Economic and Environmental Impact Assessment of Renewable Energy from Biomass
Abstract
:1. Introduction
2. Form and Contents of the Thematic Issue
Funding
Conflicts of Interest
Appendix A. List of Contributions
- Almutairi, K.; Thoma, G.; Durand-Morat, A. Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030. Sustainability 2018, 10, 2884, doi:10.3390/su10082884.
- Attard, J.; McMahon, H.; Doody, P.; Belfrage, J.; Clark, C.; Ugarte, J.A.; Pérez-Camacho, M.N.; Martín, M.D.S.C.; Morales, A.J.G.; Gaffey, J. Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland. Sustainability 2020, 12, 4595, doi:10.3390/su12114595.
- Borgonovo, F.; Conti, C.; Lovarelli, D.; Ferrante, V.; Guarino, M. Improving the Sustainability of Dairy Slurry by a Commercial Additive Treatment. Sustainability 2019, 11, 4998, doi:10.3390/su11184998.
- Chen, S.; Du, X.; Huang, J.; Huang, C. The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries. Sustainability 2019, 11, 1107, doi:10.3390/su11041107.
- Csikos, N.; Schwanebeck, M.; Kuhwald, M.; Szilassi, P.; Duttmann, R. Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes. Sustainability 2019, 11, 2500, doi:10.3390/su11092500.
- Dong, Z. Does the Development of Bioenergy Exacerbate the Price Increase of Maize? Sustainability 2019, 11, 4845, doi:10.3390/su11184845.
- Moiceanu, G.; Paraschiv, G.; Voicu, G.; Dinca, M.; Negoita, O.; Chitoiu, M.; Tudor, P. Energy Consumption at Size Reduction of Lignocellulose Biomass for Bioenergy. Sustainability 2019, 11, 2477, doi:10.3390/su11092477.
- Provolo, G.; Mattachini, G.; Finzi, A.; Cattaneo, M.; Guido, V.; Riva, E. Global Warming and Acidification Potential Assessment of a Collective Manure Management System for Bioenergy Production and Nitrogen Removal in Northern Italy. Sustainability 2018, 10, 3653, doi:10.3390/su10103653.
- Przywara, A.; Kachel, M.; Koszel, M.; Leszczyński, N.; Kraszkiewicz, A.; Anifantis, A.S. The Influence of Digestate on the Static Strength of Spring Rapeseeds (Brassica napus var. arvensis). Sustainability 2019, 11, 2133, doi:10.3390/su11072133.
- Saracevic, E.; Koch, D.; Stuermer, B.; Mihalyi, B.; Miltner, A.; Friedl, A. Economic and Global Warming Potential Assessment of Flexible Power Generation with Biogas Plants. Sustainability 2019, 11, 2530, doi:10.3390/su11092530.
- Szulecka, J. Towards Sustainable Wood-Based Energy: Evaluation and Strategies for Mainstreaming Sustainability in the Sector. Sustainability 2019, 11, 493, doi:10.3390/su11020493.
References
- Ingrao, C.; Bacenetti, J.; Bezama, A.; Blok, V.; Goglio, P.; Koukios, E.G.; Lindner, M.; Nemecek, T.; Siracusa, V.; Zabaniotou, A.; et al. The potential roles of bio-economy in the transition to equitable, sustainable, post fossil-carbon societies: Findings from this virtual special issue. J. Clean. Prod. 2018, 204, 471–488. [Google Scholar] [CrossRef]
- Fusi, A.; Bacenetti, J.; Fiala, M.; Azapagic, A. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion. Front. Bioeng. Biotechnol. 2016, 4, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knopf, B.; Nahmmacher, P.; Schmid, E. The European renewable energy target for 2030—An impact assessment of the electricity sector. Energy Policy 2015, 85, 50–60. [Google Scholar] [CrossRef]
- Talagai, N.; Marcu, M.V.; Zimbalatti, G.; Proto, A.R.; Borz, S.A. Productivity in partly mechanized planting operations of willow short rotation coppice. Biomass Bioenergy 2020, 138, 105609. [Google Scholar] [CrossRef]
- Borz, S.A.; Nita, M.D.; Talagai, N.; Scriba, C.; Grigolato, S.; Proto, A.R. Performance of Small-Scale Technology in Planting and Cutback Operations of Short-Rotation Willow Crops. Trans. ASABE 2019, 62, 167–176. [Google Scholar] [CrossRef]
- Negri, M.; Bacenetti, J.; Manfredini, A.; Lovarelli, D.; Fiala, M.; Maggiore, T.M.; Bocchi, S. Evaluation of methane production from maize silage by harvest of different plant portions. Biomass Bioenergy 2014, 67, 339–346. [Google Scholar] [CrossRef]
- Samarappuli, D.; Berti, M. Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. J. Clean. Prod. 2018, 194, 515–524. [Google Scholar] [CrossRef]
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [Google Scholar] [CrossRef] [Green Version]
- González-García, S.; Bacenetti, J. Exploring the production of bio-energy from wood biomass. Italian case study. Sci. Total Environ. 2019, 647, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Bacenetti, J.; Fiala, M. Carbon Footprint of Electricity from Anaerobic Digestion Plants in Italy. Environ. Eng. Manag. J. 2015, 14, 1495–1502. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A.; Azapagic, A. Environmental sustainability of integrating the organic Rankin cycle with anaerobic digestion and combined heat and power generation. Sci. Total Environ. 2019, 658, 684–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proto, A.R.; Bacenetti, J.; Macri, G.; Zimbalatti, G. Roundwood and bioenergy production from forestry: Environmental impact assessment considering different logging systems. J. Clean. Prod. 2017, 165, 1485–1498. [Google Scholar] [CrossRef]
- Lovarelli, D.; Falcone, G.; Orsi, L.; Bacenetti, J. Agricultural small anaerobic digestion plants: Combining economic and environmental assessment. Biomass Bioenergy 2019, 128, 105302. [Google Scholar] [CrossRef]
- Collet, P.; Flottes, E.; Favre, A.; Raynal, L.; Pierre, H.; Capela, S.; Peregrina, C. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Appl. Energy 2017, 192, 282–295. [Google Scholar] [CrossRef] [Green Version]
- O’Keeffe, S.; Thrän, D. Energy Crops in Regional Biogas Systems: An Integrative Spatial LCA to Assess the Influence of Crop Mix and Location on Cultivation GHG Emissions. Sustainability 2019, 12, 237. [Google Scholar] [CrossRef] [Green Version]
- Lijó, L.; González-García, S.; Bacenetti, J.; Negri, M.; Fiala, M.; Feijoo, G.; Moreira, M.T. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production. Waste Manag. 2015, 41, 50–59. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacenetti, J. Economic and Environmental Impact Assessment of Renewable Energy from Biomass. Sustainability 2020, 12, 5619. https://doi.org/10.3390/su12145619
Bacenetti J. Economic and Environmental Impact Assessment of Renewable Energy from Biomass. Sustainability. 2020; 12(14):5619. https://doi.org/10.3390/su12145619
Chicago/Turabian StyleBacenetti, Jacopo. 2020. "Economic and Environmental Impact Assessment of Renewable Energy from Biomass" Sustainability 12, no. 14: 5619. https://doi.org/10.3390/su12145619
APA StyleBacenetti, J. (2020). Economic and Environmental Impact Assessment of Renewable Energy from Biomass. Sustainability, 12(14), 5619. https://doi.org/10.3390/su12145619