Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation
Abstract
:1. Introduction
2. Problem Formulation
- (a)
- Net power flow constraints
- (b)
- Generation constraints of DG
- (c)
- Node voltage constraints
3. Sequential Quadratic Programming
3.1. Quadratic Programming
3.2. Implementation of SQP Technique
- Step 1: Read distribution network bus data and line data. Run PIPSO to compute optimal DG location, bus voltage magnitude V and bus voltage angle . Initialize randomly between and for all DG candidate buses (i = 1 to n). Create initial feasible design vector using V, and such that = [, …, ,, …, , , …, ].
- Step 2: Set the iteration counter k to be zero, i.e., k = 0.
- Step 3: Form the initial active set as a subset with the constraints at the initial vector which is active.
- Step 4: Articulate the QP sub-problem with the constraints.
- Step 5: Find the solution for QP sub-problem by solving Karush–Kuhn–Tucker system of linear equations.
- Step 6: Repeat the above steps until the convergence criteria are satisfied by increasing the iteration count.
- Step 7: The solution of the QP is used to update the vector of voltages, phase angles and the power using the following equation:
4. Test Case and Results Comparison
4.1. Case 1: IEEE 33-bus RDS
4.2. Case 2: IEEE 69-bus RDS
4.3. Case 3: IEEE 118-bus RDS
5. Conclusions
6. Annexure
Author Contributions
Funding
Conflicts of Interest
References
- Angalaeswari, S.; Jamuna, K. Design and implementation of a robust iterative learning controller for voltage and frequency stabilization of hybrid microgrids. Comput. Electr. Eng. 2020, 84, 106631. [Google Scholar] [CrossRef]
- Hung, D.Q.; Mithulananthan, N.; Lee, K.Y. Optimal placement of dispatchable and non dispatchable renewable DG units in distribution networks for minimizing energy loss. Int. J. Electr. Power Energy Syst. 2014, 55, 179–186. [Google Scholar] [CrossRef]
- Sendraya Perumal, A.; Kamaraj, J. Coordinated Control of Aichi Microgrid for Efficient Power Management Using Novel Set Point Weighting Iterative Learning Controller. Energies 2020, 13, 751. [Google Scholar] [CrossRef] [Green Version]
- Viral, R.; Khatod, D.K. An analytical approach for rating and siting of DG’s in balanced radial distribution networks for loss minimization. Int. J. Electr. Power Energy Syst. 2015, 67, 191–201. [Google Scholar] [CrossRef]
- Kalambe, S.; Agnihotri, G. Loss Minimization Techniques Used in Distribution Network: Bibliographical Survey. Renew. Sustain. Energy Rev. 2014, 29, 184–200. [Google Scholar] [CrossRef]
- Prakash, P.; Khatod, K.D. Optimal rating and siting techniques for distributed generation in distribution system: A review. Renew. Sustain. Energy Rev. 2016, 57, 111–130. [Google Scholar] [CrossRef]
- Kayal, P.; Chanda, S.; Chanda, C.K. An analytical approach for allocation and sizing of distributed generations in radial distribution network. Int. Trans. Electr. Energy Syst. 2017, 27, e2322. [Google Scholar] [CrossRef]
- Sa’ed, J.A.; Amer, M.; Bodair, A.; Baransi, A.; Favuzza, S.; Zizzo, G. A Simplified Analytical Approach for Optimal Planning of Distributed Generation in Electrical Distribution Networks. Appl. Sci. 2019, 9, 5446. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, K.; Yorino, N.; Ahmed, A. Optimal Distributed Generation Allocation in Distribution Systems for Loss Minimization. IEEE Trans. Power Syst. 2016, 31, 960–969. [Google Scholar] [CrossRef]
- De Souza, A.R.R.; Fernandes, T.S.P.; Aoki, A.R.; Sans, M.R.; Oening, A.P.; Marcilio, D.C.; Omori, J.S. Sensitivity analysis to connect distributed generation. Electr. Power Energy Syst. 2013, 46, 145–152. [Google Scholar] [CrossRef]
- Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617. [Google Scholar] [CrossRef]
- Sheng, W.; Liu, K.Y.; Cheng, S. Optimal power flow algorithm and analysis in distribution system considering distributed generation. IET Gener. Transm. Distrib. 2014, 8, 261–272. [Google Scholar] [CrossRef]
- Khalesi, N.; Rezaei, N.; Haghifam, M.R. DG allocation with application of dynamic programming for loss reduction and reliability improvement. Int. J. Electr. Power Energy Syst. 2011, 33, 288–295. [Google Scholar] [CrossRef]
- Manjima Bhattacharya, S. Sivasubramani and Anurag Roy. Multi objective placement and rating of distributed generations in distribution system using global criterion method. Int. Trans. Electr. Energy Syst. 2018, 28, 1–12. [Google Scholar]
- Prabha, D.R.; Jayabarathi, T.; Umamageswari, R.; Saranya, S. Optimal location and rating of distributed generation unit using intelligent water drop algorithm. Sustain. Energy Technol. Assess. 2015, 11, 106–113. [Google Scholar]
- Dinakara Prasasd Reddy, P.; Veera Reddy, V.C.; Gowri Manohar, T. Ant Lion optimization algorithm for optimal rating of renewable energy resources for loss reduction in distribution systems. J. Electr. Syst. Inf. Technol. 2018, 5, 663–680. [Google Scholar]
- Mohamed Imran, A.; Kowsalya, M. Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 2014, 15, 58–65. [Google Scholar] [CrossRef]
- Onlam, A.; Yodphet, D.; Chatthaworn, R.; Surawanitkun, C.; Siritaratiwat, A.; Khunkitti, P. Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement using novel adaptive shuffled frogs leaping algorithm. Energies 2019, 12, 553. [Google Scholar] [CrossRef] [Green Version]
- Yammani, C.; Maheswarapu, S.; Matam, S.K. Optimal placement and rating of distributed generations using shuffled bat algorithm with future load enhancement. Int. Trans. Electr. Energy Syst. 2015, 26, 274–292. [Google Scholar] [CrossRef]
- Tolba, M.; Rezk, H.; Diab, A.A.Z.; Al-Dhaifallah, M. A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids. Energies 2018, 11, 2556. [Google Scholar] [CrossRef] [Green Version]
- Gholami, K.; Parvaneh, M.H. A mutated salp swarm algorithm for optimum allocation of active and reactive power sources in radial distribution systems. Appl. Soft Comput. 2019, 85, 105833. [Google Scholar] [CrossRef]
- Alzaidi, K.M.S.; Bayat, O.; Uçan, O.N. Multiple DGs for Reducing Total Power Losses in Radial Distribution Systems Using Hybrid WOA–SSA Algorithm. Int. J. Photoenergy 2019, 20, 2426538. [Google Scholar] [CrossRef]
- Prakash, D.B.; Lakshminarayana, C. Multiple DG placements in radial distribution system for multi objectives using Whale Optimization Algorithm. Alex. Eng. J. 2018, 57, 2797–2806. [Google Scholar] [CrossRef]
- Prabha, D.R.; Jayabarathi, T. Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm. Ain Shams Eng. J. 2016, 7, 683–694. [Google Scholar] [CrossRef] [Green Version]
- ChithraDevi, S.A.; Lakshminarasimman, L.; Balamurugan, R. Stud Krill herd Algorithm for multiple DG placement and sizing in a radial distribution system. Eng. Sci. Technol. Int. J. 2017, 20, 748–759. [Google Scholar] [CrossRef] [Green Version]
- Nagaballi, S.; Kale, V.S. Pareto optimality and game theory approach for optimal deployment of DG in radial distribution system to improve techno economic benefits. Appl. Soft Comput. J. 2020, 92, 106234. [Google Scholar] [CrossRef]
- Das, B.; Mukherjee, V.; Das, D. DG placement in radial distribution network by symbiotic organism search algorithm for real power loss minimization. Appl. Soft Comput. 2016, 49, 920–936. [Google Scholar] [CrossRef]
- Sambaiah, K.S.; Jayabarathi, T. Loss minimization techniques for optimal operation and planning of distribution systems: A review of different methodologies. Int. Trans. Electr. Energy Syst. 2020, 30, e12230. [Google Scholar] [CrossRef] [Green Version]
- Sultana, U.; Khairuddin, A.B.; Aman, M.M.; Mokhtar, A.S.; Zareen, N. A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system. Renew. Sustain. Energy Rev. 2016, 63, 363–378. [Google Scholar] [CrossRef]
- Boggs, P.T.; Tolle, J.W. Sequential Quadratic Programming. Acta Numer. 1996, 4, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Gill, P.E.; Wong, E. Sequential quadratic programming methods. In UCSD Department of Mathematics Technical Report NA-10-03; Springer: New York, NY, USA, 2010. [Google Scholar]
- Gill, P.E.; Robinson, D.P. Regularized Sequential Quadratic Programming Methods; Technical Report; University of California: San Diego, CA, USA, 2011. [Google Scholar]
- Ma, X.; Liu, C. An SQP Algorithm for Recourse-based Stochastic Nonlinear Programming. ACSIJ Adv. Comput. Sci. Int. J. 2016, 5, 28–32. [Google Scholar]
- Guo, C.H.; Bai, Y.Q.; Jian, J.B. An improved sequential quadratic programming algorithm for solving general nonlinear programming problems. J. Math. Anal. Appl. 2014, 409, 777–789. [Google Scholar] [CrossRef] [Green Version]
- Sivasubramani, S.; Swarup, K.S. Sequential quadratic programming based differential evolution algorithm for optimal power flow problem. IET Gener. Transm. Distrib. 2011, 5, 1149–1154. [Google Scholar] [CrossRef]
- Wan, S.H.; Song, J.L.; Chen, J.; Hu, M. Hybrid Approach to Optimize the Cluster Flying Orbit for Fractionated Spacecraft Based on PSO–SQP Algorithm. Adv. Intell. Syst. Res. 2013, 78–83. [Google Scholar]
- Angalaeswari, S.; Jamuna, K. Optimal placement and rating of real power supporting DG in radial distribution networks. In Proceedings of the IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dhaka, Bangladesh, 19–20 December 2015; pp. 342–345. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: New York, NY, USA, 2006; Chapter 2; pp. 10–29. [Google Scholar]
- Georgilakis, P.S. Spotlight on Modern Transformer Design; Springer: London, UK, 2009. [Google Scholar]
- El-Fergany, A. Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. Int. J. Electr. Power Energy Syst. 2015, 64, 1197–1205. [Google Scholar] [CrossRef]
- Moradi, M.H.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [Google Scholar] [CrossRef]
- Acharya, N.; Mahat, P.; Mithulananthan, N. An analytical approach for DG allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 2006, 28, 669–678. [Google Scholar] [CrossRef]
- Hung, D.Q.; Mithulananthan, N. Multiple Distributed Generator Placement in Primary Distribution Networks for Loss Reduction. IEEE Trans. Ind. Electron. 2013, 60, 1700–1708. [Google Scholar] [CrossRef]
- Kansal, S.; Kumar, V.; Tyagi, B. Optimal placement of different type of DG sources in distribution networks. Int. J. Electr. Power Energy Syst. 2013, 53, 752–760. [Google Scholar] [CrossRef]
- Alam, A.; Gupta, A.; Bindal, P.; Siddiqui, A.; Zaid, M. Power Loss Minimization in a Radial Distribution System with Distributed Generation. In Proceedings of the International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 22–23 February 2018; pp. 21–25. [Google Scholar]
- Muthukumar, K.; Jayalalitha, S. Optimal placement and rating of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization Technique. Int. J. Electr. Power Energy Syst. 2016, 78, 299–319. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Vo, D.N. Optimal number, Location, and Size of Distributed Generators in Distribution Systems by Symbiotic organism Search Based Method. Adv. Electr. Electron. Eng. 2017, 15, 724–735. [Google Scholar] [CrossRef]
- Dinakara Prasad Reddy, P.; Veera Reddy, V.C.; Gowri Manohar, T. Optimal renewable resources placement in distribution networks by combined power loss index and whale optimization algorithms. J. Electr. Syst. Inf. Technol. 2018, 5, 175–191. [Google Scholar]
Number of DGs | DG Location | DG Power Rating in MW | Real Power Loss in kW | Reactive Power Loss in kVAR | Voltage Deviation Index p.u | Simulation Time in s |
---|---|---|---|---|---|---|
1 | 6 | 2.59 | 111.01 | 81.71 | 0.9237 | 10.22 |
2 | 13 | 0.84 | 87.17 | 59.77 | 0.6876 | 13.85 |
30 | 1.14 | |||||
3 | 13 | 0.73 | 72.78 | 50.66 | 0.6302 | 15.91 |
30 | 1.09 | |||||
24 | 1.07 | |||||
4 | 24 | 1.25 | 76.50 | 52.89 | 0.6903 | 17.05 |
19 | 0.19 | |||||
9 | 1.01 | |||||
31 | 0.8 |
Parameters | Load Flow Results | ||
---|---|---|---|
Light Load (0.5) | Nominal Load (1.0) | Peak Load (1.6) | |
Ploss in kW | 48.787 | 210.9876 | 603.4308 |
Qloss in kVAR | 33.0486 | 143.1284 | 410.2075 |
Vmin in pu/bus no | 0.954/18 | 0.9038/18 | 0.836/18 |
Vmax in pu/bus no | 0.9986/2 | 0.997/2 | 0.995/2 |
Sequential Quadratic Programming | |||
Optimal DG location (/size in kW) | 12/445.9889 | 30/1053.6346 | 14/1062.5833 |
30/504.5479 | 24/1091.385 | 31/1233.5485 | |
24/486.0889 | 13/801.8118 | 6/1645.5499 | |
Ploss in kW | 17.7977 | 72.7853 | 208.9403 |
Qloss in kVAR | 12.3427 | 50.6601 | 145.2327 |
Vmin in pu/bus no | 0.9824/18 | 0.9687/33 | 0.9505/18 |
Vmax in pu/bus no | 0.9994/2 | 0.9988/2 | 0.9976/2 |
Method | Single DG | Two DGs | Three DGs | |||
---|---|---|---|---|---|---|
Bus Number/Size of DG, MW | Power Loss, kW | Bus No./Size of DG, MW | Power Loss, kW | Bus Number/Size of DG, MW | Power Loss, kW | |
Backtracking search [40] | 8/1.8575 | 118.12 | 13/0.880, 31/ 0.924 | 89.34 | 13/0.632, 28/0.487, 31/0.550 | 89.05 |
Intelligent Water drop [15] | 6/2.49 | 111.01 | – | – | 9/0.6003, 16/0.300, 30/1.0112 | 85.78 |
Bacterial Forging [17] | – | – | – | – | 14/0.6521, 18/0.1984, 32/1.0672 | 89.90 |
GA+PSO [41] | – | – | – | – | 32/1.200, 16/0.8630, 11/0.9250 | 103.40 |
Loss Sensitivity [42] | 10/1.4 | 123.82 | – | – | – | – |
Repeated load flow [42] | 6/2.6 | 111.10 | – | – | – | – |
Analytical [42] | 6/2.49 | 111.24 | – | – | – | – |
Loss Sensitivity factor [43] | 18/0.743 | 146.82 | 18/0.72 33/0.9 | 100.69 | 18/0.72 33/0.81 25/0.9 | 85.07 |
Improved Analytical [43] | 6/2.601 | 111.10 | 6/0.18 14/0.72 | 91.63 | 6/0.9 12/0.9 31/0.72 | 81.05 |
Exhaustive Load flow [43] | 6/2.601 | 111.10 | 12/1.02 30/1.02 | 87.63 | 13/0.9 30/0.9 24/0.9 | 74.27 |
PSO [44] | 6/3.151 | 115.29 | – | – | – | – |
PIPSO [37] | 6/2.59 | 111.02 | – | – | – | – |
SQP [45] | – | – | – | – | 13/0.8018 24/1.0913 30/1.0536 | 72.951 |
Proposed PIPSO-SQP | 6/2.590 | 111.0188 | 13/0.8516 30/1.1576 | 87.1656 | 30/1.0507, 24/1.0697, 13/0.8055 | 72.79 |
Number of DGs | DG Location | DG Power Rating in MW | Real Power Loss in kW | Reactive Power Loss in kVAR | Simulation Time in s |
---|---|---|---|---|---|
1 | 61 | 1.86 | 81.60 | 40.49 | 25.70 |
2 | 17 | 0.52 | 70.40 | 35.96 | 34.06 |
61 | 1.77 | ||||
3 | 61 | 1.77 | 69.16 | 33.04 | 37.13 |
16 | 0.53 | ||||
49 | 1.07 | ||||
4 | 28 | 1.14 | 70.61 | 32.53 | 41.33 |
50 | 0.75 | ||||
15 | 0.50 | ||||
61 | 1.7 |
Parameters | Load Flow Results | ||
---|---|---|---|
Light Load (0.5) | Nominal Load (1.0) | Peak Load (1.6) | |
Ploss in kW | 50.64 | 224.89 | 638.08 |
Qloss in kVAR | 23.09 | 102.11 | 287.42 |
Vmin in pu/bus no | 0.957/65 | 0.9105/65 | 0.8469/65 |
Vmax in pu/bus no | 1.0/2, 3, 28, 36 | 1.0/2, 28 | 0.999/2, 3, 28, 36 |
Sequential Quadratic Programming | |||
Optimal DG location/size in kW | 24/52.6136 | 49/1067.92 | 20/553.175 |
1/873.58 | 61/1777.24 | 61/2814.58 | |
16/218.796 | 16/533.24 | 11/914.49 | |
Ploss in kW | 17.2131 | 69.16 | 178.4262 |
Qloss in kVAR | 8.6632 | 33.0426 | 89.7021 |
Vmin in pu/bus number | 0.9894/65 | 0.9799/65 | 0.9679/65 |
Vmax in pu/bus number | 1.0/2,3,28,29,36 | 1.0/2,3,28 | 1.0/2,28 |
Method | Single DG | Two DGs | Three DGs | |||
---|---|---|---|---|---|---|
Bus Number /Size of DG, MW | Power Loss, kW | Bus Number. /Size of DG, MW | Power Loss, kW | Bus Number /Size of DG, MW | Power Loss, kW | |
Intelligent Water drop [15] | 60/1.82 | 80.12 | – | – | 17/0.2999 60/1.320 63/0.4388 | 73.55 |
Bacterial Forging [17] | – | – | – | – | 27/0.2954, 65/ 0.4476, 61/1.3451 | 75.238 |
GA with PSO [41] | – | – | – | – | 63/0.8849 61/1.1926 21/0.9105 | 81.1 |
Loss Sensitivity [42] | 61/1.9 | 81.33 | – | – | – | – |
Repeated load flow [42] | 61/1.9 | 81.330 | – | – | – | – |
Analytical [42] | 61/1.81 | 81.44 | – | – | – | – |
Loss Sensitivity factor [43] | 65/1.52 | 109.77 | 65/1.44 27/0.54 | 98.74 | 65/1.36 27/0.51 61/0.51 | 90.84 |
Improved Analytical [43] | 61/1.9 | 81.33 | 61/1.7 17/0.51 | 70.3 | 61/1.7 17/0.51 11/0.34 | 68.38 |
Exhaustive Load flow [43] | 61/1.9 | 81.33 | 61/1.7 17/0.51 | 70.3 | 61/1.7 17/0.51 11/0.34 | 68.38 |
PSO [44] | 61/1.80 | 83.37 | – | – | – | – |
PIPSO [37] | 61/1.87 | 83.147 | – | – | – | – |
Proposed PIPSO-SQP | 61/1.86 | 81.60 | 61/1.77 17/0.52 | 70.4 | 61/1.7 16/0.53 49/1.07 | 69.16 |
Number of DGs | DG Location | DG Power Rating in MW | Real Power Loss in kW | Reactive Power Loss in kVAR | Simulation Time, s |
---|---|---|---|---|---|
1 | 72 | 2.9785 | 1016.8 | 776.152 | 42.0828 |
2 | 71 | 3.0768 | 809.778 | 660.218 | 51.7138 |
111 | 2.8902 | ||||
3 | 72 | 1.3904 | 820.703 | 601.146 | 51.1177 |
112 | 4.2562 | ||||
48 | 2.5894 |
Method | Single DG | Two DGs | Three DGs | |||
---|---|---|---|---|---|---|
Bus Number /Size of DG, MW | Power Loss, kW | Bus Number /Size of DG, MW | Power Loss, kW | Bus Number /Size of DG, MW | Power Loss, kW | |
HSA-PABC (Harmonic search algorithm -Particle artificial bee colony) [46] | 70/3.05 | 1021.09 | – | – | 80/2.6 30/6.8 47/6.4 | 904.38 |
SOS (Symbiotic Organism Search) [47] | 70/3.0482 | 1021.089 | – | – | 70/2.3788 104/4.7958 68/1.2591 | 875.2687 |
Whale optimization algorithm [48] | 113/2.704 | 1092.46 | – | – | – | – |
Proposed PIPSO-SQP | 72/2.9785 | 1016.8 | 71/3.0768 111/2.8902 | 809.778 | 72/1.3094 112/4.256 48/2.5894 | 820.703 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angalaeswari, S.; Sanjeevikumar, P.; Jamuna, K.; Leonowicz, Z. Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation. Sustainability 2020, 12, 5787. https://doi.org/10.3390/su12145787
Angalaeswari S, Sanjeevikumar P, Jamuna K, Leonowicz Z. Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation. Sustainability. 2020; 12(14):5787. https://doi.org/10.3390/su12145787
Chicago/Turabian StyleAngalaeswari, S., P. Sanjeevikumar, K. Jamuna, and Zbigniew Leonowicz. 2020. "Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation" Sustainability 12, no. 14: 5787. https://doi.org/10.3390/su12145787
APA StyleAngalaeswari, S., Sanjeevikumar, P., Jamuna, K., & Leonowicz, Z. (2020). Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation. Sustainability, 12(14), 5787. https://doi.org/10.3390/su12145787