The Utilization of Crop Residues as Forest Protection: Predicting the Production of Wheat and Rapeseed Residues
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fugère, V.; Nyboer, E.A.; Bleecker, J.C.; Chapman, L.J. Impacts of forest loss on inland waters: Identifying critical research zones based on deforestation rates, aquatic ecosystem services, and past research effort. Biol. Conserv. 2016, 201, 277–283. [Google Scholar] [CrossRef]
- Forestry Act, no. 289/1995 Coll. Zákon o lesích a o změně některých zákonů (lesní zákon) [Act on Forests and Amendments to some Acts (the Forest Act)]. Available online: https://www.zakonyprolidi.cz/cs/1995-289 (accessed on 23 March 2020).
- Art. 15 Bavarian forest Act. (GVBl S. 313) BayRS 7902-1-L Art. 15 Bayerisches Waldgesetz (BayWaldG) in der Fassung der Bekanntmachung vom 22. Juli 2005 (GVBl. S. 313, BayRS 7902-1-L), das zuletzt durch § 3 Abs. 2 des Gesetzes vom 27. April 2020 (GVBl. S. 236) geändert worden ist. Available online: https://www.gesetze-bayern.de/Content/Document/BayWaldG-15 (accessed on 23 March 2020).
- Le Tourneau, F.-M. Is Brazil now in control of deforestation in the Amazon? Cybergeo 2016, 10, 769. [Google Scholar] [CrossRef]
- Eguiguren, P.; Fischer, R.; Günter, S. Degradation of Ecosystem Services and Deforestation in Landscapes With and Without Incentive-Based Forest Conservation in the Ecuadorian Amazon. Forests 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Tan-Soo, J.-S.; Adnan, N.; Ahmad, I.; Pattanayak, S.K.; Vincent, J.R. Econometric Evidence on Forest Ecosystem Services: Deforestation and Flooding in Malaysia. Environ. Resour. Econ. 2016, 63, 25–44. [Google Scholar] [CrossRef]
- Chazdon, R.L. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [Green Version]
- Srinivasarao, C.; Lal, R.; Kundu, S.; Babu, M.B.B.P.; Venkateswarlu, B.; Singh, A.K. Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Sci. Total Environ. 2014, 487, 587–603. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Phelps, J.; Yuen, J.Q.; Webb, E.L.; Lawrence, D.; Fox, J.M.; Bruun, T.B.; Leisz, S.J.; Ryan, C.M.; Dressler, W.; et al. Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Global Change Biol. 2012, 18, 3087–3099. [Google Scholar] [CrossRef]
- Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Wen, K. Bioenergy potential from crop residues in China: Availability and distribution. Renew. Sustain. Energy Rev. 2012, 16, 1377–1382. [Google Scholar] [CrossRef]
- Kalia, S.; Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011, 2011, 1–35. [Google Scholar] [CrossRef]
- Hýsek, Š.; Podlena, M.; Böhm, M.; Bartsch, H.; Wenderdel, C. Effect of Cold Plasma Surface Pre-treatment of Wheat Straw Particles on Straw Board Properties. BioResources 2018, 13, 5065–5079. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Xia, T.; Huang, H.; Wu, G.; Sun, E.; Jin, X.; Tang, W. The characteristic changes of rice straw fibers in anaerobic digestion and its effect on rice straw-reinforced composites. Ind. Crops Prod. 2018, 121, 73–79. [Google Scholar] [CrossRef]
- Muthuraj, R.; Lacoste, C.; Lacroix, P.; Bergeret, A. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Ind. Crops Prod. 2019, 135, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Sitz, E.D.; Bajwa, D.S. The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder. Ind. Crops Prod. 2015, 75, 200–205. [Google Scholar] [CrossRef]
- Hýsek, Š.; Podlena, M.; Bartsch, H.; Wenderdel, C.; Böhm, M. Effect of wheat husk surface pre-treatment on the properties of husk-based composite materials. Ind. Crops Prod. 2018, 125, 105–113. [Google Scholar] [CrossRef]
- Hýsková, P.; Hýsek, Š.; Schönfelder, O.; Šedivka, P.; Lexa, M.; Jarský, V. Utilization of agricultural rests: Straw-based composite panels made from enzymatic modified wheat and rapeseed straw. Ind. Crops Prod. 2020, 144, 112067. [Google Scholar] [CrossRef]
- Klímek, P.; Wimmer, R. Alternative Raw Materials for Bio-Based Composites; Bioresources: Brasov, Romania, 2017. [Google Scholar]
- Gajdačová, P.; Hýsek, Š.; Jarský, V. Utilisation of Winter Rapeseed in Wood-based Materials as a Solution of Wood Shortage and Forest Protection. BioResources 2018, 13, 2546–2561. [Google Scholar] [CrossRef] [Green Version]
- Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.L.; Nelson, R.; Sheehan, J.; Perlack, R.D.; Wright, L.L. Current and Potential U.S. Corn Stover Supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Kluts, I.; Wicke, B.; Leemans, R.; Faaij, A. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew. Sustain. Energy Rev. 2017, 69, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Bentsen, N.S.; Felby, C.; Thorsen, B.J. Agricultural residue production and potentials for energy and materials services. Prog. Energy Combust. Sci. 2014, 40, 59–73. [Google Scholar] [CrossRef]
- Scarlat, N.; Martinov, M.; Dallemand, J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef]
- Boken, V.K. Forecasting Spring Wheat Yield Using Time Series Analysis: A Case Study for the Canadian Prairies. Agron. J. 2000, 92, 1047–1053. [Google Scholar] [CrossRef]
- Kumar, V.; Haque, C.E. Forecasting wheat yield in the Canadian Prairies using climatic and satellite data. Prairie Perspect. 1998, 1, 81–92. [Google Scholar]
- Searle, S.; Malins, C. Availability of Cellulosic Residues and Wastes in the EU 2013; The International Council On Clean Transportation: San Francisco, CA, USA, 2013. [Google Scholar]
- Michel, L.; Makowski, D. Comparison of Statistical Models for Analyzing Wheat Yield Time Series. PLoS ONE 2013, 8, e78615. [Google Scholar] [CrossRef] [Green Version]
- (BNEF) Bloomberg New Energy Moving Towards A Next-Generation EthanolEconomy: Final Study 2012. Available online: https://about.bnef.com/blog/moving-towards-a-next-generation-ethanol-economy-report/ (accessed on 23 March 2020).
- EC EU agricultural outlook for markets and income, 2018–2030. Available online: https://ec.europa.eu/info/news/eu-agricultural-outlook-2018-2030-changing-consumer-choices-shaping-agricultural-markets-2018-dec-06_en (accessed on 23 March 2020).
- Wietschel, L.; Thorenz, A.; Tuma, A. Spatially explicit forecast of feedstock potentials for second generation bioconversion industry from the EU agricultural sector until the year 2030. J. Clean. Prod. 2019, 209, 1533–1544. [Google Scholar] [CrossRef]
- García-Condado, S.; López-Lozano, R.; Panarello, L.; Cerrani, I.; Nisini, L.; Zucchini, A.; Van der Velde, M.; Baruth, B. Assessing lignocellulosic biomass production from crop residues in the European Union: Modelling, analysis of the current scenario and drivers of interannual variability. GCB Bioenergy 2019, 11, 809–831. [Google Scholar] [CrossRef] [Green Version]
- CSO Zemědělství—Časové Řady [Agriculture—Time Series]. Available online: https://www.czso.cz/csu/czso/zem_cr (accessed on 23 March 2020).
- FAOSTAT Crops—Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 23 March 2020).
- EUROSTAT. Annual Crop Statistics Handbook 2019; Edition 2019; EUROSTAT: Luxembourg, 2019.
- de Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Bakker, R.R.C.; Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P. Rice Straw and Wheat Straw—Potential Feedstocks for the Biobased Economy; NL Agency: Utrecht, The Netherland, 2013. [Google Scholar]
- CSO Statistická Ročenka České Republiky—2018 [Statistical Yearbook of the Czech Republic 2018]. Available online: https://www.czso.cz/csu/czso/statistical-yearbook-of-the-czech-republic-2018 (accessed on 23 March 2020).
- Hafner, S. Trends in maize, rice, and wheat yields for 188 nations over the past 40 years: A prevalence of linear growth. Agric. Ecosyst. Environ. 2003, 97, 275–283. [Google Scholar] [CrossRef]
- Finger, R. Evidence of slowing yield growth–The example of Swiss cereal yields. Food Policy 2010, 35, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Huybers, P. Reckoning wheat yield trends. Environ. Res. Lett. 2012, 7, 024016. [Google Scholar] [CrossRef]
- Rondanini, D.P.; Gomez, N.V.; Agosti, M.B.; Miralles, D.J. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. Eur. J. Agron. 2012, 37, 56–65. [Google Scholar] [CrossRef]
- VDLUFA. Humus Balancing: A Method for the Analysis and Assessment of the Humus Provision of Cultivated Farmland (in German); VDLUFA: Speyer, Germany, 2014. [Google Scholar]
- Monforti, F.; Bódis, K.; Scarlat, N.; Dallemand, J.-F. The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renew. Sustain. Energy Rev. 2013, 19, 666–677. [Google Scholar] [CrossRef]
- van Dam, J.; Faaij, A.P.C.; Lewandowski, I.; Fischer, G. Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass Bioenergy 2007, 31, 345–366. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Scarlat, N.; Fahl, F.; Lugato, E.; Monforti-Ferrario, F.; Dallemand, J.F. Integrated and spatially explicit assessment of sustainable crop residues potential in Europe. Biomass Bioenergy 2019, 122, 257–269. [Google Scholar] [CrossRef]
Linear Regression Model of Post-Harvest Wheat Production | Estimate of Post-Harvest Wheat Production in 2030 | Linear Regression Model of Post-Harvest Rapeseed Production | Estimate of Post-Harvest Rapeseed Production in 2030 | |
---|---|---|---|---|
European Union | y = −6.099 × 108 + 3.6417 × 105 × x | 58.3 million tonnes | y = −8.7624 × 108 + 4.4268 × 105 × x | 22.4 million tonnes |
Czech Republic | y = −1.6798 × 107 + 9.1554 × 103 × x | 1.8 million tonnes | y = −4.8783 × 107 + 2.4661 × 104 × x | 1.3 million tonnes |
RMSE (Tonnes) | ∆1(%) | ∆10(%) | ||||
---|---|---|---|---|---|---|
Wheat | Rapeseed | Wheat | Rapeseed | Wheat | Rapeseed | |
European Union | 2,474,848 | 1,191,631 | 1.2 | 9.2 | 2.9 | 0.9 |
Czech Republic | 147,680 | 87,271 | 5.8 | 3.3 | 0.1 | 6.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hýsková, P.; Hýsek, Š.; Jarský, V. The Utilization of Crop Residues as Forest Protection: Predicting the Production of Wheat and Rapeseed Residues. Sustainability 2020, 12, 5828. https://doi.org/10.3390/su12145828
Hýsková P, Hýsek Š, Jarský V. The Utilization of Crop Residues as Forest Protection: Predicting the Production of Wheat and Rapeseed Residues. Sustainability. 2020; 12(14):5828. https://doi.org/10.3390/su12145828
Chicago/Turabian StyleHýsková, Petra, Štěpán Hýsek, and Vilém Jarský. 2020. "The Utilization of Crop Residues as Forest Protection: Predicting the Production of Wheat and Rapeseed Residues" Sustainability 12, no. 14: 5828. https://doi.org/10.3390/su12145828
APA StyleHýsková, P., Hýsek, Š., & Jarský, V. (2020). The Utilization of Crop Residues as Forest Protection: Predicting the Production of Wheat and Rapeseed Residues. Sustainability, 12(14), 5828. https://doi.org/10.3390/su12145828