An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Dovì, V.; Meshalkin, V.P. Project LANDFRI—A Russian-Italian Project for the Optimal Design and Operation of Municipal Wastes in Landfills. In Proceedings of the 3° Russian-Italian Meeting on Energy Efficiency and Resources Conservation (Video Conference), Moscow, Russia, 15–16 June 2020. [Google Scholar]
- Pietrelli, L.; Ferro, S.; Vocciante, M. Eco-friendly and cost-effective strategies for metals recovery from printed circuit boards. Renew. Sustain. Energy Rev. 2019, 112, 317–323. [Google Scholar] [CrossRef]
- Pietrelli, L.; Ferro, S.; Reverberi, A.P.; Vocciante, M. Removal and recovery of heavy metals from tanning sludge subjected to plasma pyrolysis. J. Clean. Prod. 2020, in press. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Bruxelles 26/01/2017. COMM (2017) 33 Final. 2017. Available online: http://ec.europa.eu/environment/circular-economy/implementation_report_annex.pdf (accessed on 1 June 2020).
- Pietrelli, L.; Ferro, S.; Vocciante, M. Raw materials recovery from spent hydrochloric acid-based galvanizing wastewater. Chem. Eng. J. 2018, 341, 539–546. [Google Scholar] [CrossRef]
- Babu, G.L.S.; Lakshmikanthan, P.; Santhosh, L.G. Assessment of Landfill Sustainability. In Sustainability Issues in Civil Engineering; Springer: Singapore, 2017; pp. 257–269. [Google Scholar]
- Herva, M.; Roca, E. Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J. Clean. Prod. 2013, 39, 355–371. [Google Scholar] [CrossRef]
- Vocciante, M.; Reverberi, A.P.; Pietrelli, L.; Dovì, V.G. Improved remediation processes through cost-effective estimation of soil properties from surface measurements. J. Clean. Prod. 2017, 167, 680–686. [Google Scholar] [CrossRef]
- Vocciante, M.; Finocchi, A.; D’auris, A.D.F.; Conte, A.; Tonziello, J.; Pola, A.; Reverberi, A.P. Pola Enhanced Oil Spill Remediation by Adsorption with Interlinked Multilayered Graphene. Materials 2019, 12, 2231. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Pietrelli, L.; Francolini, I.; Piozzi, A.; Sighicelli, M.; Silvestro, I.; Vocciante, M. Chromium(III) Removal from Wastewater by Chitosan Flakes. Appl. Sci. 2020, 10, 1925. [Google Scholar] [CrossRef] [Green Version]
- Vocciante, M.; D’Auris, A.D.F.; Finocchi, A.; Tagliabue, M.; Bellettato, M.; Ferrucci, A.; Reverberi, A.P.; Ferro, S. Adsorption of ammonium on clinoptilolite in presence of competing cations: Investigation on groundwater remediation. J. Clean. Prod. 2018, 198, 480–487. [Google Scholar] [CrossRef]
- Pietrelli, L.; Ippolito, N.M.; Ferro, S.; Dovì, V.G.; Vocciante, M. Removal of Mn and As from drinking water by red mud and pyrolusite. J. Environ. Manag. 2019, 237, 526–533. [Google Scholar] [CrossRef]
- Ferrucci, A.; Vocciante, M.; Bagatin, R.; Ferro, S. Electrokinetic remediation of soils contaminated by potentially toxic metals: Dedicated analytical tools for assessing the contamination baseline in a complex scenario. J. Environ. Manag. 2017, 203, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Vocciante, M.; Bagatin, R.; Ferro, S. Enhancements in ElectroKinetic Remediation Technology: Focus on water management and wastewater recovery. Chem. Eng. J. 2017, 309, 708–716. [Google Scholar] [CrossRef]
- Barbafieri, M.; Pedron, F.; Petruzzelli, G.; Rosellini, I.; Franchi, E.; Bagatin, R.; Vocciante, M. Assisted phytoremediation of a multi-contaminated soil: Investigation on arsenic and lead combined mobilization and removal. J. Environ. Manag. 2017, 203, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Franchi, E.; Cosmina, P.; Pedron, F.; Rosellini, I.; Barbafieri, M.; Petruzzelli, G.; Vocciante, M. Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Sci. Total Environ. 2019, 655, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.A.; Delerue-Matos, C. A perspective on LCA application in site remediation services: Critical review of challenges. J. Hazard. Mater. 2010, 175, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Vocciante, M.; Caretta, A.; Bua, L.; Bagatin, R.; Franchi, E.; Petruzzelli, G.; Ferro, S. Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach. J. Environ. Manag. 2019, 237, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Vocciante, M.; De Follis D’Auris, A.; Franchi, E.; Caretta, A.; Petruzzelli, G.; Ferro, S. Environmental assessment in reclamation activities: Consolidate and innovative technologies in comparison. J. Clean. Prod. 2020, in press. [Google Scholar]
- Hix, K. Leak Detection for Landfill Liners: Overview of Tools for Vadose Zone Monitoring. Technology Status Report Prepared for the U.S. E.P.A. Technology Innovation Office. 1998. Available online: https://clu-in.org/s.focus/c/pub/i/110/ (accessed on 1 June 2020).
- Everett, L.G.; Hoylman, E.W.; Wilson, L.G.; McMillion, L.G. Constraints and Categories of Vadose Zone Monitoring Devices. Ground Water Monit. Remediat. 1984, 4, 26–32. [Google Scholar] [CrossRef]
- Dahan, O.; Talby, R.; Yechieli, Y.; Adar, E.; Lazarovitch, N.; Enzel, Y. In Situ Monitoring of Water Percolation and Solute Transport Using a Vadose Zone Monitoring System. Vadose Zone J. 2009, 8, 916–925. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Lu, Z. Analytical Solutions for Vertical Flow in Unsaturated, Rooted Soils with Variable Surface Fluxes. Vadose Zone J. 2005, 4, 1210–1218. [Google Scholar] [CrossRef]
- Vocciante, M.; Reverberi, A.P.; Dovì, V.G. Approximate solution of the inverse Richards’ problem. Appl. Math. Model. 2016, 40, 5364–5376. [Google Scholar] [CrossRef]
- Vocciante, M.; Reverberi, A.P.; Dovì, V.G. Generalisation of the solution of the inverse Richards’ problem. Chem. Eng. Trans. 2016, 52, 1285–1290. [Google Scholar] [CrossRef]
- Tocci, M.D.; Kelley, C.; Miller, C.T. Accurate and economical solution of the pressure-head form of Richards’ equation by the method of lines. Adv. Water Resour. 1997, 20, 1–14. [Google Scholar] [CrossRef]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Soil Organic Matter. In Scheffer/SchachtschabelSoil Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 55–86. [Google Scholar]
- Soilmoisture—Instruments and Services for a Growing World. Available online: https://www.soilmoisture.com/pdfs/newproducts/HandiTrase%20Brochure.pdf (accessed on 1 June 2020).
- Skierucha, W. Accuracy of soil moisture measurement by TDR technique. Int. Agrophysics 2000, 14, 417–426. [Google Scholar]
- Nagare, R.M.; Schincariol, R.A.; Quinton, W.L.; Hayashi, M. Laboratory calibration of time domain reflectometry to determine moisture content in undisturbed peat samples. Eur. J. Soil Sci. 2011, 62, 505–515. [Google Scholar] [CrossRef]
- Leak Location Surveys—Geophysical Testing of Geomembranes Used in Landfills—LANDFILL GUIDANCE GROUP. (Industry Code of Practice No. LGG 113)—Version 1 (February 2018). Available online: http://www.esauk.org/application/files/4515/4454/1198/LGG_113_Leak_location_testing.pdf (accessed on 24 June 2020).
- Community Portal for Automatic Differentiation. Available online: www.autodiff.org (accessed on 28 June 2020).
Parameter | Value |
---|---|
L | 5 m |
α | 1 m−1 |
Ks | 0.01 m h−1 |
θs | 0.45 m3 m−3 |
θr | 0.20 m3 m−3 |
Coefficient | Value |
---|---|
β0 | 0.70 |
β1 | 0.00 |
β2 | −1.18 |
β3 | −1.66 |
β4 | −0.59 |
β5 | 1.18 |
β6 | 0.95 |
β7 | 0.71 |
β8 | 0.35 |
β9 | 0.24 |
Standard Deviation of Noise Added to the Data | F-Value | Probability of Absence of Leaks |
---|---|---|
0.001 | 53.77 | ≈0% |
0.01 | 3.23 | ≈9% |
0.02 | 0.558 | ≈47% |
0.1 | 0.0004 | Uninformative |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vocciante, M.; Meshalkin, V. An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills. Sustainability 2020, 12, 5598. https://doi.org/10.3390/su12145598
Vocciante M, Meshalkin V. An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills. Sustainability. 2020; 12(14):5598. https://doi.org/10.3390/su12145598
Chicago/Turabian StyleVocciante, Marco, and Valery Meshalkin. 2020. "An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills" Sustainability 12, no. 14: 5598. https://doi.org/10.3390/su12145598
APA StyleVocciante, M., & Meshalkin, V. (2020). An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills. Sustainability, 12(14), 5598. https://doi.org/10.3390/su12145598