Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots
Abstract
:1. Introduction
2. Methodology and Data
2.1. Methodology
2.2. Data
3. Results
3.1. Descriptive Statistics, Normality Test and Nonlinear Test
3.2. The Effects of Energy Prices on Carbon Prices
3.3. The Effects of the Macroeconomic Level on Carbon Prices
4. Conclusions and Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dudley, B. BP Statistical Review of World Energy; BP plc: London, UK, 2019. [Google Scholar]
- UN (United Nations). Global Conference on Strengthening Synergies between the Paris Agreement and the 2030 Agenda for Sustainable Development: Maximizing Co-Benefits by Linking Implementation across SDGs and Climate Action; United Nations: New York, NY, USA, 2019. [Google Scholar]
- UN (United Nations). Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2016. [Google Scholar]
- UNFCCC (United Nations Framework Convention on Climate Change). Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- NDRC (National Development and Reform Commission). Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions; Department of Climate Change: Beijing, China, 2015. [Google Scholar]
- Jiang, J.J.; Ye, B.; Ma, X.M. The construction of Shenzhen’s carbon emission trading scheme. Energy Policy 2014, 75, 17–21. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Peng, Y.L.; Ma, C.Q.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 2017, 100, 18–28. [Google Scholar] [CrossRef]
- Chai, S.; Zhou, P. The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems. Energy Econ. 2018, 76, 64–75. [Google Scholar] [CrossRef]
- ICAP (International Carbon Action Partnership). Emissions Trading Worldwide: Status Report 2018; ICAP: Berlin, Germany, 2018. [Google Scholar]
- Jiang, J.; Xie, D.; Ye, B.; Shen, B.; Chen, Z. Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook. Appl. Energy 2016, 178, 902–917. [Google Scholar] [CrossRef]
- Munnings, C.; Morgenstern, R.D.; Wang, Z.; Liu, X. Assessing the design of three carbon trading pilot programs in China. Energy Policy 2016, 96, 688–699. [Google Scholar] [CrossRef]
- Cong, R.; Lo, A.Y. Emission trading and carbon market performance in Shenzhen, China. Appl. Energy 2017, 193, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Li, Y. Influencing factors and fluctuation characteristics of China’s carbon emission trading price. Phys. A Stat. Mech. Appl. 2019, 524, 459–474. [Google Scholar] [CrossRef]
- Mansanet-Bataller, M.; Pardo, A.; Valor, E. CO2 prices, energy and weather. Energy J. 2007, 28, 67–86. [Google Scholar] [CrossRef]
- Kim, H.S.; Koo, W.W. Factors affecting the carbon allowance market in the US. Energy Policy 2010, 38, 1879–1884. [Google Scholar] [CrossRef]
- Creti, A.; Jouvet, P.A.; Mignon, V. Carbon price drivers: Phase I versus Phase II equilibrium? Energy Econ. 2012, 34, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Aatola, P.; Ollikainen, M.; Toppinen, A. Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals. Energy Econ. 2013, 36, 380–395. [Google Scholar] [CrossRef]
- Hammoudeh, S.; Nguyen, D.K.; Sousa, R.M. What explain the short-term dynamics of the prices of CO2 emissions? Energy Econ. 2014, 46, 122–135. [Google Scholar] [CrossRef]
- Hammoudeh, S.; Nguyen, D.K.; Sousa, R.M. Energy prices and CO2 emission allowance prices: A quantile regression approach. Energy Policy 2014, 70, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Hammoudeh, S.; Lahiani, A.; Nguyen, D.K.; Sousa, R.M. An empirical analysis of energy cost pass-through to CO2 emission prices. Energy Econ. 2015, 49, 149–156. [Google Scholar] [CrossRef]
- Yu, L.; Li, J.; Tang, L.; Wang, S. Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach. Energy Econ. 2015, 51, 300–311. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Sun, Y.F. The dynamic volatility spillover between European carbon trading market and fossil energy market. J. Clean. Prod. 2016, 112, 2654–2663. [Google Scholar] [CrossRef]
- Chung, C.; Jeong, M.; Young, J. The Price Determinants of the EU Allowance in the EU Emissions Trading Scheme. Sustainability 2018, 10, 4009. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Ye, S.; Han, D.; Wang, P.; He, K.; Wei, Y.M.; Xie, R. A multiscale analysis for carbon price drivers. Energy Econ. 2019, 78, 202–216. [Google Scholar] [CrossRef]
- Chevallier, J.; Nguyen, D.K.; Reboredo, J.C. A conditional dependence approach to CO2-energy price relationships. Energy Econ. 2019, 81, 812–821. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Z. An analysis of the interactions between electricity, fossil fuel and carbon market prices in Guangdong, China. Energy Sustain. Dev. 2020, 55, 82–94. [Google Scholar] [CrossRef]
- Chevallier, J. Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models. Econ. Model. 2011, 28, 2634–2656. [Google Scholar] [CrossRef]
- Lutz, B.J.; Pigorsch, U.; Rotfuß, W. Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals. Energy Econ. 2013, 40, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Koch, N.; Fuss, S.; Grosjean, G.; Edenhofer, O. Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence. Energy Policy 2014, 73, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Aguiar-Conraria, L.; Soares, M.J. Carbon financial markets: A time-frequency analysis of CO2 prices. Phys. A Stat. Mech. Appl. 2014, 414, 118–127. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, R. What happens to the relationship between EU allowances prices and stock market indices in Europe? Energy Econ. 2019, 81, 13–24. [Google Scholar] [CrossRef]
- Yuan, N.; Yang, L. Asymmetric risk spillover between financial market uncertainty and the carbon market: A GAS–DCS–copula approach. J. Clean. Prod. 2020, 259, 120750. [Google Scholar] [CrossRef]
- Bredin, D.; Muckley, C. An emerging equilibrium in the EU emissions trading scheme. Energy Econ. 2011, 33, 353–362. [Google Scholar] [CrossRef]
- Tan, X.P.; Wang, X.Y. Dependence changes between the carbon price and its fundamentals: A quantile regression approach. Appl. Energy 2017, 190, 306–325. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, L.; Fang, Y. A semiparametric quantile panel data model with an application to estimating the growth effect of FDI. J. Econom. 2018, 206, 531–553. [Google Scholar] [CrossRef]
- Azomahou, T.; Laisney, F.; Van, P.N. Economic development and CO2 emissions: A nonparametric panel approach. J. Public Econ. 2006, 90, 1347–1363. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Shafiullah, M.; Papavassiliou, V.G.; Hammoudeh, S.M. The CO2–growth nexus revisited: A nonparametric analysis for the G7 economies over nearly two centuries. Energy Econ. 2017, 65, 183–193. [Google Scholar] [CrossRef]
- Cai, Z.; Xiao, Z. Semiparametric quantile regression estimation in dynamic models with partially varying coefficients. J. Econom. 2012, 167, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, R. A direct approach to inference in nonparametric and semiparametric quantile models. J. Econom. 2016, 191, 196–216. [Google Scholar] [CrossRef]
- Chuang, C.C.; Kuan, C.M.; Lin, H.Y. Causality in quantiles and dynamic stock return-volume relations. J. Clean. Prod. 2009, 33, 1351–1360. [Google Scholar] [CrossRef]
- Lee, B.S.; Li, M.Y.L. Diversification and risk-adjusted performance: A quantile regression approach. J. Bank. Financ. 2012, 36, 2157–2173. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Y.; You, W.; Xu, Y. The heterogeneity dependence between crude oil price changes and industry stock market returns in China: Evidence from a quantile regression approach. Energy Econ. 2016, 55, 30–41. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Sun, C. How does capital buffer affect bank risk-taking? New evidence from China using quantile regression. China Econ. Rev. 2019, 60, 101300. [Google Scholar] [CrossRef]
- Lo, A.Y. Challenges to the development of carbon markets in China. Clim. Policy 2016, 16, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Xu, H. A review of China’s carbon trading market. Renew. Sustain. Energy Rev. 2018, 91, 613–619. [Google Scholar] [CrossRef]
- Chang, K.; Chen, R.; Chevallier, J. Market fragmentation, liquidity measures and improvement perspectives from China’s emissions trading scheme pilots. Energy Econ. 2018, 75, 249–260. [Google Scholar] [CrossRef]
- Zhao, X.; Zou, Y.; Yin, J.; Fan, X. Cointegration relationship between carbon price and its factors: Evidence from structural breaks analysis. Energy Procedia 2017, 142, 2503–2510. [Google Scholar] [CrossRef]
- Chang, K.; Ge, F.; Zhang, C. The dynamic linkage effect between energy and emissions allowances price for regional emissions trading scheme pilots in China. Renew. Sustain. Energy Rev 2018, 98, 415–425. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Yin, J. Dynamic relationship between carbon price and coal price: Perspective based on Detrended Cross-Correlation Analysis. Energy Procedia 2019, 158, 3470–3475. [Google Scholar] [CrossRef]
- Zeng, S.; Nan, X.; Liu, C.; Chen, J. The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices. Energy Policy 2017, 106, 111–121. [Google Scholar] [CrossRef]
- Chevallier, J. Modelling risk premia in CO2 allowances spot and futures prices. Econ. Model. 2010, 27, 717–729. [Google Scholar] [CrossRef]
- Feng, Z.H.; Wei, Y.M.; Wang, K. Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS. Appl. Energy 2012, 99, 97–108. [Google Scholar] [CrossRef]
- Ibrahim, B.M.; Kalaitzoglou, I.A. Why do carbon prices and price volatility change? J. Bank. Financ. 2016, 63, 76–94. [Google Scholar] [CrossRef]
- Koenker, R. Additive models for quantile regression: Model selection and confidence bandaids. Braz. J. Probab. Stat. 2011, 25, 239–262. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L. Impacts on CO2 emission allowance prices in China: A quantile regression analysis of the Shanghai Emission Trading Scheme. Sustainability 2016, 8, 1195. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S. Study on Subject Matters of China Carbon Market; China Economic Publishing House: Beijing, China, 2019. [Google Scholar]
- Duan, M.; Wu, L.; Qi, S. China Carbon Market Development Report from Pilot to National; People’s Publication House: Beijing, China, 2018. [Google Scholar]
- ICAP (International Carbon Action Partnership). Emissions Trading Worldwide: Status Report 2019; ICAP: Berlin, Germany, 2019. [Google Scholar]
- Chang, K.; Lu, S.; Song, X. The impacts of liquidity dynamics on emissions allowances price: Different evidence from China’s emissions trading pilots. J. Clean. Prod. 2018, 183, 786–796. [Google Scholar] [CrossRef]
- Sun, Y. Annual Report of China Carbon Emissions Trading Scheme; Social Sciences Academic Press: Beijing, China, 2017. [Google Scholar]
- Li, H.; Lei, M. The influencing factors of China carbon price: A study based on carbon trading market in Hubei province. Earth Environ. Sci. 2018, 121, 052073. [Google Scholar] [CrossRef]
- Tan, X.; Wang, X. The market performance of carbon trading in China: A theoretical framework of structure-conduct-performance. J. Clean. Prod. 2017, 159, 410–424. [Google Scholar] [CrossRef]
- Guo, W. Factors Impacting on the Price of China’s Regional Carbon Emissions Based on Adaptive Lasso Method. China Popul. Resour. Environ. 2015, 25, 305–310. (In Chinese) [Google Scholar]
BJA | HBA | SZA | LNG | COAL | OIL | STOCK | |
---|---|---|---|---|---|---|---|
Mean | 53.292 | 21.622 | 39.137 | 4012.672 | 424.229 | 3390.796 | 2958.016 |
Median | 52.110 | 23.000 | 34.920 | 3887.500 | 433.000 | 3315.000 | 3051.724 |
Maximum | 87.470 | 53.850 | 122.970 | 9400.000 | 613.000 | 5075.000 | 5166.350 |
Minimum | 30.000 | 10.070 | 3.300 | 2380.000 | 270.000 | 1832.000 | 1991.253 |
Std.Dev | 9.730 | 6.119 | 19.065 | 1000.010 | 88.084 | 732.739 | 577.937 |
Skewness | 0.952 | 0.703 | 1.145 | 0.972 | −0.159 | 0.181 | 0.474 |
Kurtosis | 4.746 | 4.428 | 4.055 | 5.260 | 2.119 | 2.040 | 4.071 |
Jarque–Bera | 236.889 | 207.963 | 340.484 | 733.466 | 53.688 | 62.582 | 122.609 |
Probability | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pilots | Carbon Price/Determinants | m–Dimensional Space | Linearity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||||||
Stat. | Prob. | Stat. | Prob. | Stat. | Prob. | Stat. | Prob. | |||
Beijing | BJA/COAL | 0.1387 | 0.0000 | 0.2319 | 0.0000 | 0.2908 | 0.0000 | 0.3258 | 0.0000 | NO |
BJA/OIL | 0.1459 | 0.0000 | 0.2437 | 0.0000 | 0.3055 | 0.0000 | 0.3439 | 0.0000 | NO | |
BJA/LNG | 0.1406 | 0.0000 | 0.2360 | 0.0000 | 0.2980 | 0.0000 | 0.3369 | 0.0000 | NO | |
BJA/STOCK | 0.1497 | 0.0000 | 0.2535 | 0.0000 | 0.3211 | 0.0000 | 0.3638 | 0.0000 | NO | |
Hubei | HBA/COAL | 0.1934 | 0.0000 | 0.3296 | 0.0000 | 0.4237 | 0.0000 | 0.4883 | 0.0000 | NO |
HBA/OIL | 0.1906 | 0.0000 | 0.3254 | 0.0000 | 0.4192 | 0.0000 | 0.4840 | 0.0000 | NO | |
HBA/LNG | 0.1878 | 0.0000 | 0.3194 | 0.0000 | 0.4101 | 0.0000 | 0.4721 | 0.0000 | NO | |
HBA/STOCK | 0.1914 | 0.0000 | 0.3263 | 0.0000 | 0.4199 | 0.0000 | 0.4843 | 0.0000 | NO | |
Shenzhen | SZA/COAL | 0.1449 | 0.0000 | 0.2534 | 0.0000 | 0.3254 | 0.0000 | 0.3723 | 0.0000 | NO |
SZA/OIL | 0.1330 | 0.0000 | 0.2339 | 0.0000 | 0.2999 | 0.0000 | 0.3424 | 0.0000 | NO | |
SZA/LNG | 0.1377 | 0.0000 | 0.2421 | 0.0000 | 0.3119 | 0.0000 | 0.3578 | 0.0000 | NO | |
SZA/STOCK | 0.1545 | 0.0000 | 0.2682 | 0.0000 | 0.3440 | 0.0000 | 0.3946 | 0.0000 | NO |
Pilots | Variable | Q0.05 | Q0.1 | Q0.2 | Q0.3 | Q0.4 | Q0.5 | Q0.6 | Q0.7 | Q0.8 | Q0.9 | Q0.95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | βcoal | 0.265 *** | 0.284 *** | 0.258 *** | 0.272 *** | 0.273 *** | 0.304 *** | 0.337 *** | 0.404 *** | 0.555 *** | 0.865 *** | 0.976 *** |
βoil | 0.028 | 0.122 * | 0.008 | −0.041 | −0.045 | −0.069 | −0.119 * | −0.190 ** | −0.269 ** | −0.654 *** | −0.772 *** | |
βLNG | −0.061 | −0.044 | 0.126 *** | 0.107 *** | 0.161 *** | 0.217 *** | 0.261 *** | 0.334 *** | 0.320 *** | 0.325** | 0.267 * | |
Hubei | βcoal | −0.133 | −0.068 | −0.153 | −0.225 * | −0.356 *** | −0.381 *** | −0.356 *** | −0.381 *** | −0.278 ** | 0.258 | 0.408 ** |
βoil | −0.097 | −0.207 ** | −0.153 * | −0.251 *** | −0.298 *** | −0.280 *** | −0.324 *** | −0.228 *** | −0.151 ** | −0.608 *** | −0.754 *** | |
βLNG | 0.211 *** | 0.207 *** | 0.213 *** | 0.246 *** | 0.300 *** | 0.363 *** | 0.509 *** | 0.510 *** | 0.536 *** | 0.519 *** | 0.505 *** | |
Shenzhen | βcoal | −2.095 *** | −1.572 *** | −1.376 *** | −1.334 *** | −1.207 *** | −1.174 *** | −1.122 *** | −1.104 *** | −0.981 *** | −0.952 *** | −0.902 *** |
βoil | 1.786 *** | 1.207 *** | 0.974 *** | 0.935 *** | 0.777 *** | 0.776 *** | 0.772 *** | 0.808 *** | 0.712 *** | 0.766 *** | 0.712 *** | |
βLNG | 0.323 | −0.118 | 0.071 | 0.196 *** | 0.226 *** | 0.228 *** | 0.238 | 0.214 *** | 0.182 *** | 0.108 ** | 0.036 |
Pilot | Q0.05 | Q0.1 | Q0.2 | Q0.3 | Q0.4 | Q0.5 | Q0.6 | Q0.7 | Q0.8 | Q0.9 | Q0.95 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | Lambda | 0.089 | 0.286 | 0.081 | 0.119 | 0.141 | 0.161 | 0.268 | 0.098 | 0.173 | 0.064 | 0.064 |
Penalty | 13.31 | 3.988 | 21.52 | 15.42 | 16.2 | 16.86 | 13.01 | 19.52 | 17.07 | 30.62 | 29.65 | |
F statistics | 7.576 | 4.005 | 8.119 | 1.66 | 10.18 | 5.921 | 10.42 | 21.75 | 6.304 | 31.25 | 46.02 | |
P(>F) | 0.000 *** | 0.000 *** | 0.000 *** | 0.003 ** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | |
Hubei | Lambda | 0.017 | 0.032 | 0.108 | 0.198 | 0.103 | 0.124 | 0.340 | 0.131 | 0.151 | 0.107 | 0.052 |
Penalty | 138.8 | 85.1 | 43.34 | 31.01 | 41.95 | 47.47 | 25.25 | 26.93 | 20.72 | 31.84 | 42.45 | |
F statistics | 56.28 | 85.08 | 15.47 | 57.82 | 64.3 | 39.66 | 31.93 | 2.803 | 4.704 | 25.45 | 42.44 | |
P(>F) | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | |
Shenzhen | Lambda | 0.026 | 0.081 | 0.196 | 0.24 | 0.176 | 0.189 | 0.141 | 0.196 | 0.058 | 0.121 | 0.109 |
Penalty | 129.1 | 64.14 | 30.24 | 31.27 | 41.57 | 35.74 | 33.63 | 23.02 | 60.51 | 14.21 | 12.55 | |
F statistics | 64.08 | 79.68 | 68.26 | 1.458 × 109 | 94.39 | 3.724 | 79.08 | 65.43 | 17.14 | 38.94 | 29.21 | |
P(>F) | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W.; Chai, S.; Chen, X.; Du, M. Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots. Sustainability 2020, 12, 5581. https://doi.org/10.3390/su12145581
Chu W, Chai S, Chen X, Du M. Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots. Sustainability. 2020; 12(14):5581. https://doi.org/10.3390/su12145581
Chicago/Turabian StyleChu, Wenjun, Shanglei Chai, Xi Chen, and Mo Du. 2020. "Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots" Sustainability 12, no. 14: 5581. https://doi.org/10.3390/su12145581
APA StyleChu, W., Chai, S., Chen, X., & Du, M. (2020). Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots. Sustainability, 12(14), 5581. https://doi.org/10.3390/su12145581