Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background of Study Area
2.2. Sampling and Analytical Methods
2.3. Pollution and Ecological Risk Assessment Methods
2.3.1. Single Pollution Index and Nemerow Synthetic Pollution Index
2.3.2. Geo-Accumulation Index Method
2.3.3. Potential Ecological Risk Index
2.4. Data Analysis
3. Results and Discussion
3.1. Macroelement Content
3.2. Heavy Metal(loid) Contents
3.3. Pollution Level of Heavy Metal(loid)s
3.4. Ecological Risk Level of Heavy Metal(loid)s
3.5. Multivariate Statistical Analysis Results
3.5.1. Pearson’s Correlation Analysis Results
3.5.2. Principal Component Analysis Results
3.5.3. Cluster Analysis Results
3.6. Source Identification of Heavy Metal(loid)s
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Cai, L.; Wen, H.; Luo, J.; Wang, Q.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef]
- Fei, X.; Xiao, R.; Christakos, G.; Langousis, A.; Ren, Z.; Tian, Y.; Lv, X. Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecol. Indic. 2019, 106, 105508. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, K.; Sun, Z.; Chen, G.; Cheng, H. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. J. Hazard. Mater. 2020, 391, 122244. [Google Scholar]
- Burges, A.; Epelde, L.; Garbisu, C. Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere 2015, 120, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Li, L.Y.; Gao, T.; Chang, Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total Environ. 2014, 484, 27–35. [Google Scholar] [CrossRef]
- Doabi, S.A.; Karami, M.; Afyuni, M.; Yeganeh, M. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, L.; Wen, H.; Hu, G.; Chen, L.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Shen, H.; Li, Z.; Wang, L.; Wang, F.; Zhao, K.; Liu, X.; Wendroth, O.; Xu, J. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. Environ. Pollut. 2019, 244, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Fang, W.; Shafi, M.; Wu, D.; Li, Y.; Zhong, B.; Ma, J.; Liu, D. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China. Ecotoxicol. Environ. Saf. 2019, 184, 109495. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhao, J.; Chang, S.X.; Collins, C.; Xu, J.; Liu, X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environ. Int. 2019, 128, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.; Zhang, D.; Zhou, Y. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Shi, L.; Wu, C.; Wu, H.; Qin, Y.; Pan, W.; Hartley, W.; Cui, M. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ. Res. 2017, 156, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Yang, J.; Liu, H.; Dai, J. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Sci. Total Environ. 2015, 508, 29–36. [Google Scholar] [CrossRef]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef]
- Timofeev, I.; Kosheleva, N.; Kasimov, N. Health risk assessment based on the contents of potentially toxic elements in urban soils of Darkhan, Mongolia. J. Environ. Manage. 2019, 242, 279–289. [Google Scholar] [CrossRef]
- Fazekašová, D.; Fazekaš, J. Soil quality and heavy metal pollution assessment of Iron ore mines in Nizna Slana (Slovakia). Sustainability 2020, 12, 2549. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xu, Q.; Zheng, Q.; Wu, L. Assessment of the health effects of heavy metals pollution of agricultural soils in the iron ore mining area of the northern piedmont of mountain Wutai Shaanxi province, China. Sustainability 2020, 12, 1926. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Bai, Z.; Liu, X. Heavy-metal pollution characteristics and influencing factors in agricultural soils: Evidence from Shuozhou city, Shanxi province, China. Sustainability 2020, 12, 1907. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, Y.; Ni, X.; Arif, M.; Charles, W.; Li, C. Trace elements in soils of a typical industrial district in Ningxia, northwest China: Pollution, source, and risk evaluation. Sustainability 2020, 12, 1868. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Guan, Q.; Tian, J.; Lin, J.; Yang, Y.; Yang, L.; Pan, N. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573. [Google Scholar] [CrossRef]
- Zeng, S.; Ma, J.; Yang, Y.; Zhang, S.; Liu, G.; Chen, F. Spatial assessment of farmland soil pollution and its potential human health risks in China. Sci. Total Environ. 2019, 687, 642–653. [Google Scholar] [CrossRef]
- Cai, L.; Wang, Q.; Wen, H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Shi, Y.; Guo, G.; Zhao, L.; Niu, J.; Zhang, C. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site. J. Clean. Prod. 2020, 251, 119721. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Wu, F.; Ju, T.; Gong, Y.; Zhang, Y.; Wu, X.; Hou, H.; Zhao, L.; Shi, H. Mass balance-based inventory of heavy metals inputs to and outputs from agricultural soils in Zhejiang Province, China. Sci. Total Environ. 2019, 649, 1269–1280. [Google Scholar] [CrossRef]
- Ni, M.; Mao, R.; Jia, Z.; Dong, R.; Li, S. Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): Comparative pollution assessment using multiple indices with high-spatial resolution sampling. Ecotoxicol. Environ. Saf. 2018, 148, 644–651. [Google Scholar] [CrossRef]
- Sun, L.; Guo, D.; Liu, K.; Meng, H.; Zheng, Y.; Yuan, F.; Zhu, G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena 2019, 175, 101–109. [Google Scholar] [CrossRef]
- Varol, M.; Sünbül, M.R.; Aytop, H.; Yılmaz, C.H. Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. Chemosphere 2020, 245, 125592. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Shi, L.; Xue, S.; Li, W.; Jiang, X.; Rajendran, M.; Qian, Z. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci. Total Environ. 2019, 647, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Luo, H.; Li, D.; Chen, Z.; Yang, S.; Liu, Z.; Yang, T.; Gai, C. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms. Environ. Pollut. 2020, 261, 114217. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, X.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, X.; Li, L.Y. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos. Environ. 2014, 88, 172–182. [Google Scholar] [CrossRef]
- Shi, D.; Lu, X. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Sci. Total Environ. 2018, 636, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zheng, Y.; Lei, M.; Huang, Z.; Wu, H.; Chen, H.; Fan, K.; Yu, K.; Wu, X.; Tian, Q. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef]
- CNEMC (China National Environmental Monitoring Centre). The Background Values of Elements in Chinses Soils; Environmental Science Press of China: Beijing, China, 1990. [Google Scholar]
- Chen, H.; Lu, X.; Chang, Y.; Xue, W. Heavy metal contamination in dust from kindergartens and elementary schools in Xi’an, China. Environ. Earth Sci. 2014, 71, 2701–2709. [Google Scholar] [CrossRef]
- Lu, X.; Pan, H.; Wang, Y. Pollution evaluation and source analysis of heavy metal in roadway dust from a resource-typed industrial city in Northwest China. Atmos. Pollut. Res. 2017, 8, 587–595. [Google Scholar] [CrossRef]
- Müller, G. Index of geo accumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Zhang, Z.; Lu, Y.; Li, H.; Tu, Y.; Liu, B.; Yang, Z. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci. Total Environ. 2018, 645, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Qin, C.; Hong, X.; Kang, G.; Qin, M.; Yang, D.; Pang, B.; Li, Y.; He, J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef]
- Lu, X.; Li, L.Y.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos. Environ. 2009, 43, 2489–2496. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Lei, K. Lead in roadway dusts from different functional areas in a typical valley city, NW China: Contamination and exposure risk. Environ. Sci. Pollut. Res. 2018, 25, 523–532. [Google Scholar] [CrossRef]
- Hakånson, L. An Ecological Risk Index for Aquatic Pollution Control-A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef]
- Kusin, F.M.; Azani, N.N.M.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Yuan, G.; Sun, T.; Han, P.; Li, J.; Lang, X. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. J. Geochem. Explor. 2014, 136, 40–47. [Google Scholar] [CrossRef]
- Lu, X.; Shi, D.; Yin, N.; Pan, H.; Smith, P. Risk assessment of heavy metals in finer than 63-μmdust particles from various functional areas in Xi’an, China. Air Qual. Atmos. Health 2017, 10, 907–915. [Google Scholar] [CrossRef]
- Lu, X.; Wu, X.; Wang, Y.; Chen, H.; Gao, P.; Fu, Y. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol. Environ. Saf. 2014, 106, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, K.; Li, M.; Yang, K.; Liu, F.; Cheng, X. Geochemical background and base line value of chemical elements in urban soil in China. Earth Sci. Front. 2014, 21, 265–306. [Google Scholar]
- Chen, X.; Lu, X.; Yang, G. Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ringroad, NW China using multivariate statistical methods. Catena 2012, 98, 73–78. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Zhang, R.; Gan, Y.; Cai, L.; Freidenreich, A.; Wang, K.; Guo, T.; Wang, H. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2019, 651, 3127–3138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lu, X.; Pan, H. Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi’an, China. Environ. Sci. Pollut. Res. 2016, 23, 19838–19846. [Google Scholar] [CrossRef]
- Pan, L.; Ma, J.; Wang, X.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Hansen, H.C.B.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef]
- Li, S.; Jia, Z. Heavy metals in soils from a representative rapidly developing megacity (SW China): Levels, source identification and apportionment. Catena 2018, 163, 414–423. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Teng, Y.; Chen, H.; Wang, Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2020, 388, 121766. [Google Scholar] [CrossRef]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, Q. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Shen, F.; Liao, R.; Ali, A.; Mahar, A.; Guo, D.; Li, R.; Sun, X.; Awasthi, M.K.; Wang, Q.; Zhang, Z. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 2017, 139, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, S.; Sun, Q.; Wadood, S.A.; Guo, B. Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicol. Environ. Saf. 2018, 159, 354–362. [Google Scholar] [CrossRef]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Hani, A.; Pazira, E. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environ. Monit. Assess. 2011, 176, 677–691. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Wang, L.; Gao, S.; Yin, X.; Yu, X.; Luan, L. Arsenic accumulation, distribution and source analysis of rice in a typical growing area in north China. Ecotoxicol. Environ. Saf. 2019, 167, 429–434. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef]
- Dartan, G.; Taspinar, F.; Toroz, I. Assessment of heavy metals in agricultural soils and their source apportionment: A Turkish district survey. Environ. Monit. Assess. 2015, 187, 99. [Google Scholar] [CrossRef]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Lv, J. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2019, 244, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, J.; Wang, Y.; Sun, L.; Yu, H. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere 2013, 92, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Linhares, D.; Pimentel, A.; Borges, C.; Cruz, J.V.; Garcia, P.; Rodrigues, A.S. Cobalt distribution in the soils of São Miguel Island (Azores): From volcanoes to health effects. Sci. Total Environ. 2019, 684, 715–721. [Google Scholar] [CrossRef]
- Pathak, A.K.; Kumar, R.; Kumar, P.; Yadav, S. Sources apportionment and spatio-temporal changes in metal pollution in surface and sub-surface soils of a mixed type industrial area in India. J. Geochem. Explor. 2015, 159, 169–177. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef]
Elements | Mean | Range | SD | CV (%) | Kurtosis | Skewness | Background Value [39] |
---|---|---|---|---|---|---|---|
Na | 0.9 | 0.5−1.2 | 0.2 | 17.0 | 0.9 | 0.1 | 1.2 |
K | 2.1 | 1.9−2.4 | 0.1 | 5.6 | −0.1 | 0.4 | 1.9 |
Si | 29.9 | 25.9−31.4 | 1.2 | 4.1 | 2.8 | −1.6 | 27.4 a |
Mg | 1.2 | 1.0−1.6 | 0.2 | 11.9 | −0.1 | 0.6 | 1.0 |
Ca | 1.6 | 0.7−5.8 | 1.1 | 72.0 | 4.9 | 2.2 | 2.9 |
Al | 7.1 | 2.9−7.9 | 1.0 | 13.6 | 11.1 | −3.2 | 6.8 |
Fe | 3.8 | 3.1−4.4 | 0.3 | 7.8 | −0.4 | −0.4 | 3.2 |
Ti | 0.4 | 0.4−0.5 | 0.03 | 5.7 | 0.9 | −0.4 | 0.4 |
P | 906.4 | 468.0−1907.0 | 302.3 | 33.3 | 1.6 | 0.9 | 721 a |
S | 233.5 | 115.0−1000.0 | 140.8 | 60.3 | 24.8 | 4.6 | 184 a |
Cl | 70.9 | 32.0−192.0 | 29.4 | 41.4 | 7.5 | 2.4 | 68 a |
Br | 2.2 | 0.8−3.9 | 0.8 | 37.3 | −0.5 | 0.5 | 2.1 |
Elements | Max | Min | Mean | SD | CV(%) | Kurtosis | Skewness | Background Value [39] |
---|---|---|---|---|---|---|---|---|
As | 40.1 | 5.4 | 14.2 | 5.5 | 38.6 | 13.1 | 2.8 | 11.1 |
Co | 28.0 | 15.2 | 18.3 | 2.4 | 13.1 | 5.9 | 1.9 | 10.6 |
Cr | 98.3 | 63.0 | 78.9 | 7.0 | 8.9 | 1.5 | 0.3 | 62.5 |
Cu | 114.2 | 27.8 | 36.7 | 18.4 | 49.9 | 34.0 | 5.7 | 21.4 |
Mn | 1141.1 | 616.9 | 789.2 | 110.4 | 14.0 | 3.6 | 1.3 | 557.0 |
Ni | 43.4 | 39.3 | 36.5 | 3.6 | 9.9 | −0.5 | −0.2 | 28.8 |
Pb | 321.7 | 20.0 | 39.9 | 47.4 | 118.4 | 36.5 | 6.0 | 21.4 |
V | 117.9 | 86.2 | 107.1 | 9.8 | 9.1 | 2.4 | 0.3 | 66.9 |
Zn | 3068.4 | 80.4 | 214.0 | 482.9 | 225.6 | 35.6 | 5.9 | 69.4 |
Elements | As | Co | Cr | Cu | Mn | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|
As | 1 | −0.025 | 0.297 | 0.741 ** | 0.606 ** | 0.509 ** | 0.781 ** | 0.124 | 0.796 ** |
Co | 0.880 | 1 | 0.473 ** | 0.255 | 0.200 | 0.198 | 0.141 | 0.540 ** | 0.162 |
Cr | 0.071 | 0.003 | 1 | 0.162 | 0.560 ** | 0.764 ** | 0.075 | 0.738 ** | 0.101 |
Cu | 0.000 | 0.122 | 0.331 | 1 | 0.476 ** | 0.095 | 0.973 ** | 0.095 | 0.970 ** |
Mn | 0.000 | 0.228 | 0.000 | 0.003 | 1 | 0.494 ** | 0.500 ** | 0.441 ** | 0.516 ** |
Ni | 0.001 | 0.233 | 0.000 | 0.569 | 0.002 | 1 | 0.028 | 0.549 ** | 0.060 |
Pb | 0.000 | 0.399 | 0.656 | 0.000 | 0.001 | 0.865 | 1 | −0.002 | 0.996 ** |
V | 0.459 | 0.000 | 0.000 | 0.569 | 0.006 | 0.000 | 0.992 | 1 | 0.037 |
Zn | 0.000 | 0.333 | 0.548 | 0.000 | 0.001 | 0.719 | 0.000 | 0.827 | 1 |
Elements | PC1 | PC2 | PC3 | Communality |
---|---|---|---|---|
As | 0.811 | 0.445 | −0.257 | 0.922 |
Co | 0.109 | 0.172 | 0.933 | 0.911 |
Cr | 0.048 | 0.856 | 0.368 | 0.870 |
Cu | 0.964 | 0.039 | 0.175 | 0.962 |
Mn | 0.517 | 0.643 | 0.045 | 0.684 |
Ni | 0.041 | 0.938 | −0.031 | 0.883 |
Pb | 0.995 | −0.006 | 0.054 | 0.993 |
V | −0.041 | 0.705 | 0.557 | 0.808 |
Zn | 0.992 | 0.026 | 0.069 | 0.990 |
Eigenvalue | 3.847 | 2.753 | 1.423 | |
% of Total explained variance | 42.750 | 30.584 | 15.809 | |
% of cumulative | 42.750 | 73.334 | 89.143 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, S.; Lu, X. Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China. Sustainability 2020, 12, 5806. https://doi.org/10.3390/su12145806
Zhuang S, Lu X. Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China. Sustainability. 2020; 12(14):5806. https://doi.org/10.3390/su12145806
Chicago/Turabian StyleZhuang, Sukai, and Xinwei Lu. 2020. "Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China" Sustainability 12, no. 14: 5806. https://doi.org/10.3390/su12145806
APA StyleZhuang, S., & Lu, X. (2020). Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China. Sustainability, 12(14), 5806. https://doi.org/10.3390/su12145806