Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen
Abstract
:1. Introduction
2. Study Area and Data Sources
3. Method
3.1. Identifying Cooling Sources
3.2. Setting up the Resistance Surfaces in Different Scenarios
3.3. Identifying and Classifying Cooling Corridors
4. Results
4.1. Cooling Sources
4.2. Cooling Corridors in Different Scenarios
4.3. Comparison and Optimization of Cooling Corridors
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Sensitivity Analysis
References
- Li, J.; Song, C.; Cao, L.u.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.V.; Paddon, A.; Jimenez, A. Review of World Urban Heat Islands: Many Linked to Increased Mortality. J. Energy Resour. Technol. -Trans. ASME 2013, 135, 022101. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.D.; Shi, Y.T. Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China. Sustainability 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Ka´zmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Maiolo, M.; Pirouz, B.; Bruno, R.; Palermo, S.A.; Arcuri, N.; Piro, P. The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate. Sustainability 2020, 12, 359. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petitti, D.; Vollaro, E.L.; Coppi, M.; Vollaro, A.L. Relating microclimate, human thermal comfort and health duringheat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S. Designing urban parks that ameliorate the effects of climate change. Landsc. Urban Plan. 2015, 138, 118–131. [Google Scholar] [CrossRef]
- Imran, H.M.; Kala, J.; Ng, A.W.M.; Muthukumaran, S. Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather Clim. Extrem. 2019, 25, 100217. [Google Scholar] [CrossRef]
- Yu, K. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Xu, J.; Fan, F.; Liu, Y.a.n.; Dong, J.; Chen, J. Construction of Ecological Security Patterns in Nature Reserves Based on Ecosystem Services and Circuit Theory: A Case Study in Wenchuan, China. Int. J. Environ. Res. Public Health 2019, 16, 3220. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Wang, Y.; Zhang, T.; Peng, J.; Li, T. Identification of multiple climatic extremes in metropolis: A comparison of Guangzhou and Shenzhen, China. Nat. Hazards 2015, 79, 939–953. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhang, L.Q.; Peng, J.; Feng, Z.; Liu, H.M.; He, S.B. The integrated recognition of the source area of the urban ecological security pattern in Shenzhen. Acta Ecol. Sin. 2013, 331, 4125–4133. (In Chinese) [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Dissanayake, D.M.S.L.B. Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka. Climate 2020, 8, 65. [Google Scholar] [CrossRef]
- Qin, Z.; Li, W.; Xu, B.; Chen, Z.; Liu, J. The Estimation of Land Surface Emissivity for Landsat TM6. Remote Sens. Land Resour. 2004. (in Chinese) [CrossRef]
- Chen, Y.; Yu, S. Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China. Int. J. Appl. Earth Obs. Geo Inf. 2017, 54, 65–71. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. (in Chinese) [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mande, Ü. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol. Indic. 2005, 5, 350–369. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.-H.; Akbari, H. Urban heat island mitigation strategies: A state-Of-The-Art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef] [Green Version]
Scenario. | Cooling Priority | Isolation Priority | Ventilation Priority |
---|---|---|---|
Total length (km) | 289.17 | 326.66 | 368.06 |
Average temperature in the path area (°C) | 28.58 | 25.79 | 27.08 |
The sum of the volume of the buildings in the path area (m3) | 35.21 × 106 | 27.78 × 105 | 33.98 × 105 |
The length of the corridors lower than 10 m based on the height of the surrounding buildings (km) | 151.94 | 186.71 | 241.18 |
The length of the corridors parallel to the prevailing wind in summer (km) | 175.53 | 202.61 | 197.64 |
The length of the corridors through a reservoir or river (km) | 266.95 | 220.92 | 302.92 |
The length of the corridors through the city’s main roads (km) | 122.26 | 117.84 | 182.50 |
Step | Specific Operation |
---|---|
1. Select overlapping corridors | The corridors of two different scenarios overlap within the 500 m buffer zone. Order of retention: ventilation priority scenario > isolation priority scenario > cooling priority scenario. |
2. Remove corridors that are difficult to develop | The corridors with a large building volume in the path area are eliminated, and the average unit length volume of the corridor in the cooling priority scenario is taken as the threshold. |
3. Comprehensive scoring | More than half of the length of the corridor through the high-temperature zone and the subhigh-temperature area: obtain 3 points; The main direction of the corridor is parallel to the prevailing wind direction: obtain 1 point; The height of buildings in the buffer zone around the corridors is less than 10 m: obtain 1 point; Access to reservoirs and rivers: obtain 1 point; Access to the 50 m buffer zone of the main roads: obtain 1 point. |
4. Further remove redundant corridors | Two or more corridors form closed rings; then, remove the corridor whose cooling effect is extremely unsatisfactory (the portion of the corridor passing through the high and subhigh-temperature area is less than one-fifth of the total length of the corridor) or score is the lowest. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, S.; Shen, N.; Zhao, Y.; Cui, H. Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen. Sustainability 2020, 12, 5903. https://doi.org/10.3390/su12155903
Wu J, Li S, Shen N, Zhao Y, Cui H. Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen. Sustainability. 2020; 12(15):5903. https://doi.org/10.3390/su12155903
Chicago/Turabian StyleWu, Jiansheng, Si Li, Nan Shen, Yuhao Zhao, and Hongyi Cui. 2020. "Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen" Sustainability 12, no. 15: 5903. https://doi.org/10.3390/su12155903
APA StyleWu, J., Li, S., Shen, N., Zhao, Y., & Cui, H. (2020). Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen. Sustainability, 12(15), 5903. https://doi.org/10.3390/su12155903