The Influence of Salinity on the Removal of Ni and Zn by Sorption onto Iron Oxide- and Manganese Oxide-Coated Sand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. IOCS and MOCS Preparation
2.3. IOCS and MOCS Characterization
2.4. Sorption Experiments
2.5. Single Sorption Models
2.6. Binary Sorption Models
3. Results and Discussion
3.1. Physicochemical Properties of IOCS and MOCS
3.2. Single Sorption
3.3. Binary Sorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wen, X.; Lu, J.; Wu, J.; Lin, Y.; Luo, Y. Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Sci. Total Environ. 2019, 652, 267–277. [Google Scholar] [CrossRef]
- Hepburn, E.; Northway, A.; Bekele, D.; Liu, G.-J.; Currell, M. A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence. Environ. Pollut. 2018, 241, 787–799. [Google Scholar] [CrossRef]
- Christophoridis, C.; Bourliva, A.; Evgenakis, E.; Papadopoulou, L.; Fytianos, K. Effects of anthropogenic activities on the levels of heavy metals in marine surface sediments of the Thessaloniki Bay, Northern Greece: Spatial distribution, sources and contamination assessment. Microchem. J. 2019, 149, 104001. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Li, L.; Min, X.; Luo, Y. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018, 201, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, O.M. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl. Water Sci. 2017, 7, 3267–3280. [Google Scholar] [CrossRef] [Green Version]
- Tian, K.; Wu, Q.; Liu, P.; Hu, W.; Huang, B.; Shi, B.; Zhou, Y.; Kwon, B.-O.; Choi, K.; Ryu, J.; et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2020, 136, 105512. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Zhou, Y.; Shi, B.; Kwon, B.-O.; Choi, K.; et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef] [PubMed]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 252, 428–461. [Google Scholar] [CrossRef]
- Rachmawati, S.D.; Tizaoui, C.; Hilal, N. Manganese coated sand for copper (II) removal from water in batch mode. Water 2013, 5, 1487–1501. [Google Scholar] [CrossRef] [Green Version]
- Eisazadeh, A.; Eisazadeh, H.; Kassim, K.A. Removal of Pb(II) using polyaniline composites and iron oxide coated natural sand and clay from aqueous solution. Synth. Met. 2013, 171, 56–61. [Google Scholar] [CrossRef]
- Charbonnet, J.A.; Duan, Y.; Sedlak, D.L. The use of manganese oxide-coated sand for the removal of trace metal ions from stormwater. Environ. Sci. Water Res. Technol. 2020, 6, 593–603. [Google Scholar] [CrossRef]
- Chaudhry, S.A.; Khan, T.A.; Ali, I. Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J. Mol. Liq. 2017, 236, 320–330. [Google Scholar] [CrossRef]
- Statham, T.M.; Stark, S.C.; Snape, I.; Stevens, G.W.; Mumford, K.A. A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: A field assessment at Casey Station, Antarctica. Chemosphere 2016, 147, 368–375. [Google Scholar] [CrossRef]
- Mak, M.S.H.; Rao, P.; Lo, I.M.C. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid. Environ. Pollut. 2011, 159, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.R.; Umlong, I.M.; Das, B.; Borah, K.; Thakur, A.J.; Raul, P.K.; Banerjee, S.; Singh, L. Removal of iron and arsenic (III) from drinking water using iron oxide-coated sand and limestone. Appl. Water Sci. 2014, 4, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Selim, H.M. Transport and retention of Molybdenum(VI) on iron oxide-coated sand: A modified multi reaction model. Appl. Geochem. 2019, 108, 104387. [Google Scholar] [CrossRef]
- Boujelben, N.; Bouzid, J.; Elouear, Z. Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems. J. Hazard. Mater. 2009, 163, 376–382. [Google Scholar] [CrossRef]
- Bajpai, S.; Chaudhuri, M. Removal of arsenic from ground water by manganese dioxide-coated sand. J. Environ. Eng. 1999, 125, 782–784. [Google Scholar] [CrossRef]
- Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M. Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: Kinetic and thermodynamic studies. Environ. Technol. 2010, 31, 1623–1634. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms; EPA-821-R-02-012; US EPA: Washington, DC, USA, 2002.
- United States Environmental Protection Agency (US EPA). Cation-Exchange Capacity of Soils (Sodium Acetate)—Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods; SW846/9081:2007; US EPA: Washington, DC, USA, 2007.
- Appel, C.; Ma, L.Q.; Rhue, R.D.; Kennelley, E. Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 2003, 113, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Rakib, M.A.; Sasaki, J.; Matsuda, H.; Quraishi, S.B.; Mahmud, M.J.; Bodrud-Doza, M.; Ullah, A.K.M.A.; Fatema, K.J.; Newaz, M.A.; Bhuiyan, M.A.H. Groundwater salinization and associated co-contamination risk increase severe drinking water vulnerabilities in the southwestern coast of Bangladesh. Chemosphere 2020, 246, 125646. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Shin, W.S.; Choi, S.-J. Removal of cobalt and strontium from groundwater by sorption onto fishbone. J. Radioanal. Nucl. Chem. 2013, 295, 789–799. [Google Scholar] [CrossRef]
- Ma, B.; Shin, W.S.; Oh, S.; Park, Y.-J.; Choi, S.-J. Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Sep. Sci. Technol. 2010, 45, 453–462. [Google Scholar] [CrossRef]
- Wang, S.; Kwak, J.-H.; Islam, M.S.; Naeth, M.A.; El-Din, M.G.; Chang, S.X. Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Sci. Total Environ. 2020, 712, 136538. [Google Scholar] [CrossRef]
- Oh, S.; Kwak, M.Y.; Shin, W.S. Competitive sorption of lead and cadmium onto sediments. Chem. Eng. J. 2009, 152, 376–388. [Google Scholar] [CrossRef]
- Choy, K.K.H.; Porter, J.F.; McKay, G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J. Chem. Eng. Data 2000, 45, 575–584. [Google Scholar] [CrossRef]
- Radke, C.J.; Prausnitz, J.M. Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J. 1972, 18, 761–768. [Google Scholar] [CrossRef]
- Yen, C.-Y.; Singer, P.C. Competitive adsorption of phenols on activated carbon. J. Env. Eng. 1984, 110, 976–983. [Google Scholar] [CrossRef]
- Shin, W.S. Competitive sorption of anionic and cationic dyes onto cetylpyridinium-modified montmorillonite. J. Environ. Sci. Health A 2008, 43, 1459–1470. [Google Scholar] [CrossRef]
- Song, D.-I.; Choi, J.; Shin, W.S. The modified Song isotherm model: Application to multisolute sorption of phenols in organoclays using the ideal adsorbed solution theory. Environ. Technol. 2020. [Google Scholar] [CrossRef]
- Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. J. Hazard. Mater. 2008, 151, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Axe, L. Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption. J. Colloid Interf. Sci. 2005, 282, 11–19. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Song, K.-H.; Yang, J.-K. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand. J. Hazard. Mater. 2008, 150, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Septian, A.; Shin, W.S. Oxidative removal of sulfadiazine using synthetic and natural manganese dioxides. Environ. Technol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, M.; Wang, C.; Feng, J.; Yan, W. Insight into the synergistic effect on selective adsorption for heavy metal ions by a Polypyrrole/TiO2 composite. Langmuir 2018, 34, 10187–10196. [Google Scholar] [CrossRef] [PubMed]
- Sdiri, A.T.; Higashi, T.; Jamoussi, F. Adsorption of copper and zinc onto natural clay in single and binary systems. Int. J. Environ. Sci. Technol. 2014, 11, 1081–1092. [Google Scholar] [CrossRef]
- Hilbrandt, I.; Lehmann, V.; Zietzschmann, F.; Ruhlc, A.S.; Jekela, M. Quantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxide. RSC Adv. 2019, 9, 23642–23651. [Google Scholar] [CrossRef] [Green Version]
- Conca, J.L.; Wright, J. An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd. Appl. Geochem. 2006, 21, 1288–1300. [Google Scholar] [CrossRef]
IOCS | MOCS | |
---|---|---|
BET surface area (ABET, m2 g−1) | 0.711 | 1.057 |
CEC (mmol 100 g−1) | 1.389 | 2.670 |
pHPZC | 8.2 | 7.1 |
Freundlich | Sorbent | Metal | Salinity | KF | NF(–) | R2 | SSE | ||
IOCS | Ni | 0 | 0.002 | 0.453 | 0.986 | 0.000 | |||
30 | 0.002 | 0.344 | 0.967 | 0.000 | |||||
Zn | 0 | 0.005 | 0.480 | 0.985 | 0.000 | ||||
30 | 0.004 | 0.567 | 0.989 | 0.000 | |||||
MOCS | Ni | 0 | 0.004 | 0.490 | 0.982 | 0.000 | |||
30 | 0.002 | 0.309 | 0.947 | 0.000 | |||||
Zn | 0 | 0.007 | 0.523 | 0.978 | 0.000 | ||||
30 | 0.005 | 0.429 | 0.966 | 0.000 | |||||
Langmuir | Sorbent | Metal | Salinity | qmL | bL | R2 | SSE | ||
IOCS | Ni | 0 | 0.003 | 2.046 | 0.989 | 0.000 | |||
30 | 0.002 | 4.919 | 0.991 | 0.000 | |||||
Zn | 0 | 0.008 | 2.324 | 0.998 | 0.000 | ||||
30 | 0.006 | 1.409 | 0.990 | 0.000 | |||||
MOCS | Ni | 0 | 0.006 | 1.815 | 0.996 | 0.000 | |||
30 | 0.002 | 7.199 | 0.999 | 0.000 | |||||
Zn | 0 | 0.012 | 1.779 | 0.993 | 0.000 | ||||
30 | 0.006 | 3.905 | 0.997 | 0.000 | |||||
DR | Sorbent | Metal | Salinity | qmD | β | R2 | SSE | E | |
IOCS | Ni | 0 | 0.002 | 5.177 | 0.989 | 0.000 | 3.11 | ||
30 | 0.002 | 2.913 | 0.984 | 0.000 | 4.14 | ||||
Zn | 0 | 0.006 | 4.545 | 0.989 | 0.000 | 3.32 | |||
30 | 0.004 | 5.713 | 0.969 | 0.000 | 2.96 | ||||
MOCS | Ni | 0 | 0.005 | 5.330 | 0.983 | 0.000 | 3.01 | ||
30 | 0.002 | 2.292 | 0.998 | 0.000 | 4.67 | ||||
Zn | 0 | 0.009 | 5.444 | 0.988 | 0.000 | 3.03 | |||
30 | 0.005 | 3.238 | 0.985 | 0.000 | 3.93 | ||||
Sips | Sorbent | Metal | Salinity | qmS | bS | NS(–) | R2 | SSE | |
IOCS | Ni | 0 | 0.004 | 0.975 | 0.752 | 0.992 | 0.000 | ||
30 | 0.002 | 3.896 | 0.831 | 0.993 | 0.000 | ||||
Zn | 0 | 0.008 | 2.057 | 0.941 | 0.999 | 0.000 | |||
30 | 0.009 | 0.589 | 0.793 | 0.992 | 0.000 | ||||
MOCS | Ni | 0 | 0.007 | 1.661 | 0.957 | 0.996 | 0.000 | ||
30 | 0.002 | 7.283 | 1.016 | 0.999 | 0.000 | ||||
Zn | 0 | 0.011 | 2.230 | 1.131 | 0.993 | 0.000 | |||
30 | 0.006 | 4.155 | 1.043 | 0.998 | 0.000 |
Sorbent | Salinity (‰) | Solute | R2 | SSE | ||
---|---|---|---|---|---|---|
IOCS | 0 | Ni in Ni/Zn | 0.004 | 2.000 | 0.900 | 0.000 |
Zn in Ni/Zn | 0.007 | 3.234 | 0.979 | 0.000 | ||
30 | Ni in Ni/Zn | 0.003 | 3.425 | 0.944 | 0.000 | |
Zn in Ni/Zn | 0.006 | 3.927 | 0.984 | 0.000 | ||
MOCS | 0 | Ni in Ni/Zn | 0.005 | 1.575 | 0.973 | 0.000 |
Zn in Ni/Zn | 0.008 | 3.287 | 0.988 | 0.000 | ||
30 | Ni in Ni/Zn | 0.003 | 3.064 | 0.946 | 0.000 | |
Zn in Ni/Zn | 0.006 | 3.899 | 0.984 | 0.000 |
Sorbent | Salinity (‰) | qmL,Ni/qmL,Zn | |||
IOCS | 0 | 0.348 | 0.539 | 1.449 | 0.935 |
30 | 0.310 | 0.450 | 1.344 | 0.926 | |
MOCS | 0 | 0.537 | 0.471 | 0.419 | 0.477 |
30 | 0.381 | 0.471 | 1.138 | 0.919 | |
Sorbent | Salinity (‰) | bL,Ni/bL,Zn | / | / | / |
IOCS | 0 | 0.880 | 0.618 | 0.978 | 1.392 |
30 | 3.491 | 0.872 | 0.696 | 2.787 | |
MOCS | 0 | 1.021 | 0.786 | 1.688 | 2.192 |
30 | 1.843 | 0.786 | 0.426 | 0.998 |
Sorbent | Salinity (‰) | Sorption Model | Pi | R2 | SSE | RMSE |
---|---|---|---|---|---|---|
IOCS | 0 | P-factor | 0.690/1.069 | 0.967/0.972 | 0.000/0.000 | 0.000/0.001 |
IAST–Freundlich | 0.294/0.960 | 0.000/0.000 | 0.002/0.001 | |||
IAST–Langmuir | 0.247/0.954 | 0.000/0.000 | 0.002/0.001 | |||
IAST–Sips | 0.284/0.954 | 0.000/0.000 | 0.002/0.001 | |||
30 | P-factor | 0.744/1.080 | 0.974/0.911 | 0.000/0.000 | 0.000/0.001 | |
IAST–Freundlich | 0.699/0.837 | 0.000/0.000 | 0.001/0.002 | |||
IAST–Langmuir | 0.556/0.808 | 0.000/0.000 | 0.001/0.002 | |||
IAST–Sips | 0.575/0.823 | 0.000/0.000 | 0.001/0.002 | |||
MOCS | 0 | P-factor | 1.243/1.532 | 0.790/0.820 | 0.000/0.000 | 0.001/0.002 |
IAST–Freundlich | 0.860/0.973 | 0.000/0.000 | 0.001/0.001 | |||
IAST–Langmuir | 0.809/0.988 | 0.000/0.000 | 0.001/0.000 | |||
IAST–Sips | 0.831/0.986 | 0.000/0.000 | 0.001/0.000 | |||
30 | P-factor | 0.877/1.088 | 0.931/0.811 | 0.000/0.000 | 0.000/0.002 | |
IAST–Freundlich | 0.623/0.980 | 0.000/0.000 | 0.001/0.000 | |||
IAST–Langmuir | 0.454/0.986 | 0.000/0.000 | 0.001/0.000 | |||
IAST–Sips | 0.447/0.986 | 0.000/0.000 | 0.001/0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Septian, A.; Shin, W.S. The Influence of Salinity on the Removal of Ni and Zn by Sorption onto Iron Oxide- and Manganese Oxide-Coated Sand. Sustainability 2020, 12, 5815. https://doi.org/10.3390/su12145815
Choi J, Septian A, Shin WS. The Influence of Salinity on the Removal of Ni and Zn by Sorption onto Iron Oxide- and Manganese Oxide-Coated Sand. Sustainability. 2020; 12(14):5815. https://doi.org/10.3390/su12145815
Chicago/Turabian StyleChoi, Jiyeon, Ardie Septian, and Won Sik Shin. 2020. "The Influence of Salinity on the Removal of Ni and Zn by Sorption onto Iron Oxide- and Manganese Oxide-Coated Sand" Sustainability 12, no. 14: 5815. https://doi.org/10.3390/su12145815
APA StyleChoi, J., Septian, A., & Shin, W. S. (2020). The Influence of Salinity on the Removal of Ni and Zn by Sorption onto Iron Oxide- and Manganese Oxide-Coated Sand. Sustainability, 12(14), 5815. https://doi.org/10.3390/su12145815