Can the Tragedy of the Commons be Avoided in Common-Pool Forage Resource Systems? An Application to Small-Holder Herding in the Semi-Arid Grazing Lands of Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Problem Background and Context
“Stories of tragedy and economic loss persist for farmers in Nigeria as suspected Fulani herdsmen’s attack and destruction of lives and hectares of farmlands continue unabated. The cries of residents of the agrarian community have reached high heavens but the incessant attacks have remained a permanent pain… While some farmers came out of the attacks alive, some were not so lucky. They paid the supreme price for accommodating their fellow countrymen.” [45]
2.2. Model Overview
2.3. Statement of Objectives and Dynamic Hypothesis Formation
2.4. Quantitative Model Development
2.4.1. Forage Resource Dynamics
2.4.2. Cowherd Dynamics
2.4.3. Cropland Production Dynamics
2.4.4. Financial Dynamics
2.4.5. Model Data, Evaluation and Calibration
2.5. Experimental Simulations
2.5.1. Calibration Testing
2.5.2. What-If Scenarios
3. Results
3.1. Model Calibration
3.2. What-If Tests
3.2.1. Crop Restriction Scenario
3.2.2. Crop Marketing Scenario
3.2.3. Labor Restriction Scenario
3.2.4. Combination Policies
4. Discussion
Model Strengths, Weaknesses and Possible Extensions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
S/N | Variable | Equation | Unit | Type |
---|---|---|---|---|
1 | “$ per hour” | 1.6 | dollars/hrs | Aux. |
2 | “percent animals added” | WITH LOOKUP (Change in Net-worthXdollar conversion, ([(0,0)–(1e+008, 0.2)],(0,0),(1e+008, 0))) | Dmnl | Aux. |
3 | “percent cows of total sales” | Mature Cow Sold/Total Animal Sold | Dmnl | Aux. |
4 | “percent of body weight forage demanded” | 0.025 | 1/day/hd | Aux. |
5 | “percent reproducing” | (Weaned Calves*assumed annual maturation rate) + Mature Cows | Dmnl | Aux. |
6 | “percent weaned of total sales” | Weaned Calve Sold/Total Animal Sold | Dmnl | Aux. |
7 | hectare conversion | 1 | hectare | Aux. |
8 | Add Animal | IF THEN ELSE (Month counter = 3, “percent reproducing”*conception rate*Calving rate, 0) | hd/Month | Inflow |
9 | adjusted relative forage for livestock | (((Common Forage+Crop within region+Crop outside region)/month conversion)/(Forage requirement of herd))*kg conversion/month conversion | kg/Month | Aux. |
10 | Adjustment to Labor | Labor/TIME STEP | dollars/Month | Outflow |
11 | animal weight reset | IF THEN ELSE (Month counter = 12, Ave animal weight, 0) | Kg/Month | Outflow |
11 | Annual expenses | (((Total Animal SoldXlabor cost per animal unit sold)*month conversion) + Total cost of purchases)/month conversion | dollars/Month | Outflow |
12 | Annual income | (Value of 1 animal unit weight)*(Ave animal weight/kg conversion) × (Total Animal Sold/hd conversion) | dollars/Month | Inflow |
13 | assumed annual maturation rate | 0.1685 | Dmnl | Aux. |
14 | assumed annual weaning rate | 0.85 | Dmnl | Aux. |
15 | Ave animal weight | INTEG (Weight gain-Weight loss, Initial weight of animal) | kg | Stock |
16 | average life lookup | WITH LOOKUP (adjusted relative forage for livestock,([(0,0)–(5,200)],(0,46),(5,112))) | Month | Aux. |
17 | Average rainfall 1 | 1 | inches | Aux. |
18 | average time invested per head | (“percent cows of total sales”*average life lookup) + (“percent weaned of total sales”*maturation delay) | Month | Aux. |
19 | Calves | INTEG (Add Animal-Calves Death-Calves Growth, initial total animals in area*”initial calves percent”) | hd | Stock |
20 | Calves Death | (Calves-Calves Growth*month conversion)/weaning delay | hd/Month | Outflow |
21 | Calves Growth | (Calves*Weaning rate)/weaning delay | hd/Month | Inflow |
22 | Calving rate | 0.8 | hd/Month | Aux. |
23 | Change in Labor | Hour required per herd*”$ per hour”*total number of herders | dollars/Month | Inflow |
24 | Common Forage | INTEG (Forage growth-Grazing loss-Non grazing loss, initial total forage) | kg | Stock |
25 | Common grazing area | 15,000,000 | hectare | Aux. |
26 | Conception rate | 0.8 | Dmnl | Aux. |
27 | Crop area outside the region | 5,000,000 | hectare | Aux. |
28 | Crop area within the region | 10,000,000 | hectare | Aux. |
29 | Crop outside region | INTEG (Growth outside+Planting outside-grazing by livestock outside region-Harvest outside,0) | kg | Stock |
30 | crop per hectare outside region | Crop outside region/Crop area outside the region | kg/hectare | Aux. |
31 | crop per hectare within region | Crop within region/Crop area within the region | kg/hectare | Aux. |
32 | Crop within region | INTEG (Growth within+Planting within-grazing by livestock within region-Harvest within, 0) | kg | Stock |
33 | Crops available for harvest outside | Crop outside region/(kg conversion/Forage requirement of herd) | kg/Month | Aux. |
34 | Crops available for harvest within | (Crop within region)/(kg conversion/Forage requirement of herd) | kg/Month | Aux. |
35 | “days/month” | 30 | kg/Month | Aux. |
36 | dollar conversion | 1 | 1/dollars | Aux. |
37 | drought switch | 0 | Dmnl | Aux. |
38 | FINAL TIME | 600 | Month | Aux. |
39 | Forage growth | IF THEN ELSE (Common Forage/hectare conversion > initial forage per hectare,(Forage growth rate*(Common Forage)*(Precipitation/inche conversion)/month conversion),((initial total forage)*Forage growth rate*(Precipitation/inche conversion)/month conversion)) | Kg/Month | Inflow |
40 | Forage growth rate | WITH LOOKUP (Common Forage/common grazing area, ([(100,0)–(1200,1)], (100,1), (200,0.975), (300,0.9), (400,0.8), (500,0.7), (600,0.6), (700,0.5), (800,0.4), (900,0.3), (1000,0.2), (1100,0.1), (1200,0))) | Dmnl | Aux. |
41 | forage per hectare | Common Forage/common grazing area | kg/hectare | Aux. |
42 | Forage requirement of herd | Forage requirement per animal*(Total Animal) | kg/Month | Aux. |
43 | Forage requirement per animal | Ave animal weightX”percent of body weight forage demanded”*”days/month” | kg/(MonthXhd) | Aux. |
44 | grazing by livestock outside region | Grazing on crops outside the region | kg/Month | Aux. |
45 | grazing by livestock within region | Grazing on crops within the region | kg/Month | Aux. |
46 | Grazing loss | IF THEN ELSE(Common Forage/month conversion > Forage requirement of herd, Forage requirement of herd, MAX((((Common Forage/month conversion)/Forage requirement of herd)*Forage requirement of herd)-grazing by livestock outside region-grazing by livestock within region, 0)) | kg/Month | Outflow |
47 | Grazing on crops outside the region | IF THEN ELSE (Forage requirement of herd > ((Crop within region + Common Forage)/month conversion), MIN(Forage requirement of herd-(Crop within region-Common Forage)/month conversion, Crop outside region/month conversion), 0) | kg/Month | Aux. |
48 | Grazing on crops within the region | IF THEN ELSE (Forage requirement of herd > ((Common Forage*sensitivity of herders to forage availability)/month conversion), MIN(ABS((Forage requirement of herd-(Common Forage/month conversion))),Crop within region/month conversion), 0) | kg/Month | Aux. |
49 | Growth index outside | WITH LOOKUP (crop per hectare outside region, ([(0,0)–(7000, 0.9)],(0,0.9),(2568.81,0.264474),(7000, 0))) | Dmnl | Aux. |
50 | Growth index within | WITH LOOKUP (crop per hectare within region, ([(0,0)–(3500, 0.8)],(0,0.75),(1498.47,0.319298),(3500, 0))) | Dmnl | Aux. |
51 | Growth outside | IF THEN ELSE(Month counter=Harvest month outside, 0, Growth index outsideX(Precipitation/inche conversion)X(Crop outside region/month conversion)) | kg/Month | Inflow |
52 | Growth within | IF THEN ELSE(Month counter=Harvest month within, 0, Growth index withinX(Precipitation/inche conversion)*(Crop within region/month conversion)) | kg/Month | Inflow |
53 | Harvest month outside | 11 | Month | Aux. |
54 | Harvest month within | 11 | Month | Aux. |
55 | Harvest outside | IF THEN ELSE(Month counter = Harvest month outside, Crop outside region/TIME STEP, 0) | kg/Month | Outflow |
56 | Harvest within | IF THEN ELSE(Month counter = Harvest month within, Crop within region/TIME STEP, 0) | kg/Month | Outflow |
57 | hd conversion | 1 | hd | Aux. |
58 | Hour required per herd | 240 | hrs/Month/person | Aux. |
59 | hrs conversion | 1 | hrs | Aux. |
60 | inche conversion | 1 | inches | Aux. |
61 | “initial calves percent” | 0.01 | Dmnl | Aux. |
62 | initial forage per hectare | 1000 | Kg/hectare | Aux. |
63 | “initial mature percent” | 1-”initial calves percent”-”initial weaned percent” | Dmnl | Aux. |
64 | INITIAL TIME | 0 | Month | Aux. |
65 | initial total animals in area | 9,700,000 | hd | Aux. |
66 | initial total forage | common grazing areaXinitial forage per hectare | kg | Aux. |
67 | “initial weaned percent” | 0.05 | Dmnl | Aux. |
68 | Initial weight of animal | 75 | kg | Aux. |
69 | kg conversion | 1 | kg | Aux. |
70 | Labor | INTEG (Change in Labor-Adjustment to Labor,2) | dollars | Stock |
71 | labor cost per animal unit sold | labor per animal monthXaverage time invested per head | dollars/hd | Aux. |
72 | labor per animal month | (Labor/Total Animal)/month conversion | dollars/(hdX Month) | Aux. |
73 | Maintenance requirements | 0.025 | Dmnl | Aux. |
74 | maturation delay | 18 | Month | Aux. |
75 | Maturation rate | assumed annual maturation rate | Dmnl | Aux. |
76 | Mature Cow Sold | (Mature CowsXmature sales rate)/month conversion | hd/Month | Outflow |
77 | Mature Cows | = INTEG ((((Purchased animals+Weaned Calve Growth)*month conversion)-(Mature Cow Sold *month conversion)-(Mature Death*month conversion))/month conversion, initial total animals in area*”initial mature percent”) | hd | Stock |
78 | Mature Death | Mature Cows/average life lookup | hd/Month | Outflow |
79 | mature sales rate | 0.00167 0.00167 = 2 percent per year | Dmnl | Aux. |
80 | Max rate of weight gain | WITH LOOKUP (Ave animal weight, ([(75,0)–(700,2)],(75,1.13),(320,1),(330,0.875),(340,0.75),(350,0.625),(360,0.5),(370,0.375),(380,0.25),(390,0.125),(400,0.1),(700,0))) | kg/Month | Aux. |
81 | month conversion | 1 | Month | Aux. |
82 | Month counter | MODULO(Time, 12) | Month | Aux. |
83 | Net-worth total | INTEG (Annual income-Annual expenses,1000000000) | dollars | Stock |
84 | Non grazing loss | IF THEN ELSE (Month counter > 2:AND: Month counter < 11, 0, Non grazing loss rate*Common Forage) | kg/Month | Outflow |
85 | Non grazing loss rate | 0.2 | 1/Month | Aux. |
86 | onset of drought | WITH LOOKUP (Time, ([(0,0)–(600, 2)],(0,1),(159.633,0.921053),(201.835,0.719298),(220.183,0.394737),(244.037,0.833333),(288.073,0.938596),(339.45,0.958772),(420.183,0.975),(455.046,0.985088),(477.064,0.99386),(600, 1))) | Month | Aux. |
87 | planting density outside | 100 | Dmnl | Aux. |
88 | planting density within | 100 | Dmnl | Aux. |
89 | planting month outside | 3 | Month | Aux. |
90 | planting month within | 3 | Month | Aux. |
91 | Planting outside | IF THEN ELSE(Month counter = planting month outside, (planting density outside/TIME STEP)X(Crop area outside the region/hectare conversion)*(kg conversion), 0) | kg/Month | Inflow |
92 | Planting within | IF THEN ELSE(Month counter=planting month within, (planting density within/TIME STEP)*(Crop area within the region/hectare conversion)*(kg conversion), 0) | kg/Month | Inflow |
93 | Precipitation | IF THEN ELSE (drought switch = 0, Average rainfall 1*(1 + random distribution), Average rainfall 1*(1 + random distribution)*(onset of drought/month conversion)) | inches | Aux. |
94 | Purchased animals | (“percent animals added”*Mature Cows)/month conversion | hd/Month | Inflow |
95 | random distribution | RANDOM UNIFORM(−0.25, 0.25, 2589) | Dmnl | Aux. |
96 | Relative Forage available | kg conversion/(Common Forage/Forage requirement of herd) | kg/Month | Aux. |
97 | SAVEPER | TIME STEP | Month | Aux. |
98 | sensitivity of herders to forage availability | 1 | Dmnl | Aux. |
99 | TIME STEP | 0.25 | Month | Aux. |
100 | Total Animal | Mature Cows+Weaned Calves+Calves | hd | Aux. |
101 | Total Animal Sold | Weaned Calve Sold+Mature Cow Sold | hd/Month | Aux. |
102 | Total cost of purchases | Purchased animals*Value per mature replacement*month conversion | dollars | Aux. |
103 | Total crop harvest | Harvest within+Harvest outside | kg/Month | Aux. |
104 | total number of herders | 45000 | person | Aux. |
105 | Value of 1 animal unit weight | 1 | dollars | Aux. |
106 | Value per mature replacement | 0.5 | dollars/hd | Aux. |
107 | Weaned Calve Death | (Weaned Calves/18)/month conversion-Weaned Calve Growth-Weaned Calve Sold | hd/Month | Outflow |
108 | Weaned Calve Growth | (Weaned Calves*Maturation rate)/month conversion | hd/Month | Inflow |
109 | Weaned Calve Sold | ((Weaned Calves/month conversion)*(1-Maturation rate-Weaned Death rate)) | hd/Month | Outflow |
110 | Weaned Calves | INTEG (Calves Growth-Weaned Calve Death-Weaned Calve Growth-Weaned Calve Sold, initial total animals in area*”initial weaned percent”) | hd | Stock |
111 | Weaned Death rate | 0.0041 | Dmnl | Aux. |
112 | weaning delay | 6 | Month | Aux. |
113 | Weaning rate | assumed annual weaning rate | Dmnl | Aux. |
114 | Weight gain | IF THEN ELSE(Month counter = 12, Initial weight of animal/month conversion, MIN((Max rate of weight gain)*(Ave animal weight/kg conversion)*(Weight gain index*month conversion/kg conversion), (Max rate of weight gain)*(Ave animal weight/kg conversion))) | kg/Month | Inflow |
115 | Weight gain index | WITH LOOKUP (Relative Forage available, ([(1.4,0)–(5,1)],(1.4,0.04),(1.8,0.1),(2.2,0.16),(2.6,0.245),(3,0.33),(3.4,0.44),(3.8,0.55),(4.2,0.655),(4.6,0.82),(5,1))) | kg/Month | Aux. |
116 | Weight loss | IF THEN ELSE(Month counter = 12, Ave animal weight/month conversion, Maintenance requirements*Ave animal weight/month conversion) | kg/Month | Outflow |
References
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The roles of livestock in developing countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, M.I. Livestock in Africa: The economics of ownership and production, and the potential for improvement. Agric. Hum. Values 1995, 12, 4–18. [Google Scholar] [CrossRef]
- Moxnes, E. Not only the tragedy of the commons: Misperceptions of feedback and policies for sustainable development. Syst. Dyn. Rev. 2000, 16, 325–348. [Google Scholar] [CrossRef]
- Heikkila, T.; David, P.C. Common Pool Resources; Oxford Bibliographies; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Ostrom, E.; Burger, J.; Field, C.B.; Norgaard, R.B.; Policansky, D. Revisiting the Commons: Local Lessons, Global Challenges. Science 1999, 284, 278–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [PubMed]
- Hardin, G. An Operational Analysis of ‘Responsibility’. In Managing the Commons; Hardin, G., Baden, J., Eds.; W. H. Freeman: San Francisco, CA, USA, 1977; pp. 66–75. [Google Scholar]
- Moore, A.D.; Donnelly, J.R.; Freer. M. GRAZPLAN: Decision support systems for Australian Grazing Enterprises. III. Pasture growth and soil moisture sub models, and the GrassGro DSS. Agric. Syst. 1997, 55, 535–582. [Google Scholar] [CrossRef]
- Bement, R.E. A stocking-rate guide for beef production on blue-grama range. J. Range Manag. 1969, 22, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.H.; Samuel, M.J.; Test, P.S.; Smith, M.A. Cattle, vegetation, and economic responses to grazing systems and grazing pressure. J. Range Manag. 1988, 41, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Manley, W.A.; Hart, R.H.; Samuel, M.J.; Smith, M.A.; Waggoner, J.W. Vegetation, cattle, and economic responses to grazing strategies and pressures. J. Range Manag. 1997, 50, 638–646. [Google Scholar] [CrossRef]
- Smart, A.; Derner, J.D.; Hendrickson, J.R.; Gillen, R.L.; Dunn, B.H.; Mousel, E.M.; Johnson, P.S.; Gates, R.N.; Sedivec, K.K.; Harmoney, K.R.; et al. Effects of grazing pressure on efficiency of grazing in North American Great Plains rangelands. Rangel. Ecol. Manag. 2010, 63, 397–406. [Google Scholar] [CrossRef]
- Blackburn, H.D.; Kothmann, M.M. A forage dynamics model for use in range and pasture environments. Grass Forage Sci. 1989, 44, 283–294. [Google Scholar] [CrossRef]
- Blackburn, H.D.; Kothmann, M.M. Modeling diet selection and intake for grazing herbivores. Ecol. Model. 1991, 57, 145–163. [Google Scholar] [CrossRef]
- Teague, W.R.; Kreuter, U.P.; Grant, W.E.; Diaz-Solis, H.; Kothmann, M.M. An ecological economic simulation model for assessing fire and grazing management effects on mesquite rangelands in Texas. Ecol. Econ. 2008, 64, 611–624. [Google Scholar] [CrossRef]
- Zhao, H.L.; Li, S.G.; Zhang, T.H.; Ohkuro, T.; Zhou, R.L. Sheep gain and species diversity: In sandy grassland, Inner Mongolia. J. Range Manag. 2004, 57, 187–190. [Google Scholar] [CrossRef]
- Sasaki, T.; Okayasu, T.; Takeuchi, K.; Jamsran, U.; Jadambaa, S. Patterns of floristic composition under different grazing intensities in Bulgan, South Gobi, Mongolia. Grassl. Sci. 2005, 51, 235–242. [Google Scholar] [CrossRef]
- Zhou, H.K.; Tang, Y.H.; Zhao, X.Q.; Zhou, L. Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai-Tibet Plateau. Pak. J. Bot. 2006, 38, 1055–1069. [Google Scholar]
- Cheng, Y.; Tsubo, M.; Ito, T.Y.; Nishihara, E.; Shinoda, M. Impact of rainfall variability and grazing pressure on plant diversity in Mongolian grasslands. J. Arid. Environ. 2011, 75, 471–476. [Google Scholar] [CrossRef]
- Muya, M.S.; Kamweya, M.A.; Muigai, W.T.A.; Kariuki, A.; Ngene, M.S. Using range condition assessment to optimize wildlife stocking in Tindress wildlife sanctuary, Nakuru District, Kenya. Rangel. Ecol. Manag. 2013, 66, 410–418. [Google Scholar] [CrossRef]
- Lwiwski, C.T.; Koper, N.; Henderson, C.D. Stocking rates and vegetation structure, heterogeneity, and community in a northern mixed-grass prairie. Rangel. Ecol. Manag. 2015, 68, 322–331. [Google Scholar] [CrossRef]
- Fynn, R.W.S.; O’Conner, T.G. Effects of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, South Africa. J. Appl. Ecol. 2000, 37, 491–507. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Lischeid, G. Rainfall trends in Nigeria, 1901–2000. J. Hydrol. 2011, 411, 3–4. [Google Scholar] [CrossRef]
- Ifabiyi, I.P.; Ojoye, S. Rainfall Trends in the Sudano-Sahelian Ecological Zone of Nigeria. Earth Sci. Res. 2013, 2, 2. [Google Scholar]
- Baker, B.B.; Bourdon, R.M.; Hanson, J.D. FORAGE: A model of forage intake in beef cattle. Ecol. Model. 1992, 60, 257–279. [Google Scholar] [CrossRef]
- Eastburn, D.J.; Leslie, M.R.; Morgan, P.D.; Philip, R.B.; Chip, S.B.; George, G.; Elise, S.G. Seeding plants for long-term multiple ecosystem service goals. J. Environ. Manag. 2018, 211, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Glasscock, S.N.; Grant, W.E.; Drawe, D.L. Simulation of vegetation dynamics and management strategies on south Texas, semi-arid rangeland. J. Environ. Manag. 2005, 75, 379–397. [Google Scholar] [CrossRef]
- Oldeman, L.H. World Map of the Status of Human-Induced Soil Degradation: An Explanatory Note; International Soil Reference and Information Center (ISRIC): Washington, DC, USA, 1991. [Google Scholar]
- Suttle, J.L. Grasslands of the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Eldridge, D.J.; Beecham, G.; Grace, J.B. Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology 2015, 8, 1503–1513. [Google Scholar] [CrossRef]
- Turner, B.L.; Menendez, H.M.; Gates, R.; Tedeschi, L.O.; Atzori, A.S. System dynamics modeling for agricultural and natural resource management issues: Review of some past cases and forecasting future roles. Resources 2016, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Grant, W.E. Ecology and Natural Resource Management. Reflections from a Systems Perspective. Ecol. Model. 1997, 108, 67–76. [Google Scholar] [CrossRef]
- FAO. FAO Country Programming Framework (CPF) Federal Republic of Nigeria; Food and Agricultural Organisation: Rome, Italy, 2017. [Google Scholar]
- Encyclopedia of the Nations. Nigeria—Agriculture; Advameg, Inc.: Flossmoor, IL, USA, 2018. [Google Scholar]
- FMARD. Food and the Future, Nigeria Must Mainstream Food Safety in Its Agricultural Production; Federal Ministry of Agriculture and Rural Development: Abuja, Nigeria, 2017.
- The Guardian. Nigeria: The Ekiti State Grazing Law. Available online: https://guardian.ng/opinion/the-ekiti-grazing-law/ (accessed on 30 May 2018).
- FAO. Land Management Study of Northern Nigeria; Food and Agricultural Organisation: Rome, Italy, 1967. [Google Scholar]
- Adewuyi, O.T.; Mohammed, M.D.; Olofin, A.E. Assessment of the Effects of Emerging Grazing Policies on Land Degradation in Nigeria. J. Appl. Sci. Environ. Manag. 2017, 21, 1183–1187. [Google Scholar]
- Fakoya, E.O. Utilization of Crop—Livestock Production Systems for Sustainable Agriculture in Oyo State, Nigeria. J. Soc. Sci. 2007, 15, 31–33. [Google Scholar] [CrossRef]
- NBS. Commercial Agriculture Development Project; National Bureau of Statistics Baseline Survey Report, Nigeria Bureau of Statistics: Abuja, Nigeria, 2010. Available online: http://nigerianstat.gov.ng/elibrary (accessed on 5 June 2018).
- Frantz, C. Fulbe continuity and change under five flags atop West Africa. Territoriality, ethnicity, stratification and national integration. In Change and Development in Nomadic and Pastoral Societies; Galaty, J.G., Salzmann, P.C., Eds.; Brill: Leiden, The Netherlands, 1981; pp. 89–115. [Google Scholar]
- Frantz, C. Ecology and social organization among Nigerian Fulbe (Fulani). In The Nomadic Alternative. Modes of Interactions in African-Asian Desert and Steppes; Weissleder, W., Ed.; Mouton Publishers: Paris, France, 1978. [Google Scholar]
- Frantz, C. The open niche, pastoralism and sedentarization in the Mambila grasslands of Nigeria. In When Nomads Settle; Salzman, P., Ed.; Praeger: New York, NY, USA, 1980. [Google Scholar]
- Tarawali, G.; Pamo, T. A Case for On-farm Trials of Fodder Bank on the Adamawa Plateau in Cameroon; Cambridge University Press: Cambridge, England, 1992. [Google Scholar]
- Vanguard News. Herdsmen: “The Rapist of Our Women, the Killers of Our Men Are Walking the Streets Free”. Available online: https://www.vanguardngr.com/2018/02/rapists-women-killers-men-attackers-farms-walking-streets-free/ (accessed on 30 May 2018).
- Tedeschi, L. Assessment of the adequacy of mathematical models. Agric. Syst. 2005, 89, 225–247. [Google Scholar] [CrossRef]
- Turner, B.L.; Tidwell, V.; Fernald, A.; Rivera, J.A.; Rodriguez, S.; Guldan, S.; Ochoa, C.; Hurd, B.; Boykin, K.; Cibils, A. Modeling acequia irrigation systems using system dynamics: Model development, evaluation, and sensitivity analyses to investigate effects of socio-economic and biophysical feedbacks. Sustainability 2016, 8, 1019. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Rhoades, R.D.; Tedeschi, L.O.; Hanagriff, R.D.; McCuistion, K.C.; Dunn, B.H. Analyzing ranch profitability from varying cow sales and heifer replacement rates for beef cow-calf production using system dynamics. Agric. Syst. 2013, 114, 6–14. [Google Scholar] [CrossRef]
- Turner, B.L.; Wuellner, M.; Nichols, T.; Gates, R.; Tedeschi, L.O.; Dunn, B. A systems approach to forecast agricultural land transformation and soil environmental risk from economic, policy, and cultural scenarios in the north central United States (2012–2062). Int. J. Agric. Sustain. 2017, 15, 102–123. [Google Scholar] [CrossRef]
- Gunda, T.; Turner, B.L.; Tidwell, V.C. The influential role of sociocultural feedbacks on community-managed irrigation system behaviors during times of water stress. Water Resour. Res. 2018, 54, 2697–2714. [Google Scholar] [CrossRef]
- Wayland, T.; West, L.; Mata, J.; Turner, B.L. Why are proposed public land transfers a source of extreme conflict and resistance? Rangelands 2018, 40, 53–64. [Google Scholar] [CrossRef]
- Tinsley, T.L.; Chumbley, S.; Mathis, C.; Machen, R.; Turner, B.L. Managing cow herd dynamics in environments of limited forage productivity and livestock marketing channels: An application to semi-arid Pacific island beef production using system dynamics. Agric. Syst. 2018, 173, 78–93. [Google Scholar] [CrossRef]
- Oniki, S.; Shindo, K.; Yamasa, S.; Toriyama, K. Simulation of Pastoral Management in Mongolia: An Integrated System Dynamics Model. Rangel. Ecol. Manag. 2018, 71, 370–381. [Google Scholar] [CrossRef]
- Nicholson, C.F.; Simões, A.R.P.; LaPierre, P.A.; Van Amburgh, M.E. Modeling complex problems with system dynamics: Applications in animal agriculture. J. Anim. Sci. 2019, 97, 1903–1920. [Google Scholar] [CrossRef] [Green Version]
- Odoemena, K.G.; Waters, J.P.; Kleeman, H.M. A system dynamics model of supply-side issues influencing beef consumption in Nigeria. Sustainability 2020, 12, 3241. [Google Scholar] [CrossRef] [Green Version]
- Sterman, J. Business Dynamics: System Thinking and Modeling for a Complex World; Irwin/McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Meadows, D. Places to Intervene in a System. Whole Earth Rev. 1997, 91, 78–84. [Google Scholar]
- Teague, W.R.; Kreuter, U.P.; Grant, W.E.; Diaz-Solis, H.; Kothmann, M.M. Economic implications of maintaining rangeland ecosystem health in a semi-arid savanna. Ecol. Econ. 2009, 68, 1417–1429. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing management impacts on vegetation, soil biota, and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Fulbright, T.E.; Ortega-Santos, A. White-Tailed Deer Habitat: Ecology and Management, 2nd ed.; Texas A&M University Press: College Station, TX, USA, 2013. [Google Scholar]
- Pickup, G. A simple model for predicting herbage production from rainfall in rangelands and its calibration using remotely sensed data. J. Arid Environ. 1995, 30, 227–245. [Google Scholar] [CrossRef]
- Pickup, G. Estimating the effects of land degradation and rainfall variation on productivity in rangelands. An approach using remote sensing and models of grazing and herbage dynamics. J. Appl. Ecol. 1996, 33, 819–832. [Google Scholar] [CrossRef]
- McCuistion, K.; Grigar, M.; Wester, B.D.; Rhoades, R.; Mathis, C.; Tedeschi, L. Can we predict forage nutritive value with weather parameters? Rangelands 2014, 36, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Solis, H.; Grant, W.E.; Kothmann, M.M.; Teague, W.R.; Diaz-Garcia, J.A. Adaptive management of stocking rates to reduce the effects of drought on cow-calf production systems in semi-arid rangelands. Agric. Syst. 2009, 100, 43–50. [Google Scholar] [CrossRef]
- Loewer, O.J.; Taul, K.L.; Turner, L.W.; Gay, N.; Muntifering, R. GRAZE: A Model of Selective Grazing by Beef Animals. Agric. Syst. 1987, 25, 297–309. [Google Scholar] [CrossRef]
- Teague, R.; Grant, B.; Wang, H.H. Assessing optimal configurations of multi-paddock grazing strategies in tallgrass prairie using a simulation model. J. Environ. Manag. 2015, 150, 262–273. [Google Scholar] [CrossRef]
- Diaz-Solis, H.; Kothmann, M.M.; Hamilton, W.T.; Grant, W.E. A simple ecological sustainability simulator (SESS) for stocking rate management in semi-arid grazelands. Agric. Syst. 2003, 76, 655–680. [Google Scholar] [CrossRef]
- Zilverberg, J.C.; Williams, J.; Jones, C.; Harmoney, K.; Angerer, J.; Metz, J.L.; Fox, W. Process-based simulation of prairie growth. Ecol. Model. 2017, 351, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Lubell, M.N.; Cutts, B.B.; Roche, L.M.; Hamilton, M.; Derner, J.D.; Kachergis, E.; Tate, K.W. Conservation program participation and adaptive rangeland decision-making. Rangel. Ecol. Manag. 2013, 66, 609–620. [Google Scholar] [CrossRef]
- Marshall, N.A.; Stokes, C.J. Identifying thresholds and barriers to adaptation through measuring climate sensitivity and capacity to change in an Australian primary industry. Clim. Chang. 2014, 126, 399–411. [Google Scholar] [CrossRef]
- Roche, L.M.; Cutts, B.; Derner, J.D.; Lubell, M.N.; Tate, K.W. On-ranch grazing strategies: Context for the rotational grazing dilemma. Rangel. Ecol. Manag. 2015, 68, 248–256. [Google Scholar] [CrossRef]
- Wilmer, H.; Fernandez-Gimenez, M.E. Rethinking rancher decision-making: A grounded theory of ranching approaches to drought and succession management. Rangel. J. 2015, 37, 517–528. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Levine, B.L. The Tragedy of the Commons and the Comedy of Community. The Commons in History. J. Community Psychol. 1986, 14, 81–99. [Google Scholar] [CrossRef]
Parameters Used | Equilibrium | Real-World Replication | Drought Calibration | Calving Rate |
---|---|---|---|---|
Initial total animals (million hd) | 9.7 | 9.7 | 9.7 | 9.7 |
percent animal added a | 0 | 15% | 0 | 0 |
Precipitation forcing b | 1 | 1 | 0 | 1 |
Calving percentage c | Function of mean animal weight | Function of mean animal weight | Function of mean animal weight | Function of mean animal weight × 0.5 |
Simulation Experiment | Common Forage (kg/Hectare) | Mean Animal (Million hd) | Ave Animal Weight (kg) | Ending Net-Worth ($ mil) |
---|---|---|---|---|
Equilibrium run | 2218.7 | 9.1 | 477.9 | 3972 |
%∆ equilibrium 1 | - | - | - | - |
%∆ calibration 2 | 158% | −47% | 73% | 38% |
Real-world | 859.0 | 17.3 | 276.4 | 2875 |
%∆ equilibrium 1 | −61% | 90% | −42% | −28% |
%∆ calibration 2 | - | - | - | - |
Crop restriction | 357.7 | 7.3 | 216.6 | 1655 |
%∆ equilibrium 1 | −84% | −20% | −55% | −58% |
%∆ calibration 2 | −58% | −58% | −22% | −42% |
Crop marketing | 1271.7 | 15.8 | 355.6 | −1469 |
%∆ equilibrium 1 | −43% | 74% | −26% | −137% |
%∆ calibration 2 | 48% | −9% | 29% | −151% |
Labor scenario | 1026.6 | 16.5 | 320.0 | 1967 |
%∆ equilibrium 1 | −54% | 81% | −33% | −50% |
%∆ calibration 2 | 20% | −5% | 16% | −32% |
Combo. scenario | 1840.90 | 6.6 | 453.9 | 1942 |
%∆ equilibrium 1 | −17% | −27% | −5% | −51% |
%∆ calibration 2 | 114% | −62% | 64% | −32% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aderinto, R.F.; Ortega-S., J.A.; Anoruo, A.O.; Machen, R.; Turner, B.L. Can the Tragedy of the Commons be Avoided in Common-Pool Forage Resource Systems? An Application to Small-Holder Herding in the Semi-Arid Grazing Lands of Nigeria. Sustainability 2020, 12, 5947. https://doi.org/10.3390/su12155947
Aderinto RF, Ortega-S. JA, Anoruo AO, Machen R, Turner BL. Can the Tragedy of the Commons be Avoided in Common-Pool Forage Resource Systems? An Application to Small-Holder Herding in the Semi-Arid Grazing Lands of Nigeria. Sustainability. 2020; 12(15):5947. https://doi.org/10.3390/su12155947
Chicago/Turabian StyleAderinto, Rhoda F., J. Alfonso Ortega-S., Ambrose O. Anoruo, Richard Machen, and Benjamin L. Turner. 2020. "Can the Tragedy of the Commons be Avoided in Common-Pool Forage Resource Systems? An Application to Small-Holder Herding in the Semi-Arid Grazing Lands of Nigeria" Sustainability 12, no. 15: 5947. https://doi.org/10.3390/su12155947
APA StyleAderinto, R. F., Ortega-S., J. A., Anoruo, A. O., Machen, R., & Turner, B. L. (2020). Can the Tragedy of the Commons be Avoided in Common-Pool Forage Resource Systems? An Application to Small-Holder Herding in the Semi-Arid Grazing Lands of Nigeria. Sustainability, 12(15), 5947. https://doi.org/10.3390/su12155947