.-K. The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases. Sustainability 2019, 11, 3917. [Google Scholar] [CrossRef] [Green Version]
Literature | Keywords | |||
---|---|---|---|---|
Ecological | Landscape | Usability | Economic | |
EPA, 2010 | Site Preservation protection plan Ecological Connectivity Climate change | Visual connectivity | Public participation Accessibility Public Health improvement | Choosing Material Synthetic Turf Maintenance Planning |
Shah Md, 2011 | Absorbing pollutant preservation | Visual screen Commuting and recreation place | Diversity of land uses Contribution to health and active life styles in cities Social opportunity | Production and supply New job creation Increasing economic value |
Lovell and Taylor, 2013 | Plant Biodiversity Microclimate control Soil infiltration Carbon sequestration | Visual Quality | Physical Activity Social Capital | Production |
Hansen and Pauleit, 2014 | Connectivity | |||
Martinelli et al., 2014 | Fruition and accessibility Bioclimate comfort | Intervention cost Maintenance requirement | ||
Alida Alves et al., 2018 | Water quality Biodiversity Temperature reduction Groundwater Recharge Air quality improvement | Amenity and aesthetics Recreation and health Food security | Rainwater Harvesting Saving Energy Pumping and treatment reduction Real estate value | |
Ahern et al., 2014 | Stormwater infiltration Water quality Habitat provisioning Air quality Urban climate Carbon storage and sequestration | Public recreation Cultural service provision Education service potential | Food security | |
Mell, 2009 | Creating attractive places | Accessibility Exercise and recreational place Social cohesion Access to education Regeneration Linking people to local heritage |
Primary Criteria (Tier 1) | Secondary Criteria (Tier 2) | Description |
---|---|---|
Ecological | Climate control | Reducing urban heat island effects, controlling seasonal temperature and humidity |
Air quality improvement | Reducing air pollutants such as fine and ultra-fine particulates | |
Stormwater runoff | Stormwater infiltration and filtration, reducing runoff | |
Ecological conservation | Habitat creation and protection, soil conservation | |
Landscape | Creating a featured landscape | Providing urban landmarks and aesthetic features |
Harmonizing with the surrounding environment | Matching GI with surrounding buildings, roads, and the environment | |
Providing natural elements within an urban setting | Naturalness within gray concrete structures | |
Screening | Creating spaces and screening effects using planting | |
Usability | Accessibility | Ease of community access to the GI |
Leisure and amenity | Supporting leisure activities such as walking and exercising | |
Educational functions | Educational programs such as working with school groups | |
Shelter | Protection from natural hazards such as flash flooding and landslides, providing shelter | |
Economic | Groundwork | Cost for groundworks |
Planting | Cost for planting | |
Paving and other works | Cost for roads, street furniture, and facilities, etc. | |
Maintenance | Entire maintenance cost |
Category | No. of Respondents | Percentage | |
---|---|---|---|
Total | 57 | 100 | |
Sex | Male | 35 | 61.4 |
Female | 22 | 38.6 | |
Age | 20s | 13 | 22.8 |
30s | 17 | 29.8 | |
40s | 19 | 33.3 | |
50s | 8 | 14.0 | |
Organization | Government | 11 | 19.3 |
Academia | 13 | 22.8 | |
Private Sector | 33 | 57.9 | |
Subject | Environment | 11 | 19.3 |
Architecture | 1 | 1.8 | |
Landscape | 38 | 66.7 | |
Forestry | 3 | 5.3 | |
Policy | 2 | 3.5 | |
Other | 2 | 3.5 | |
Experience | Under 5 years | 18 | 31.6 |
6–10 years | 10 | 17.5 | |
11–15 years | 10 | 17.5 | |
16–20 years | 6 | 10.5 | |
More than 21 years | 13 | 22.8 |
Scale | Definition | Description |
---|---|---|
1 | Equal | Two activities have equal contribution. |
3 | Weak | One activity is mildly preferred over the other based on experience and judgment. |
5 | Strong | One activity is strongly preferred over the other based on experience and judgment. |
7 | Very strong | One activity is very strongly preferred over the other based on experience and judgment. |
9 | Extreme | One activity is extremely preferred over the other based on experience and judgment. |
2, 4, 6, 8 | Median | Median comparison value based on experience and judgment. |
Category | No | Ecological | Landscape | Usability | Economic | |
---|---|---|---|---|---|---|
Total | 38 | 0.387 | 0.266 | 0.214 | 0.133 | |
Sex | Male | 23 | 0.362 | 0.281 | 0.224 | 0.133 |
Female | 15 | 0.426 | 0.242 | 0.199 | 0.133 | |
Age | 20s | 7 | 0.273 | 0.237 | 0.247 | 0.243 |
30s | 11 | 0.315 | 0.272 | 0.279 | 0.133 | |
40s | 14 | 0.477 | 0.258 | 0.163 | 0.102 | |
50s | 6 | 0.445 | 0.269 | 0.180 | 0.106 | |
Organization | Government | 4 | 0.369 | 0.154 | 0.148 | 0.328 |
Academia | 8 | 0.376 | 0.240 | 0.266 | 0.117 | |
Private Sector | 26 | 0.384 | 0.291 | 0.207 | 0.118 | |
Area | Policy/Research | 12 | 0.387 | 0.215 | 0.227 | 0.171 |
Design/Construction | 26 | 0.384 | 0.291 | 0.207 | 0.118 | |
Subject | Environment | 6 | 0.470 | 0.184 | 0.194 | 0.151 |
Landscape | 27 | 0.366 | 0.296 | 0.211 | 0.127 | |
Other | 5 | 0.394 | 0.219 | 0.247 | 0.140 | |
Experience | Under 5 years | 8 | 0.293 | 0.217 | 0.225 | 0.265 |
6–10 years | 8 | 0.283 | 0.285 | 0.338 | 0.094 | |
11–15 years | 8 | 0.450 | 0.234 | 0.185 | 0.131 | |
More than 16 years | 14 | 0.457 | 0.282 | 0.159 | 0.102 |
Tier 1 Criterion | Importance (Based on Tier 1 Evaluation) | Tier 2 Criteria | Importance (Based on Tier 2 Evaluation) |
---|---|---|---|
Ecological | 0.387 | Climate Control | 0.269 |
Air Quality Improvement | 0.307 | ||
Stormwater runoff | 0.194 | ||
Ecological conservation | 0.230 |
Tier 1 Criterion | Importance (Based on Tier 1 Evaluation) | Tier 2 Criteria | Importance (Based on Tier 2 Evaluation) |
---|---|---|---|
Landscape | 0.266 | Creating a featured landscape | 0.161 |
Harmonizing with the surrounding environment | 0.282 | ||
Providing natural elements within an urban setting | 0.407 | ||
Screening | 0.151 |
Tier 1 Criterion | Importance (Based on Tier 1 Evaluation) | Tier 2 Criteria | Importance (Based on Tier 2 Evaluation) |
---|---|---|---|
Usability | 0.214 | Accessibility | 0.307 |
Leisure and amenity | 0.305 | ||
Educational functions | 0.164 | ||
Shelter | 0.224 |
Tier 1 Criterion | Importance (Based on Tier 1 Evaluation) | Tier 2 Criteria | Importance (Based on Tier 2 Evaluation) |
---|---|---|---|
Economic | 0.133 | Cost for groundworks | 0.196 |
Cost for planting | 0.356 | ||
Cost for Paving and other works | 0.137 | ||
Maintenance cost | 0.312 |
Tier 2 Criteria | Weighed Value | Priority |
---|---|---|
Air quality improvement | 0.119 | 1 |
Providing natural elements within urban settings | 0.108 | 2 |
Climate control | 0.104 | 3 |
Ecological conservation | 0.089 | 4 |
Stormwater runoff | 0.075 | 5 |
Harmonizing with the surrounding environment | 0.075 | 5 |
Accessibility | 0.066 | 7 |
Providing leisure and amenity | 0.065 | 8 |
Shelter | 0.048 | 9 |
Planting cost | 0.047 | 10 |
Creating a featured landscape | 0.043 | 11 |
Maintenance cost | 0.042 | 12 |
Screening | 0.040 | 13 |
Providing educational functions | 0.035 | 14 |
Groundworks cost | 0.026 | 15 |
Paving and other works cost | 0.018 | 16 |
Category | N | Ecological | Landscape | Usability | Economic | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate control | Air quality improvement | Stormwater runoff | Ecological conservation | Featured landscape creation | Suitable with surrounding environment | Providing natural elements within urban areas | Improving landscape by screening | Accessibility by citizens | Providing leisure and amenity activities | Educational function | Shelter function | Cost for groundworks | Cost for planting | Cost for paving and etc. | Maintenance cost | |||
Total | 38 | 0.104 | 0.119 | 0.075 | 0.089 | 0.043 | 0.075 | 0.108 | 0.040 | 0.066 | 0.065 | 0.035 | 0.048 | 0.026 | 0.047 | 0.018 | 0.042 | |
Sex | Male | 23 | 0.097 | 0.115 | 0.062 | 0.088 | 0.046 | 0.082 | 0.112 | 0.041 | 0.071 | 0.073 | 0.038 | 0.043 | 0.022 | 0.050 | 0.017 | 0.044 |
Female | 15 | 0.115 | 0.124 | 0.098 | 0.089 | 0.038 | 0.065 | 0.101 | 0.038 | 0.058 | 0.054 | 0.031 | 0.056 | 0.033 | 0.043 | 0.020 | 0.037 | |
Age | 20s | 7 | 0.083 | 0.064 | 0.073 | 0.053 | 0.055 | 0.055 | 0.080 | 0.047 | 0.069 | 0.069 | 0.033 | 0.075 | 0.055 | 0.057 | 0.040 | 0.091 |
30s | 11 | 0.083 | 0.096 | 0.063 | 0.074 | 0.032 | 0.084 | 0.108 | 0.048 | 0.093 | 0.084 | 0.043 | 0.059 | 0.025 | 0.055 | 0.024 | 0.030 | |
40s | 14 | 0.122 | 0.155 | 0.078 | 0.122 | 0.038 | 0.067 | 0.120 | 0.032 | 0.045 | 0.054 | 0.031 | 0.034 | 0.015 | 0.040 | 0.010 | 0.037 | |
50s | 6 | 0.117 | 0.158 | 0.079 | 0.091 | 0.054 | 0.089 | 0.095 | 0.031 | 0.064 | 0.050 | 0.029 | 0.037 | 0.032 | 0.032 | 0.012 | 0.030 | |
Organization | Public sector | 4 | 0.136 | 0.080 | 0.091 | 0.063 | 0.014 | 0.039 | 0.067 | 0.034 | 0.045 | 0.039 | 0.013 | 0.052 | 0.059 | 0.078 | 0.034 | 0.157 |
Academic | 8 | 0.101 | 0.104 | 0.085 | 0.087 | 0.033 | 0.076 | 0.095 | 0.036 | 0.081 | 0.068 | 0.056 | 0.062 | 0.020 | 0.041 | 0.014 | 0.042 | |
Private sector | 26 | 0.098 | 0.127 | 0.068 | 0.092 | 0.053 | 0.080 | 0.117 | 0.041 | 0.063 | 0.067 | 0.034 | 0.042 | 0.024 | 0.044 | 0.017 | 0.033 | |
Parts | Policy/Research | 12 | 0.116 | 0.099 | 0.090 | 0.081 | 0.026 | 0.064 | 0.088 | 0.037 | 0.070 | 0.059 | 0.036 | 0.062 | 0.030 | 0.053 | 0.020 | 0.068 |
Design/Construction | 26 | 0.098 | 0.127 | 0.068 | 0.092 | 0.053 | 0.080 | 0.117 | 0.041 | 0.063 | 0.067 | 0.034 | 0.042 | 0.024 | 0.044 | 0.017 | 0.033 | |
Subject | Environmental | 6 | 0.089 | 0.137 | 0.111 | 0.133 | 0.036 | 0.040 | 0.084 | 0.025 | 0.069 | 0.048 | 0.025 | 0.053 | 0.044 | 0.037 | 0.027 | 0.044 |
Landscape | 27 | 0.106 | 0.114 | 0.067 | 0.079 | 0.048 | 0.088 | 0.114 | 0.046 | 0.064 | 0.066 | 0.036 | 0.045 | 0.023 | 0.049 | 0.015 | 0.040 | |
Other | 5 | 0.105 | 0.116 | 0.078 | 0.094 | 0.027 | 0.060 | 0.101 | 0.031 | 0.065 | 0.082 | 0.045 | 0.054 | 0.026 | 0.046 | 0.025 | 0.042 | |
Experience | Under 5 years | 8 | 0.080 | 0.076 | 0.072 | 0.064 | 0.049 | 0.050 | 0.075 | 0.043 | 0.067 | 0.056 | 0.030 | 0.072 | 0.061 | 0.063 | 0.046 | 0.095 |
6–10 years | 8 | 0.069 | 0.083 | 0.072 | 0.058 | 0.033 | 0.091 | 0.112 | 0.049 | 0.119 | 0.104 | 0.056 | 0.059 | 0.018 | 0.038 | 0.013 | 0.025 | |
11–15 years | 8 | 0.147 | 0.111 | 0.045 | 0.146 | 0.027 | 0.053 | 0.122 | 0.031 | 0.053 | 0.062 | 0.029 | 0.041 | 0.020 | 0.051 | 0.020 | 0.039 | |
More than 16 years | 14 | 0.109 | 0.168 | 0.090 | 0.089 | 0.051 | 0.090 | 0.107 | 0.035 | 0.047 | 0.050 | 0.030 | 0.033 | 0.021 | 0.039 | 0.011 | 0.032 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.; Kim, S.; Lee, S.-W.; An, K. Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process. Sustainability 2020, 12, 5468. https://doi.org/10.3390/su12135468
Shin Y, Kim S, Lee S-W, An K. Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process. Sustainability. 2020; 12(13):5468. https://doi.org/10.3390/su12135468
Chicago/Turabian StyleShin, Yeeun, Suyeon Kim, Sang-Woo Lee, and Kyungjin An. 2020. "Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process" Sustainability 12, no. 13: 5468. https://doi.org/10.3390/su12135468
APA StyleShin, Y., Kim, S., Lee, S. -W., & An, K. (2020). Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process. Sustainability, 12(13), 5468. https://doi.org/10.3390/su12135468