Effective Harmful Organism Management I: Fabrication of Facile and Robust Superhydrophobic Coating on Fabric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Superhydrophobic Surface
2.3. Characterization of Superhydrophobic Surface
2.4. Robustness Evaluation of Superhydrophobic Surface
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bax, N.; Carlton, J.; Mathews-Amos, A.; Haedrich, R.; Howarth, F.; Purcell, J.; Rieser, A.; Gray, A. The control of biological invasions in the world’s oceans. Conserv. Biol. 2001, 15, 1234–1246. [Google Scholar] [CrossRef]
- Mack, R.N.; Simberloff, D.; Mark Lonsdale, W.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Monniot, C.; Monniot, F. Additions to the inventory of eastern tropical Atlantic ascidians; arrival of cosmopolitan species. Bull. Mar. Sci. 1994, 54, 71–93. [Google Scholar]
- Lambert, C.C.; Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar. Ecol. Prog. Ser. 2003, 259, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.M.; Fofonoff, P.W.; Carlton, J.T.; Wonham, M.J.; Hines, A.H. Invasion of coastal marine communities in North America: Apparent patterns, processes, and biases. Annu. Rev. Ecol. Syst. 2000, 31, 481–531. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Kim, D.H.; Park, J.-U.; Kim, D.H.; Yoon, T.J.; Kim, D.G.; Lee, Y.; Shin, S. Effects of temperature and salinity on the egg development and larval settlement of Ciona robusta (Ascidiacea, Phlebobranchia, Cionidae). Ocean. Sci. J. 2019, 54, 97–106. [Google Scholar] [CrossRef]
- Phillippi, A.L.; O’Connor, N.J.; Lewis, A.F.; Kim, Y.K. Surface flocking as a possible anti-biofoulant. Aquaculture 2001, 195, 225–238. [Google Scholar] [CrossRef]
- Park, J.; Lee, T.; Kim, D.; Kim, P.; Kim, D.G.; Shin, S. Monitoring and impact of marine ecological disturbance causing organisms on an oyster and sea squirt farm. Korean J. Environ. Biol. 2017, 35, 677–683. [Google Scholar] [CrossRef]
- Demirel, Y.K.; Uzun, D.; Zhang, Y.; Fang, H.-C.; Day, A.H.; Turan, O. Effect of barnacle fouling on ship resistance and powering. Biofouling 2017, 33, 819–834. [Google Scholar] [CrossRef] [Green Version]
- Lafferty, K.D.; Kuris, A.M. Biological control of marine pests. Ecology 1996, 77, 1989–2000. [Google Scholar] [CrossRef]
- Hodson, S.L.; Lewis, T.E.; Burkea, C.M. Biofouling of fish-cage netting: Efficacy and problems of in situ cleaning. Aquaculture 1997, 152, 77–90. [Google Scholar] [CrossRef]
- Bellas, J.; Vázquez, E.; Beiras, R. Toxicity of Hg, Cu, Cd, and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment. Water Res. 2001, 35, 2905–2912. [Google Scholar] [CrossRef]
- Granmo, Å.; Ekelund, R.; Sneli, J.-A.; Berggren, M.; Svavarsson, J. Effects of antifouling paint components (TBTO, copper and triazine) on the early development of embryos in cod (Gadus morhua L.). Mar. Pollut. Bull. 2002, 44, 1142–1148. [Google Scholar] [CrossRef]
- Soroldoni, S.; da Silva, S.V.; Castro, Í.B.; Martins, C.d.M.G.; Pinho, G.L.L. Antifouling paint particles cause toxicity to benthic organisms: Effects on two species with different feeding modes. Chemosphere 2020, 238, 124610. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Figueiredo, J.; Loureiro, S.; Martins, R. Hazard of novel anti-fouling nanomaterials and biocides DCOIT and silver to marine organisms. Environ. Sci. Nano 2020, 7, 1670–1680. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; Shenashen, M.A.; Higazy, S.A.; Elmarakbi, A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J. Mater. Chem. B 2020, 8, 3701–3732. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Recent advances in the potential applications of bioinspired superhydrophobic materials. J. Mater. Chem. A 2014, 2, 16319–16359. [Google Scholar] [CrossRef]
- Das, S.; Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. A review on superhydrophobic polymer nanocoatings: Recent development and applications. Ind. Eng. Chem. Res. 2018, 57, 2727–2745. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-inspired sustainable and durable superhydrophobic materials: From nature to market. J. Mater. Chem. A 2019, 7, 16643–16670. [Google Scholar] [CrossRef]
- Atalah, J.; Hopkins, G.A.; Fletcher, L.M.; Castinel, A.; Forrest, B.M. Concepts for biocontrol in marine environments: Is there a way forward. Manag. Biol. Invasions 2015, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ogihara, H.; Xie, J.; Saji, T. Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions. J. Colloid Interf. Sci. 2015, 437, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, F.; Wang, D.; Guo, Z. Wear-resistant and robust superamphiphobic coatings with hierarchical TiO2/SiO2 composite particles and inorganic adhesives. New J. Chem. 2020, 44, 1194–1203. [Google Scholar] [CrossRef]
- Iacono, S.T.; Jennings, A.R. Recent studies on fluorinated silica nanometer-sized particles. Nanomaterials 2019, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Brassard, J.-D.; Sarkar, D.K.; Perron, J. Fluorine based superhydrophobic coatings. Appl. Sci. 2012, 2, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.-H.; Zhang, Z.-D.; Zhang, J.; Jia, S.-T. Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO 2 nanoparticles and polydimethylsiloxane. J. Mater. Chem A 2014, 2, 15001–15007. [Google Scholar] [CrossRef]
- Li, Z.; Cao, M.; Li, P.; Zhao, Y.; Bai, H.; Wu, Y.; Jiang, L. Surface-embedding of functional micro-/nanoparticles for achieving versatile superhydrophobic interfaces. Matter 2019, 1, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Guo, Z.; Liu, W. A robust epoxy resins@ stearic acid-Mg(OH)2 micronanosheet superhydrophobic omnipotent protective coating for real-life applications. ACS Appl. Mater. Interfaces 2016, 8, 16511–16520. [Google Scholar] [CrossRef]
- Irani, F.; Jannesari, A.; Bastani, S. Effect of fluorination of multiwalled carbon nanotubes (MWCNTs) on the surface properties of fouling-release silicone/MWCNTs coatings. Prog. Org. Coat. 2013, 76, 375–383. [Google Scholar] [CrossRef]
- Hozumi, A.; Takai, O. Preparation of ultra water-repellent films by microwave plasma-enhanced CVD. Thin Solid Films 1997, 303, 222–225. [Google Scholar] [CrossRef]
- Sarkar, D.; Brassard, D.; El Khakani, M.; Ouellet, L. Dielectric properties of sol–gel derived high-k titanium silicate thin films. Thin Solid Films 2007, 515, 4788–4793. [Google Scholar] [CrossRef]
- Teshima, K.; Sugimura, H.; Inoue, Y.; Takai, O. Gas barrier performance of surface-modified silica films with grafted organosilane molecules. Langmuir 2003, 19, 8331–8334. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, M.; Lu, Q.; Shi, Z. Superhydrophobic polyimide films with a hierarchical topography: Combined replica molding and layer-by-layer assembly. Langmuir 2008, 24, 12651–12657. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-J.; Yang, J.; Wan, F.; Ge, Q.; Yang, L.-L.; Ding, Z.-L.; Yang, D.-Q.; Sacher, E.; Isimjan, T.T. How to repel hot water from a superhydrophobic surface? J. Mater. Chem. A 2014, 2, 10639–10646. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C.-H.; Kwak, Y.; Kim, M.K.; Kim, D.G. Effective Harmful Organism Management I: Fabrication of Facile and Robust Superhydrophobic Coating on Fabric. Sustainability 2020, 12, 5876. https://doi.org/10.3390/su12155876
Choi C-H, Kwak Y, Kim MK, Kim DG. Effective Harmful Organism Management I: Fabrication of Facile and Robust Superhydrophobic Coating on Fabric. Sustainability. 2020; 12(15):5876. https://doi.org/10.3390/su12155876
Chicago/Turabian StyleChoi, Chang-Ho, Yeongwon Kwak, Min Kyung Kim, and Dong Gun Kim. 2020. "Effective Harmful Organism Management I: Fabrication of Facile and Robust Superhydrophobic Coating on Fabric" Sustainability 12, no. 15: 5876. https://doi.org/10.3390/su12155876
APA StyleChoi, C. -H., Kwak, Y., Kim, M. K., & Kim, D. G. (2020). Effective Harmful Organism Management I: Fabrication of Facile and Robust Superhydrophobic Coating on Fabric. Sustainability, 12(15), 5876. https://doi.org/10.3390/su12155876