Practical Application of the Industry 4.0 Concept in a Steel Company
Abstract
:1. Introduction
- Cost efficiency;
- Agility and flexibility of the production system;
- Customer-centric production systems, with customization of products.
2. Literature Review
- Internet of Things—the ability to conveniently access data from anywhere and exchange data between devices. All production systems become interconnected. There are real-time flows between all elements of the supply chain.
- Common digitalization—the process of ensuring digitalized, constant communication between all people and all devices and between people and devices themselves.
- Autonomous manufacturing systems—creating intelligent factories that organize production processes autonomously and can react flexibly to changes to the requirements of the manufacturing processes. Smart factories perform virtually the entire production processes themselves with minimal human input.
- Customization of the product—delivering a customized product to the customer, precisely according to their orders.
- Robotization—implementation of flexible production sockets, based on industrial robots, using robots adapted to cooperate with humans.
- Implementation of architecture based on cyberphysical systems.
- Widespread use of disruptive innovations—these can allow a rapid increase in the efficiency and effectiveness of the socioeconomic and operation system in an organization.
3. Materials and Methods
- Implementation of a target-based bonus system for all staff.
- Strengthening the controlling framework, including monthly KPI (Key Performance Indicator) reviews.
- Centralization of the purchasing activities across the group.
- Ongoing CIT (Corporate Income Tax) optimization (special economic zone) and a “split-payment” VAT (Value-Added Tax) shield.
4. Results—The Practical Application of the Industrial 4.0 Concept in Re Alloys
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wolniak, R.; Grebski, M.E.; Skotnicka-Zasadzień, B. Comparative analysis of the level of satisfaction with the services received at the business incubators (Hazleton, PA, USA and Gliwice, Poland). Sustainability 2019, 11, 2889. [Google Scholar] [CrossRef] [Green Version]
- Olkiewicz, M.; Wolniak, R.; Grebski, E.M.; Olkiewicz, A. Comparative analysis of the impact of the business incubator center on the economic sustainable development of regions in USA and Poland. Sustainability 2019, 11, 173. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A review. Engineering 2017, 3, 613–630. [Google Scholar] [CrossRef]
- Bauernhansl, T. Die Vierte Industrielle Revolution–Der Weg in einwertscha endes Produktionsparadigma. In Industrie 4.0 in Produktion, Automatisierung und Logistik – Anwendung, Technologien, Migration; Bauernhansl, T., ten Hompel, M., VogelHeuser, B., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2014; pp. 5–35. [Google Scholar]
- Pilloni, V. How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as Pillars of Industry 4.0. Future Internet 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Zunino, C.; Valenzano, A.; Obermaisser, R.; Petersen, S. Factory Communications at the Dawn of the Fourth Industrial Revolution. Comput. Stand. Interfaces 2020, 71, 103433. [Google Scholar] [CrossRef]
- Herceg, I.V.; Kuč, V.; Mijušković, V.M.; Herceg, T. Challenges and Driving Forces for Industry 4.0 Implementation. Sustainability 2020, 12, 4208. [Google Scholar] [CrossRef]
- Nanterme, P.; Daugherty, P. Technology for People: The Era of the Intelligent Enterprise; Accenture: Dublin, Ireland, 2017. [Google Scholar]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the IEEE 2015 12th International Conferenceon Fuzzy Systemsand Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 2147–2152. [Google Scholar]
- Saniuk, S.; Grabowska, S.; Gajdzik, B. Social expectations and market changes in the context of developing the Industry 4.0 concept. Sustainability 2020, 12, 1362. [Google Scholar] [CrossRef] [Green Version]
- Baden-Filler, C.; Haefliger, S. Business models and technological innovation. Long Range Plan. 2013, 46, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kao, H.-A.; Yang, S. Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Longo, F.; Nicoletti, L.; Padovano, A. Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 2017, 113, 144–159. [Google Scholar] [CrossRef]
- Beier, G.; Ullrich, A.; Niehoff, S.; Reißig, M.; Habich, M. Industry 4.0: How it is defined from a sociotechnical perspective and how much sustainability it includes–A literature review. J. Clean. Prod. 2020, 259, 120856. [Google Scholar] [CrossRef]
- Fareri, S.; Fantoni, G.; Chiarello, F.; Coli, E.; Binda, A. Estimating Industry 4.0 impact on job profiles and skills using text mining. Comput. Ind. 2020, 118, 103222. [Google Scholar] [CrossRef]
- Biel, K.; Glock, C.H. Systematic literature review of decision support models for energy-efficient production planning. Comput. Ind. Eng. 2016, 101, 243–259. [Google Scholar] [CrossRef]
- Ślusarczyk, B. Industry 4.0–are we ready? Pol. J. Manag. Stud. 2018, 17, 232–248. [Google Scholar] [CrossRef]
- Zezulka, F.; Marcon, P.; Vesely, I.; Sajdl, O. Industry 4.0–An Introduction in the phenomenon. IFAC PapersOnLine 2016, 49, 8–12. [Google Scholar] [CrossRef]
- Veselovsky, M.Y.; Pogodina, T.V.; Ilyukhina, R.V.; Sigunova, T.A.; Kuzovleva, N.F. Financial and economic mechanisms of promoting innovative activity in the context of the digital economy formation. Entrep. Sustain. Issues 2018, 5, 672–681. [Google Scholar] [CrossRef] [Green Version]
- Stverkova, H.; Pohludka, M. Business Organisational Structures of Global Companies: Use of the Territorial Model to Ensure Long-Term Growth. Soc. Sci. 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.K.; Prasad, R. Impact of 5G Technologies on Industry 4.0. Wirel. Pers. Commun. 2018, 100, 145–159. [Google Scholar] [CrossRef]
- Brozzi, R.; Forti, D.; Rauch, E.; Matt, D.T. The Advantages of Industry 4.0 Applications for Sustainability: Results from a Sample of Manufacturing Companies. Sustainability 2020, 12, 3647. [Google Scholar] [CrossRef]
- Wang, L.; Wang, G. Big data in cyber-physical systems, digital manufacturing and Industry 4.0. Int. J. Eng. Manuf. 2016, 4, 1–8. [Google Scholar]
- Wittenberg, C. Cause the trend Industry 4.0 in the automated industry to new requirements on user interface. In Human-computer interaction, Part III, HCII 2015, LNCS; Kurosu, M., Ed.; Springer: Cham, Switzerland, 2015; Volume 9171, pp. 238–245. [Google Scholar]
- Bagheri, B.; Yang, S.; Kao, H.; Lee, J. Cyber-physical systems architecture for self-aware machines in Industry 4.0 environment. IFAC Pap. Online 2018, 48, 1622–1627. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H. A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Gaub, H. Customisationon of mass-produced parts by combining injection molding and additive manufacturing with Industry 4.0 technologies. Reinf. Plast. 2015, 60, 401–404. [Google Scholar] [CrossRef]
- Ford, S.L.N. Additive manufacturing technology: Potential implications for U.S. manufacturing competitiveness. J. Int. Commer. Econ. 2015, 6, 40. Available online: http://www.usitc.gov/journals (accessed on 10 April 2020).
- Thames, J.L.; Schaefer, D. Cybersecurity for Industry 4.0 and advanced manufacturing environments with ensemble intelligence. In Cybersecurity for Industry 4.0.1; Thames, L., Schaefer, D., Eds.; Springer (Springer Series in Advanced Manufacturing): Berlin, Germany, 2017; pp. 243–265. [Google Scholar]
- Paelke, V. Augmented reality in the smart factory supporting workers in an Industry 4.0. In Proceedings of the 2014 IEEE emerging technology and factory automation (ETFA), Barcelona, Spain, 16–19 September 2014. [Google Scholar]
- Syberfeldt, A.; Holm, M.; Danielsson, O.; Wang, L.; Brewster, R.L. Support systems on the industrial shop-floors of the future—Operators’ perspective on augmented reality. 6th CIRP Conference on Assembly Technologies and Systems (CATS). Procedia Cirp 2016, 44, 108–113. [Google Scholar] [CrossRef]
- Kühn, W. Digital factory—Simulation enhancing the product and production engineering process. In Proceedings of the 2006 Winter Simulation Conference, Monterey, CA, USA, 3–6 December 2006; Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M., Eds.; IEEE: New York, NY, USA, 2006; pp. 1899–1906. [Google Scholar]
- Biegelbauer, G.; Vincze, M.; Noehmayer, H.; Eberst, C. Sensor based robotics for fully automated inspection of bores at low volume high variant parts. IEEE Int. Conf. Robot. Autom. 2004, 5, 4852–4857. [Google Scholar]
- Obitko, M.; Jirkovský, V. Big data semantics in Industry 4.0. In HoloMAS 2015, LNAI; Mařík, V., Ed.; Springer: Bern, Switzerland, 2015; Volume 9266, pp. 217–229. [Google Scholar]
- Blanchet, M.; Rinn, T.; von Thaden, G.; de Thieulloy, G. Industry 4.0: The new industrial revolution. How Europe will succeed. In Think Act, Roland Berger Strategy Consultants GmbH; Roland Berger: Germany, Munich, 2014. [Google Scholar]
- Borgia, E. The internet of things vision: Key features, applications and open issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Zuehlke, D. Smart factory towards a factory-of-things. Ann. Rev. Control 2010, 34, 129–138. [Google Scholar] [CrossRef]
- Qin, J.; Liu, Y.; Grosvenor, R. A categorical framework of manufacturing for Industry 4.0 and beyond. Procedia Cirp 2016, 52, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Uckelmann, D.; Harrison, M.; Michahelles, F. An architectural approach towards the futurInternetet of things. In Architecting the Internet of Things; Uckelmann, D., Ed.; Springer: Berlin, Heidelberg, 2011. [Google Scholar] [CrossRef]
- Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material Efficiency: Providing Material Services with Less Material Production. 2013. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575569/ (accessed on 15 April 2020).
- Shahbazi, S.; Wiktorsson, M.; Kurdve, M.; Jönsson, C.; Bjelkemyr, M. Material efficiency in manufacturing: Swedish evidence on potential, barriers and strategies. J. Clean. Prod. 2016, 127, 438–450. [Google Scholar] [CrossRef]
- Radel, J. Organizational Change and Industry 4.0 (id4). A Perspective on Possible Future Challenges for Human Resources Management. 2017. Available online: https://www.researchgate.net/publication/319102143_Organizational_Change_and_industry_40_id4_A_perspective_on_possible_future_challenges_for_Human_Resources_Management (accessed on 15 April 2020).
- Ziaei Nafchi, M.; Mohelská, H. Organizational Culture as an Indication of Readiness to Implement Industry 4.0. Information 2020, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Oluyisola, O.E.; Sgarbossa, F.; Strandhagen, J.O. Smart Production Planning and Control: Concept, Use-Cases and Sustainability Implications. Sustainability 2020, 12, 3791. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Lee, A.; Hua, Y. Measurement and analysis of corporate operating vitality in the age of digital business models. Appl. Econ. Lett. 2020, 27, 511–517. [Google Scholar] [CrossRef]
- Lee, J.; Lapira, E.; Bagheri, B.; Kao, H.A. Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 2013, 1, 38–41. [Google Scholar] [CrossRef]
- Miśkiewicz, R. Industry 4.0 in Poland—Selected aspects of its implementation. Zesz. Nauk. Politech. Śląskiej 2019, 136, 403–413. [Google Scholar]
- Miśkiewicz, R. Organisational Structure in the Process of Integration on the Example of Iron and Steel Industry Enterprises in Poland. Process Digitisation in the Industry 4.0 Concept; PWN: Warsaw, Poland, 2019. [Google Scholar]
- Tesch da Silva, F.S.; da Costa, C.A.; Paredes Crovato, C.D.; da Rosa Righi, R. Looking at energy through the lens of Industry 4.0: A systematic literature review of concerns and challenges. Comput. Ind. Eng. 2020, 143, 106426. [Google Scholar] [CrossRef]
- Faheem, M.; Butt, R.A.; Raza, B.; Ashraf, M.W.; Begum, S.; Ngadi, M.A.; Gungor, V.C. Bio-inspired routing protocol for WSN-based smart grid applications in the context of Industry 4.0. Trans. Emerg. Telecommun. Technol. 2018. [Google Scholar] [CrossRef]
- Duflou, J.R.; Sutherland, J.W.; Dornfeld, D.; Herrmann, C.; Jeswiet, J.; Kara, S.; Hauschild, M.; Kellens, K. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP. Ann. Manuf. Technol. 2012, 61, 587–609. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.M.; Buliga, O.; Voigt, K.I. Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technol. Forecast. Soc. Chang. 2018, 132, 2–17. [Google Scholar] [CrossRef]
- Posada, J.; Toro, C.; Barandiaran, I.; Oyarzun, D.; Stricker, D.; de Amicis, R.; Vallarino, I. Visual computing as a key enabling technology for industrie 4.0 and industriaInternetet. IEEE Comput. Graph. Appl. 2015, 35, 26–40. [Google Scholar] [CrossRef]
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 232–248. [Google Scholar] [CrossRef]
- Ustundag, A.; Cevican, E. Industry 4.0: Managing The Digital Transformation; Springer: Istanbul, Turkey, 2018. [Google Scholar]
- Grabowska, S. Improvement of the heat treatment process in the industry 4.0 context, METAL 2018. In Proceedings of the 27th International Conference on Metallurgy and Materials, Brno, Czech Republic, 23–25 May 2018; pp. 1985–1990. [Google Scholar]
- Vuksanović, D.; Ugarak, J.; Korčok, D. Industry 4.0: The future concept and new visions of factory of the future development. In Proceedings of the Advanced Engineering Systems, SINTEZA 2016 International Scientific Conference on ICT and e-Business Related Research, Belgrade, Serbia, 22 April 2016; pp. 293–298. [Google Scholar]
- Fonseca, L.M. Industry 4.0 and the digital society: Concepts, dimensions and envisioned benefits. Proc. 12th Int. Conf. Bus. Excell. 2018, 12, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Gillani, F.; Chatha, K.A.; Sadiq Jajja, M.S.; Farooq, S. Implementation of digital manufacturing technologies: Antecedents and consequences, International. J. Prod. Econ. 2020, 229, 107748. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 54, 102153. [Google Scholar] [CrossRef]
- Masood, T.; Sonntag, P. Industry 4.0: Adoption challenges and benefits for SMEs. Comput. Ind. 2020, 121, 103261. [Google Scholar] [CrossRef]
- Cenamor, J.; Sjödin, D.R.; Parida, V. Adopting a platform approach in servitisation: Leveraging the value of digitalisation. Int. J. Prod. Econ. 2017, 192, 54–65. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Krapež, A. A complex view of industry 4.0. SAGE Open 2016, 6, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Saniuk, S.; Saniuk, A.; Cagánová, D. Cyber Industry Networks as an environment of the Industry 4.0 implementation. Wirel. Netw. 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kagermann, H. Change Through Digitization—Value Creation in the Age of Industry 4.0. In Management of Permanent Change; Albach, H., Meffert, H., pinkwart, A., Rechwald, R., Eds.; Springer Gabler: Wiesbaden, Germany, 2015. [Google Scholar]
- Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. Industrie 4.0: Bedarfssog und Technologiedruck als Treiber der vierten industriellen Revolution. Wirtschaftsinformatik 2014, 56, 239–242. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution: What It Means, How to Respond. Available online: https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/ (accessed on 10 January 2020).
- Kagermann, H. Chancen von Industrie 4.0 nutzen. In Vogel-Heuser: Industrie 4.0 in Produktion, Automatisierung und Logistik; Bauernhansl, T., ten Hompel, M., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2014. [Google Scholar]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Kim, D. A 2020 perspective on “A dynamic model for the evolution of the next generation Internet—Implications for network policies”: Towards a balanced perspective on the Internet’s role in the 5G and Industry 4.0 era. Electron. Commer. Res. Appl. 2020, 41, 100966. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, A.; Zavadskas, E.K.; Mangla, S.K.; Garza-Reyes, J.A. Industry 4.0 as an enabler of sustainability diffusion in supply chain: An analysis of influential strength of drivers in an emerging economy. Int. J. Prod. Res. 2020, 58, 1505–1521. [Google Scholar] [CrossRef]
- Ibarra, D.; Ganzarain, J.; Igartua, J.I. Business model innovation through industry 4.0: A review. Procedia Manuf. 2018, 22, 4–10. [Google Scholar] [CrossRef]
- Chang, C.-W. Evaluation of smart alarm systems for industry 4.0 technologies. Appl. Sci. 2020, 10, 2022. [Google Scholar] [CrossRef] [Green Version]
- Osterrieder, P.; Budde, L.; Friedli, T. The smart factory as a key construct of industry 4.0: A systematic literature review. Int. J. Prod. Econ. 2020, 221, 107476. [Google Scholar] [CrossRef]
- Ivanov, I.; Luk’yanova, T.; Belova, O. Digital economy: Knowledge in the logic of the industry 4.0 concept. Adv. Intell. Syst. Comput. 2020, 1100, 50–59. [Google Scholar]
- Olah, J.; Aburuman, N.; Popp, J.; Asif, M.K.; Haddad, H.; Kituktha, N. Impact of Industry 4.0 on Environmental Sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Nagaro, G.; Koc-Lem, A.; Vinces, L.; Ronceros, J.; Mesones, G. Acquiring, Monitoring, and Recording Data Based on the Industrie 4.0 Standard Geared Toward the Maca Drying Process. Adv. Intell. Syst. Comput. 2020, 1066, 42–53. [Google Scholar]
- Zimmermann, M.; Schellenberger, C.; Schotten, H.D. Dynamic live wireless communication monitoring for jamming and interference detection in industry 4.0 | [Dynamische Echtzeit-Überwachung von Funkkommunikation zur Erkennung von Jamming und Interferenzen für Industrie 4.0], 24. ITG Symp. Mob. Commun. Technol. Appl. 2020, 5, 52–57. [Google Scholar]
- García-Muiña, F.E.; Medina-Salgado, M.S.; Ferrari, A.M.; Cuchi, M. Sustainability Transition in Industry 4.0 and Smart Manufacturing with the Triple-Layered Business Model Canvas. Sustainability 2020, 12, 2364. [Google Scholar] [CrossRef] [Green Version]
- Schlaepfer, R.C.; Koch, M.; Merkofer, P. Challenges and Solutions for the Digital Transformation and Use of Exponential Technologies. Deloitte. 2015. Available online: https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-enmanufacturing-industry-4-0-24102014.pdf (accessed on 7 May 2020).
- Ashton, K. That ‘Internet of Things’ Thing. In the real world, things matter more than ideas. RFID J. 2009, 22, 97–144. Available online: http://www.rfidjournal.com/articles/pdf?4986 (accessed on 25 April 2020).
- Sittón-Candanedo, I.; Alonso, R.S.; Rodríguez-González, S.; García Coria, J.A.; De La Prieta, F. Edge Computing Architectures in Industry 4.0: A General Survey and Comparison. Adv. Intell. Syst. Comput. 2020, 950, 121–131. [Google Scholar]
- Presentation at the French Embassy in Germany. Ind. Future 2015. Available online: https://de.ambafrance.org/spip.php?page=recherche&id_rubrique=2&id_sous_secteur=2&recherche=Vorstellung-des-neuen-franzosischen-PlansIndustrie-du-Futur-in-der-Botschaft (accessed on 24 May 2020).
- Tran, T.K.; Yahoui, H.; Siauve, N. An interactive approach to teach automation in the training of the industry 4.0. In Proceedings of the 13th International Conference on Software, Knowledge, Information Management and Applications, SKIMA, Ukulhas, Maldives, 26–28 August 2019; p. 8982491. [Google Scholar]
- The State Council of the People’s Republic of China, “Made in China 2025”. Available online: http://english.gov.cn/2016special/madeinchina2025/ (accessed on 24 April 2020).
- Zhang, X. Intelligent Distribution System Based on “Internet +” Logistics. Adv. Intell. Syst. Comput. 2020, 1017, 1680–1684. [Google Scholar]
- Safar, L.; Sopko, J.; Dancakova, D.; Woschank, M. Industry 4.0—Awareness in South India. Sustainability 2020, 12, 3207. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-J.; Chen, M.-H.; Cheng, F.-C.; Lin, K.-P.; Yang, C.-J. Enhance the processing and management efficiency of dental laboratory by the strategy of productivity 4.0. In Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI, Sapporo, Japan, 13–17 May 2017; Volume 7988187, pp. 1098–1101. [Google Scholar]
- Tiwari, K.; Khan, M.S. Sustainability accounting and reporting in the industry 4.0. J. Clean. Prod. 2020, 258, 120783. [Google Scholar] [CrossRef]
- Pereira, A.G.; Lima, T.M.; Charrua-Santos, F. Society 5.0 as a result of the technological evolution: Historical approach. Adv. Intell. Syst. Comput. 2020, 1018, 700–705. [Google Scholar]
- Relf-Eckstein, J.E.; Ballantyne, A.T.; Phillips, P.W.B. Farming Reimagined: A case study of autonomous farm equipment and creating an innovation opportunity space for broadacre smart farming. NJAS Wagening. J. Life Sci. 2019, 90, 100307. [Google Scholar] [CrossRef]
- Grootel, A.; Chang, J.; Wardle, B.L.; Olivetti, E. Manufacturing variability drives significant environmental and economic impact: The case of carbon fiber reinforced polymer composites in the aerospace industry. J. Clean. Prod. 2020, 261, 121087. [Google Scholar] [CrossRef]
- Ward, M. Metal forming and forging—Finding a new place within high value manufacturing through advanced, industrial scale research. Ironmak. Steelmak. 2015, 42, 252–258. [Google Scholar] [CrossRef]
- Milošević, M.; Lukić, D.; Durdev, M.; Vukman, J. Digital Transformation of Manufacturing towards Industry 4.0 Concept. IOP Conf. Ser. Mater. Sci. Eng. 2020, 749, 012019. [Google Scholar] [CrossRef]
- Esquievel, J.C.C.; Lopez, R.N.O.; Encalada, J.M. Importancia de las competencias digitales directivas en los estudiantes de licenciatura para la industria 4.0. Lumina 2020. [Google Scholar] [CrossRef]
- Gutarra, R.; Valente, A. Las mipymes tecnológicas peruanas al 2030. Estrategias para su inserción a la industria 4.0. Nova Sci. 2018, 10, 754–778. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, O. Design principles for Industrie 4.0 scenarios. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar]
- Wang, Y.; Ma, H.S.; Yang, J.H.; Wang, K.S. Industry 4.0: A way from mass customisation to mass personalisation production. Adv. Manuf. 2017, 5, 311–320. [Google Scholar] [CrossRef]
- Tupa, J.; Simota, J.; Steiner, F. Aspects of Risk Management Implementation for Industry 4.0. Procedia Manuf. 2017, 11, 1223–1230. [Google Scholar] [CrossRef]
- Miśkiewicz, R. Knowledge Transfer in Merger and Acquisition Processes in the Metallurgical Industry; PWN: Warszawa, Poland, 2017. [Google Scholar]
- Berger, R. The Industrie 4.0 Transition Quantified. How the Fourth Industrial Revolution Is Reshuffling the Economic, Social and Industrial Model, Report. 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjNwOT1rMfpAhXPk4sKHXyFAXwQFjAAegQIARAB&url=https%3A%2F%2Fwww.rolandberger.com%2Fpublications%2Fpublication_pdf%2Froland_berger_industry_40_20160609.pdf&usg=AOvVaw2rC6QBz3F2ubwaaqDKmdqj (accessed on 12 May 2020).
- Chiappetta Jabbour, C.J.; Fiorini, P.D.C.; Ndubisi, N.O.; Queiroz, M.M.; Piato, É.L. Digitally-enabled sustainable supply chains in the 21st century: A review and a research agenda. Sci. Total Environ. 2020, 725, 138177. [Google Scholar] [CrossRef]
- Reinhardt, I.C.; Oliveira, D.J.C.; Ring, D.D.T. Current Perspectives on the Development of Industry 4.0 in the Pharmaceutical Sector. J. Ind. Inf. Integr. 2020, 18, 100131. [Google Scholar] [CrossRef]
- Mittal, S.; Kahn, M.A.; Romero, D.; Wuest, T. Smart Manufacturing: Characteristics, Technologies and Enabling Factors. Proceedings of the Institution of Mechanical Engineers, Part B. J. Eng. Manuf. 2017. [Google Scholar] [CrossRef]
- Pfohl, H.-C.; Yahsi, B.; Kuznaz, T. The impact of Industry 4.0 on the Supply Chain. In Proceedings of the Hamburg International Conference of Logistic (HICL)-20, Hamburg, Germany, 10–12 August 2015; pp. 32–58. [Google Scholar] [CrossRef]
- Popkova, E.G.; Ragulina, Y.V.; Bogoviz, A.V. Industry 4.0: Industrial Revolution of the 21st Century; Springer International Publishing: Berlin, Germany, 2019. [Google Scholar]
- Raj, A.; Dwivedi, G.; Sharma, A.; Lopes de Sousa Jabbour, A.B.; Rajak, S. Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. Int. J. Prod. Econ. 2020, 224, 107546. [Google Scholar] [CrossRef]
- Terziyan, V.; Gryshko, S.; Goloviank, M. Patented intelligence: Cloning human decision models for Industry 4.0. J. Manuf. Syst. 2018, 48, 204–217. [Google Scholar] [CrossRef]
- Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 2017, 13, 1206–1214. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; World Economic Forum: Davos, Switzerland, 2016. [Google Scholar]
- Manocha, T.; Sahni, M.; Satija, V.D. Adoption and awareness of industry 4.0 in logistics industry. Int. J. Adv. Sci. Technol. 2020, 29, 6334–6347. [Google Scholar]
- Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R. Impacts of Industry 4.0 technologies on Lean principles. Int. J. Prod. Res. 2020, 58, 1644–1661. [Google Scholar] [CrossRef]
- Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S. Scopus scientific mapping production in industry 4.0 (2011–2018): A bibliometric analysis. Int. J. Prod. Res. 2020, 58, 1605–1627. [Google Scholar] [CrossRef]
- Stadnicka, D.; Litwin, P.; Antonelli, D. Human Factor in Industry of the Future – Knowledge Acquisition and motivation. Fme Trans. 2019, 44, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Alaloul, W.S.; Liew, M.S.; Zawawi, N.A.W.A.; Kennedy, I.B. Industrial Revolution 4.0 in the construction industry: Challenges and opportunities for stakeholders. Ain Shams Eng. J. 2020, 11, 225–230. [Google Scholar] [CrossRef]
- Wolniak, R.; Grebski, M.E. Innovativeness and creativity as nature and nurture. Sci. Pap. Sil. Univ. Technol. Manag. Ser. 2018, 116, 215–226. [Google Scholar] [CrossRef]
- Grabowska, S.; Grebski, M.E.; Grebski, W.; Wolniak, R. Introduction to Engineering Concepts from a Creativity and Innovativeness Perspective; KDP Publishing: New York, NY, USA, 2019. [Google Scholar]
- Kadir, B.A.; Broberg, O. Human well-being and system performance in the transition to industry 4.0. Int. J. Ind. Ergon. 2020, 76, 102936. [Google Scholar] [CrossRef]
- Jerman, A.; Pejić Bach, M.; Aleksić, A. Transformation towards smart factory system: Examining new job profiles and competencies. Syst. Res. Behav. Sci. 2020, 37, 388–402. [Google Scholar] [CrossRef]
- Kabugo, J.C.; Jämsä-Jounela, S.-L.; Schiemann, R.; Binder, C. Industry 4.0 based process data analytics platform: A waste-to-energy plant case study. Int. J. Electr. Power Energy Syst. 2020, 115, 105508. [Google Scholar] [CrossRef]
- Lass, S.; Gronau, N. A factory operating system for extending existing factories to Industry 4.0. Comput. Ind. 2020, 115, 103128. [Google Scholar] [CrossRef]
- Ruff, C. A Stronger Digital Industrial Europe; Digital Europe: Brussels, Belgium, 2019. [Google Scholar]
- Ancygier, A. Poland and the European Climate Policy: An Uneasy Relationship. E Politikon 2013, 7, 76–93. [Google Scholar]
- Tamme, E. The European Green Deal: New Opportunities to Scale up Carbon Capture and Storage; Global CCS Institute: Tokyo, Japan, 2020. [Google Scholar]
- Michalski, G.; Rutkowska, M.; Sulich, A.; Rothe, R. The green jobs and the Industry 4.0. In Enterprises and Economies in the Face of Contemporary challenges. Management-Restructuring-Innovation; Global CCS Institute: Krynica, Poland, 2017; pp. 1–12. [Google Scholar]
- Pacana, A.; Radon-Cholewa, A.; Pacana, J. The study of stickiness of packaging film by Shainin method. Przemysł Chem. 2015, 94, 1334–1336. [Google Scholar]
- Pacana, A.; Czerwińska, K.; Bednarowa, L. Discrepancies analysis of casts of diesel engine piston. Metalurgija 2018, 57, 324–326. [Google Scholar]
- Malindzak, D.; Pacana, A.; Pacaiova, H. An effective model for the quality of logistics and improvement of environmental protection in a cement plant. Przesmysł Chem. 2017, 96, 1958–1962. [Google Scholar]
- Nagasawa, T.; Pillay, C.; Beier, G.; Fritzsche, K.; Pougel, F.; Takama, T.; Bobashev, I. Accelerating Clean Energy through Industry 4.0 Manufacturing the Next Revolution; United Nation Industrial development Organization: Vienna, Austria, 2017. [Google Scholar]
- Wolniak, R.; Saniuk, S.; Grabowska, S.; Gajdzik, B. Identification of energy efficiency trends in the context of the development of industry 4.0 using the Polish steel sector as an example. Energies 2020, 13, 2867. [Google Scholar] [CrossRef]
- GUS. Efektywność Wykorzystania Energii w Latach 2007–2017; GUS: Warszawa, Poland, 2019.
- ReA-1/8/2018 Project: Optimising the Key Areas of a Company’s Business Activity by Monitoring the Location of Its Assets and Supervising the Casting Process in Real Time. (In Polish) (Vizum Factory); ReAlloys: Laziska Gorne, Poland, 2018; Company internal documentation; Not published.
- Report on the Implementation of Stage 1 of the Project: Optimising the Key Areas of a Company’s Business Activity by Monitoring the Location of Its Assets and Supervising the Casting Process in Real Time. (In Polish) (Vizum Factory); ReAlloys: Laziska Gorne, Poland, 2019; Company internal documentation; Not published.
Industries | 2011 | 2012 | 2103 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|
Food | 0.190 | 0.191 | 0.183 | 0.181 | 0.165 | 0.172 | 0.176 |
Textile | 0.048 | 0.047 | 0.052 | 0.049 | 0.044 | 0.043 | 0.040 |
Timber | 0.352 | 0.357 | 0.416 | 0.360 | 0.372 | 0.362 | 0.344 |
Paper | 0.382 | 0.374 | 0.448 | 0.413 | 0.405 | 0.421 | 0.426 |
Chemicals | 0.827 | 0.781 | 0.838 | 0.742 | 0.655 | 0.575 | 0.651 |
Minerals | 0.618 | 0.599 | 0.571 | 0.506 | 0.447 | 0.461 | 0.462 |
Steel | 1.054 | 1.049 | 1.172 | 1.057 | 1.138 | 0.99 | 1.092 |
Machine building | 0.028 | 0.026 | 0.029 | 0.025 | 0.025 | 0.024 | 0.023 |
Means of transport | 0.044 | 0.043 | 0.047 | 0.043 | 0.43 | 0.046 | 0.041 |
Other | 0.072 | 0.066 | 0.079 | 0.075 | 0.071 | 0.071 | 0.073 |
Industrial processing | 0.199 | 0.189 | 0.195 | 0.180 | 0.168 | 0.167 | 0.168 |
2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|
Furnace 22, FeSi75 [t] | ||||
Energy Consumption (MWh) | 109,296.0 | 98,074.2 | 98,151.0 | 97,576.1 |
Furnace 23, FeSi75 [t] | ||||
Energy Consumption (MWh) | 105,960.3 | 116,832.6 | 124,879.2 | 117,538.6 |
2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|
Furnace 22, FeSi75 (t) | ||||
Raw Material Consumption | 49,630.86 | 44,624.82 | 44,390.33 | 43,357.76 |
Furnace 23, FeSi75 (t) | ||||
Raw Material Consumption | 48,002.27 | 58,652.29 | 56,117.36 | 53,139.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miśkiewicz, R.; Wolniak, R. Practical Application of the Industry 4.0 Concept in a Steel Company. Sustainability 2020, 12, 5776. https://doi.org/10.3390/su12145776
Miśkiewicz R, Wolniak R. Practical Application of the Industry 4.0 Concept in a Steel Company. Sustainability. 2020; 12(14):5776. https://doi.org/10.3390/su12145776
Chicago/Turabian StyleMiśkiewicz, Radosław, and Radosław Wolniak. 2020. "Practical Application of the Industry 4.0 Concept in a Steel Company" Sustainability 12, no. 14: 5776. https://doi.org/10.3390/su12145776
APA StyleMiśkiewicz, R., & Wolniak, R. (2020). Practical Application of the Industry 4.0 Concept in a Steel Company. Sustainability, 12(14), 5776. https://doi.org/10.3390/su12145776