Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment
Abstract
:1. Introduction
2. Method of Study
3. A Review of Unconventional Meat Preservation Methods
3.1. High Pressure Processing
3.2. Sonication
3.3. Pulsating Electric Field and Oscillatory Magnetic Field
3.4. Pulsed Light
3.5. Cold Plasma
3.6. Vacuum Packing with Shrinking
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethical Statement
References
- Kłoczko, I.; Chudoba, T. Próba zastosowania wysokich ciśnień hydrostatycznych (UHP) do dekontaminacji mięsa zarażonego larwami włośnia (TRICHINELLA SPIRALIS). Test to use high hydrostatic pressure (UHP) for decontamination of meat infected with Trichinella larvae (TRICHINELLA SPIRALIS). Bromat. Chem. Toksykol. 2007, 2, 195–203. (In Polish) [Google Scholar]
- Kuźniar, W.; Kawa, M.; Kużniar, P. Konsumenci wobec bezpiecznych rozwiązań w zakresie produkcji żywności. Consumers in the face of safe solutions in the field of food production. Zeszyty Naukowe SGGW w Warszawie 2016, 16, 243–250. (In Polish) [Google Scholar]
- Fernández, A.N.F.; Linhares, J.F.E.; Rodrigues, S. Ultrasound as pre-treatment of pineapple. Ultrason Sonochem. 2008, 15, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Gemma, O.; Martin-Belloso, O.; Soliva-Fortuny, R. Pulsed light treatment for food preservation. A review. Food Bioprocess. Technol. 2010, 3, 13–23. [Google Scholar]
- Martin-Belloso, O.; Sobrino-Lopez, A. Combination of pulsed electric fields with other preservation techniques. Food Bioprocess. Technol. 2011, 4, 954–968. [Google Scholar] [CrossRef]
- Shin, J.K.; Lee, S.J.; Cho, H.Y.; Pyun, Y.R.; Lee, J.H.; Chung, M.S. Germination and subsequent inactivation of Bacillus subtilis by pulsed electric field treatment. J. Food Process. Preserv. 2010, 43, 43–54. [Google Scholar] [CrossRef]
- Wiktor, A.; Śledź, M.; Nowacka, M.; Witrowa-Rajchert, D. Możliwości zastosowania niskotemperaturowej plazmy w technologii żywności. Possibilities of using low-temperature plasma in food technology. Żywność. Nauka. Technologia. Jakość 2013, 90, 5–14. (In Polish) [Google Scholar]
- Yucel, U.; Alpas, H.; Bayindirli, A. Evaluation of high pressure treatment for enhancing the dryling rates of carrot, apple and green bean. J. Food Eng. 2010, 98, 266–272. [Google Scholar] [CrossRef]
- John, D.; Ramaswamy, H.S. Pulsed light technology to enhance food safety and quality: A mini-review. Curr. Opin. Food Sci. 2018, 23, 70–79. [Google Scholar] [CrossRef]
- Krzysztofik, B. Oddziaływanie wysokich ciśnień na jakość i trwałość dań gotowych i produktów mięsnych. Impact of high pressures on the quality and durability of ready meals and meat products. Przem. Spoż. 2018, 10, 38–42. (In Polish) [Google Scholar]
- Boye, J.I.; Arcand, Y. Current trends in international technologies in food production and processing. Food Eng. 2013, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Rivas, E. Non-Thermal Food Engineering Operations; Springer Science & Business Media: Berlin, Germany, 2012; pp. 275–295. [Google Scholar]
- Pasha, I.; Saeed, F.; Sultan, M.T.; Khan, M.R.; Rohi, M. Recent developments in minimal processing: A tool to retain nutritional quality of food. Critical Review. Food Sci. Nutr. 2014, 54, 340–351. [Google Scholar] [CrossRef]
- Wang, M.S.; Wang, L.H.; Bekhit, A.D.; Yang, J.; Hou, Z.P.; Wang, Y.Z.; Dai, Q.Z.; Zeng, X.A. A review of the sublethal effects of pulsed electric field on cells in food processing. J. Food Eng. 2018, 223, 32–41. [Google Scholar] [CrossRef]
- Verma, A.K.; Banerjee, R. Dietary fiber as a functional component of meat products: An innovative approach to a healthy lifestyle a review. J. Food Sci. Technol. 2010, 47, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shekhar, C.; Kumar, S. Bacteriological quality of buffalo meat and its importance for public health. J. Vet. Public Healthy 2005, 3, 119–122. [Google Scholar]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma- A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Misra, N.N.; Cheorum, J. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2007, 64, 74–86. [Google Scholar] [CrossRef]
- Behsnian, D.; Butz, P.; Greiner, R.; Lautenschlager, R. Process-induced undesirable compounds: Chances of non-thermal approaches. Meat Sci. 2014, 98, 392–403. [Google Scholar] [CrossRef]
- Chiang, V.; Quek, S.Y. The relationship between red meat and cancer. The effects of thermal treatment and related physiological mechanisms. Food Sci. Nutr. 2017, 57, 115–1173. [Google Scholar]
- Czapski, J. Czy nowe znaczy bezpieczne? Does new mean safe? Przem. Spoż. 2007, 4, 12–15. (In Polish) [Google Scholar]
- Schotten, M.; El Aisati, M.; Meester, W.J.N.; Steiginga, S.; Ross, C.A. A Brief History of Scopus: The World’s Largest Abstract and Citation Database of Scientific Literature. In Research Analytics: Boosting University Productivity and Competitiveness through Scientometrics; Cantú-Ortiz, F.J., Ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Elsevier. Content Coverage Guide; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–24. Available online: https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf (accessed on 10 June 2020).
- Matthews, T. LibGuides: Web of Science Platform: Web of Science: Summary of Coverage. Available online: https://clarivate.libguides.com/webofscienceplatform/coverage (accessed on 12 February 2020).
- Ramaswamy, H.S.; Chen, C.; Marcotte, M. Novel processing technologies for food preservation. In Processing Fruits: Science and Technology; Barrett, D.M., Somogyi, L.P., Ramaswamy, H., Eds.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Marszałek, K.; Wozniak, L.; Skąpska, S. Wysokie ciśnienia w przemyśle owocowo-warzywnym. High pressures in the fruit and vegetable industry. Przemysł Fermentacyjny i Owocowo- Warzywny 2014, 58, 12–15. (In Polish) [Google Scholar]
- Hać-Szymańczuk, E.; Mroczek, J. Zastosowanie techniki wysokich ciśnień w technologii żywności, a szczególnie w przetwórstwie mięsa. The use of high pressure technology in food technology, especially in meat processing. Med. Wet. 2006, 62, 637–640. (In Polish) [Google Scholar]
- Jung, S.; Tonello, C.; Lamballerie, M. Alternatives to Conventional Food Processing. RSC Publ. Ed. a Proctor 2011, 6, 254–305. [Google Scholar]
- Rostocki, A.J.; Ptasznik, S.; Makała, H.; Tarakowski, R. Ocena przydatności technologii wysokociśnieniowej do konserwowania mięsa. Studium przypadku. Evaluation of the usefulness of high pressure technology for meat preservation. Case study. Postępy Nauki i Technol. Przemysłu Rolno- Spożywczego 2018, 73, 5–16. (In Polish) [Google Scholar]
- Zhang, H.Q.; Barbosa-Cánovas, G.V.; Balasubramaniam, V.M.; Dunne, C.P.; Farkas, D.F.; Yuan, J.T.C. Nonthermal Processing Technologies for Food; Blackwell Publishing Ltd.: Arnes, Oxford, UK, 2010; pp. 36–50. [Google Scholar]
- Margosch, D.; Ganzle, M.; Ehrmann, M.A.; Vogel, R.F. Pressure Inactivation of Bacillus Endospores. Appl. Environ. Microbiol. 2004, 70, 7321–7328. [Google Scholar] [CrossRef] [Green Version]
- Pathanibul, P.; Taylor, T.M.; Davidson, P.M.; Harte, F. Inactivation of Escherichia coli and Listeria innocula in apple and carrot juices using high pressure homogenization and nisin. Int. J. Food Microbiol. 2009, 129, 316–320. [Google Scholar] [CrossRef]
- Czerwińska, D. Nowe trendy w produkcji konserw. New trends in canning production. Gospod. Mięsna 2010, 8, 28–36. (In Polish) [Google Scholar]
- Grześkiewicz, A. Możliwości zastosowania wysokich ciśnień w technologii potencjalnie probiotycznych mlecznych napojów fermentowanych. Possibilities of applying high pressures in the technology of potentially probiotic fermented milk drinks. Innov. Dairy 2013, 1, 14–22. (In Polish) [Google Scholar]
- Hać-Szymańczuk, E.; Mroczek, J.; Tworzydlak, S.; Stolpe, B. Wpływ wysokiego ciśnienia na wybrane cechy jakościowe polędwicy sopockiej i surowej polędwicy wędzonej. The effect of high pressure on selected quality features of Sopot sirloin and raw smoked sirloin. Żywność. Nauka. Technol. Jakość 2005, 4, 42–51. (In Polish) [Google Scholar]
- Grochalska, D.; Gajos, K.; Windyga, B.; Fonberg-Broczek, M.; Ścieżyńska, H.; Mroczek, J. Wpływ wysokich ciśnień na właściwości i trwałość surowej polędwicy wędzonej. Impact of high pressures on the properties and durability of raw smoked loin. Mięso i Wędliny 2001, 6, 24–26. (In Polish) [Google Scholar]
- Tomczuk, K.; Maćkiw, E.; Rzewuska, K. Wpływ wysokich ciśnień na przeżywalność drobnoustrojów The effect of high pressures on the survival of microorganisms. Żywienie Człowieka i Metab. 2009, 3, 591–599. (In Polish) [Google Scholar]
- Grossi, A.; Søltoft-Jensen, J.; Knudsen, J.C.; Christensen, M.; Orlien, V. Reduction of salt in pork sausages by the addition of carrot fibre or potato starch and high pressure treatment. Meat. Sci. 2012, 92, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Picouet, P.A.; Sala, X.; Garcia-Gil, N.; Nolis, P.; Colleo, M.; Parella, T.; Arnau, J. High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water Dynamics. Innov. Food Sci. Emerg. Technol. 2012, 16, 335–340. [Google Scholar] [CrossRef]
- Rodrigues, F.R.; Rosenthal, A.; Tiburski, J.H.; Gomes da Cruz, A. Alternatives to reduce sodium in processed foods and the potential of high pressure technology. Food Sci. Technol. 2016, 36, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hać-Szymańczuk, E.; Mroczek, J. Perspektywy techniki wysokich ciśnień w przemyśle spożywczym. Prospects for high pressure technology in the food industry. Przem. Spoż. 2006, 60, 24–27. (In Polish) [Google Scholar]
- Pietrzak, D. Perspektywa stosowania wysokich ciśnień w produkcji żywności wygodnej z mięsa drobiowego. The prospect of using high pressures in the production of convenient food from poultry meat. Żywność. Nauka. Technol. Jakość 2010, 2, 16–28. (In Polish) [Google Scholar]
- Kapturowska, A.; Stolarzewicz, I.; Chmielewska, I.; Białecka-Florjańczyk, E. Ultradźwięki narzędzie do inaktywacji komórek drożdży oraz izolacji białek wewnątrzkomórkowych. Ultrasound a tool for inactivating yeast cells and isolating intracellular proteins. Żywność. Nauka, Technol. Jakość 2011, 4, 160–171. (In Polish) [Google Scholar]
- Konopacka, D.; Płocharski, W.; Siucińska, K. Możliwości zastosowania ultradźwięków w przemyśle owocowo-warzywnym. The possibilities of using ultrasound in the fruit and vegetable industry. Przemysł Ferment. i Owocowo- Warzywny 2015, 4, 16–23. (In Polish) [Google Scholar]
- Paniwnyk, L. Applications of ultrasound in processing of liquid foods: A review. Ultrason. Sonochem. 2017, 38, 794–806. [Google Scholar] [CrossRef]
- Tsukamoto, I.; Yim, B.; Stavarache, C.E.; Furuta, M.; Hashiba, K.; Maeda, Y. Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultra. Sonochem. 2004, 11, 61–65. [Google Scholar] [CrossRef]
- Morild, R.K.; Christiansen, P.; Sørensen, A.H.; Nonboe, U.; Aabo, S. Inactivation of pathogens on pork by steam-ultrasound treatment. J. Food Prot. 2011, 5, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Piῆon, M.; Paniwnyk, L.; Alarcon-Rojo, A.; Renteria, A.; Nevarez, C.; Janacua-Vidales, H.; Mason, T. Mocny efekt ultradźwiękowy na florę bakteryjną mięsa drobiowego. Strong ultrasonic effect on the bacterial flora of poultry meat. 13 spotkanie Europejskiego Towarzystwa Sonochemii, lipiec. Ukr 2012, 1–5, 182–183. (In Polish) [Google Scholar]
- Kordowska-Wiater, M.; Stasiak, D.M. Wpływ ultradźwięków na przetrwanie bakterii gram ujemnych na powierzchni skóry kurczaka. Impact of ultrasounds on the survival of gram-negative bacteria on the surface of chicken skin. Byk. Weter. Inst. Puławy 2011, 55, 207–210. (In Polish) [Google Scholar]
- Alarcon-Rojo, A.D.; Janacua, H.; Rodrigues, J.C.; Paniwnyk, L.; Mason, T.J. Power ultrasound in meat processing. Meat Sci. 2015, 107, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Huma, Z.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservtion and extraction. Utrasonics Son. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Górska, A.; Kozłowska, M. Możliwości zastosowania ultradźwięków w przetwórstwie mięsa. Possibilities of using ultrasound in meat processing. Postępy Techniki Przetwórstwa Spożywczego 2006, 16, 46–48. (In Polish) [Google Scholar]
- Witrowa-Rajchert, D. Niekonwencjonalne techniki utrwalania wykorzystywane do produkcji żywności projektowanej. Unconventional fixing techniques used for the production of designed food. Des. Food 2011, 14, 186–205. (In Polish) [Google Scholar]
- Kozłowska, M.; Górska, A. Możliwości zastosowania ultradźwięków w przetwórstwie żywności. Część II. Postępy Techniki Przetwórstwa Spożywczego 2007, 1, 56–59. [Google Scholar]
- Rakowska, R.; Sadowska, A.; Batogowska, J.; Waszkiewicz-Robak, B. Wpływ obróbki termicznej na zmiany wartości odżywczej. Impact of heat treatment on changes in nutritional value. Postępy Techniki Przetwórstwa Spożywczego 2013, 2, 112–119. (In Polish) [Google Scholar]
- Mahendrana, R.; Ramanana, K.R.; Barbab, F.J.; Lorenzo, J.M. Recent advances in the use of pulsed light processing to improve food safety and increase shelf life. Trends Food Sci. Technol. 2019, 88, 67–75. [Google Scholar] [CrossRef]
- Barbosa-Canovas, G.V.; Sepulveda, D. Present status and the future of PEF technology. In Novel Food Processing Technology; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rastogi, N.K. Application of high intensity pulses in food processing. Food Rev. Int. 2003, 19, 229–251. [Google Scholar] [CrossRef]
- Rastogi, N.K. Opportunities and challenges in nonthermal processing of foods. In Innovation in Food Engineering: New Techniques and Products; Passos, M.L., Ribeiro, C.P., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Stepaniak, L. Nietermiczne techniki utrwalania żywności. Non-thermal food preservation techniques. Przem. Spoż. 2003, 8, 102–104. (In Polish) [Google Scholar]
- Toepfl, S.; Heinz, V.; Knorr, D. Overview of pulsed electric field processing for food. In Emerging Technologies for Food Processing; Sun, D.W., Ed.; Elsevier Ltd.: London, UK, 2005; pp. 69–97. [Google Scholar]
- Oziembłowski, M.; Kopeć, W. Pulsed electric Fields (PEF) as an unconventional metod of food preservation. Pol. J. Food Nutr. Sci. 2012, 14, 31–35. [Google Scholar]
- Stachelska, M.A.; Stankiewicz-Szymczak, W.; Jakubczak, A.; Świsłocka, R.; Lewandowski, W. Wpływ pulsacyjnego pola elektrycznego na przeżywalność Yersinia enterocolitica w mielonym mięsie wołowym: Badanie aktywności mikrobiologicznej wybranych linii komórkowych bakterii pod wpływem czynników fizyko-chemicznych. Impact of pulsed electric field on survival of Yersinia enterocolitica in ground beef: Study of microbiological activity of selected bacterial cell lines under the influence of physico-chemical factors. Apar. Badaw. i Dydakt. 2012, 17, 13–17. (In Polish) [Google Scholar]
- Barba, F.J.; Sant’Ana, A.S.; Orlien, V.; Koubaa, M. Innovative Food Preservation Technologies. Deactivation of Spoilage and Pathogenic Microorganisms; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Elmnasser, N.; Guillou, S.; Leroi, F.; Orange, N.; Bakhrouf, A.; Federighi, M. Pulsed-light system as a novel food decontamination technology: A review. Can. J. Microbiol. 2007, 53, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Cacace, D.; Palmieri, L. High-Intensity Pulsed Light Technology. Chapter 13. In Emerging Technologies for Food Processin; Sun, D.-W., Ed.; Elsevier Science Publishing Co. Inc.: Dublin, Ireland, 2014; pp. 239–258. [Google Scholar]
- McLeod, A.; Liland, K.H.; Haugen, J.E.; Sorheim, O.; Meyhrer, K.S.; Holck, A.L. Chicken fillets subjectd to UV-C and pulsem UV light: Reduction of pathogenic and spoilage bacteria and changes in sensory quality. J. Food Saf. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ganan, M.; Hierro, E.; Hospital, H.F.; Barroso, E.; Fernandez, M. Use of pulsed light to increase the safety of ready-to-eat cred meat products. Food Control. 2013, 32, 512–517. [Google Scholar] [CrossRef]
- Hierro, E.; Ganan, M.; Barroso, B.; Fernandes, M. Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna Carpaccio. Int. J. Food Microbiol. 2012, 158, 42–48. [Google Scholar] [CrossRef]
- Gomez-Lopez, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473. [Google Scholar] [CrossRef]
- Ulbin-Figlewicz, N.; Zimoch-Korzycka, A.; Jarmoluk, A. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J. Food Sci. Technol. 2013, 52, 1228–1232. [Google Scholar] [CrossRef] [Green Version]
- Skrzypolonek, K. Zimna plazma, jako niekonwencjonalna metoda utrwalania żywności. Cold plasma as an unconventional method of preserving food. Inżynieria Przetwórstwa Spożywczego 2016, 4, 28–32. (In Polish) [Google Scholar]
- Stryczewska, H.D. Zastosowanie zimnej plazmy. Wytwarzanie, modelowanie, zastosowanie. The use of cold plasma. Preparation, modeling, application. Elektryka 2011, 1, 41–61. (In Polish) [Google Scholar]
- Fernández, A.; Shearer, N.; Wilson, D.R.; Thompson, A. Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. Int. J. Food Microbiol. 2012, 152, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Knoerzer, K.; Murphy, A.B.; Fresewinkel, M.; Sanguansri, P.; Coventry, J. Evaluation of methods for determining food surface temperature in the presence of low- pressur cool plasma. Innov. Food Sci. Emerg. Technol. 2012, 15, 23–30. [Google Scholar] [CrossRef]
- Makała, H. Trendy w opakowaniach mięsa i przetworów mięsnych. Packaging trends in meat and meat preparations. Postępy Nauki i Technologii Przemysłu Rolno-Spożywczego 2012, 66, 153–173. (In Polish) [Google Scholar]
- Tabaka, K.; Cierach, M. Pakowanie mięsa i przetworów mięsnych. Packaging meat and meat products. Gospodarka Mięsna 2012, 64, 20–30. (In Polish) [Google Scholar]
- Chwastowska-Siwiecka, I.; Skiepko, N.; Kubiak, M.S. Pakowanie żywności – przykładowe rozwiązania. Food packaging example solutions. Przem. Spoż. 2015, 69, 25–29. (In Polish) [Google Scholar]
- McMillin, K.W. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. Meat Sci. 2008, 8, 43–65. [Google Scholar] [CrossRef]
- Ripoll, G.; Albertí, P.; Casasús, I.; Blanco, M. Instrumental meat quality of veal calves reared under three management systems and color evolution of meat stored in three packaging systems. Meat Sci. 2013, 93, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Hać Szymańczuk, E. Mikroflora próżniowo pakowanych produktów mięsnych. Microflora of vacuum-packed meat products. Gospodarka Mięsna 2012, 5, 34–35. (In Polish) [Google Scholar]
- Sakowska, A.; Konarska, M.; Guzek, D.; Głąbska, D.; Wierzbicka, A. Charakterystyka wybranych systemów pakowania mięsa w odniesieniu do preferencji konsumentów i aspektów ekonomicznych. Characteristics of selected meat packaging systems in relation to consumer preferences and economic aspects. Zesz. Nauk. SGGW w Warszawie 2014, 14, 203–213. [Google Scholar]
- Stoica, M.; Mihalcea, L.; Borda, D.; Alexe, P. Non-thermal novel food processing Technologies. An overview. J. Agroal. Process. Technol. 2013, 19, 212–217. (In Polish) [Google Scholar]
- Fernández, M.; Manzano, S.; Hoz, L.; Ordóñez, J.A.; Hierro, E. Pulsed light inactivation of Listeria monocytogenes through different plastic films. Foodborne Pathog. Dis. 2009, 6, 1265–1267. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, V.M.; Devlieghere, F.; Bonduelle, V.; Debevere, J. Factors affecting the inactivation of micro-organisms by intense light pulses. J. Appl. Microbiol. 2005, 99, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Rowan, N.J.; MacGregor, S.J.; Anderson, J.G.; Fouracre, R.A.; McIlvaney, L.; Farish, O. Pulsed-light inactivation of food-related microorganisms. Appl. Environ. Microbiol. 1999, 65, 1312–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, B.; Wunderlich, J.; Muranyi, P. Inactivation of Listeria innocua on packaged meat products by pulsed light. Food Packag. Shelf Life 2019, 21, 100353. [Google Scholar] [CrossRef]
- Hierro, E.; Barosso, E.; De la Hoz, L.; Ordónez, J.A.; Manzano, S.; Fernández, M. Efficacy of pulsem light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. Innov. Food Sci. Emerg. Technol. 2011, 12, 275–281. [Google Scholar] [CrossRef]
- Uesugi, A.R.; Moraru, C.I. Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsem light and nisin. J. Food Protect. 2009, 72, 347–353. [Google Scholar] [CrossRef]
- Keklik, N.M.; Demirci, A.; Puri, V.M. Inactivation of Listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters using pulsem UV-light. J. Food Sci. 2009, 74, 431–439. [Google Scholar] [CrossRef]
- Food and Drug Administration. Code of Federal Regulations 1996, 21CFR179.41. Title 21, Volume 3. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.41 (accessed on 1 April 2019).
- Koch, F.; Wiacek, C.; Braun, P.G. Pulsed light treatment for the reduction of Salmonella Typhimurium and Yersinia enterocolitica on pork skin and pork loin. Int. J. Food Microbiol. 2019, 292, 64–71. [Google Scholar] [CrossRef]
- Boistier-Marquis, E.; Lagsir-Oulahal, N.; Callard, M. Applications des ultrasons de puissances en industries alimentaires. Ind. Aliment. Agric. 1999, 116, 23–31. [Google Scholar]
- Jayasooriya, S.D.; Bhandari, B.R.; Torley, P.; D’Arey, B.R. Effect of high power ultrasound waves on properties of meat. A review. Int. J. Food Prop. 2004, 7, 301–319. [Google Scholar] [CrossRef]
- Lyng, J.G.; Allen, P.; Mckenna, B.M. The influence of high intensity ultrasound baths on aspects of beef tenderness. J. Muscle Foods 1997, 8, 237–249. [Google Scholar] [CrossRef]
- Lyng, J.G.; Allen, P.; McKenna, B.M. The effect on aspects of beef tenderness of pre- and post-rigor exposure to a high intensity ultrasound probe. J. Sci. Food Agric. 1998, 78, 308–314. [Google Scholar] [CrossRef]
- Roberts, R.T. Sound for processing food. Nutr. Food Sci. 1991, 91, 18–19. [Google Scholar] [CrossRef]
- Pohlman, F.W.; Dikeman, M.E.; Zayas, J.F. The effect of low intensity ultrasound treatment on shear properties, color stability and shelf-life of vacuum-packaged beef semitendinosus and biceps femoris muscles. Meat Sci. 1997, 45, 329–337. [Google Scholar] [CrossRef]
- Jayasooriya, S.D.; Torley, P.J.; D’Arcy, B.R.; Bhrandari, B.R. Effect of high power ultrasound and ageing on the physical properties of bovine semitendinosus and longissimus muscles. Meat Sci. 2007, 75, 628–639. [Google Scholar] [CrossRef]
- Ho, S.Y.; Mittal, G.S. Electroporation of cell membran es. A review. Crit. Rev. Biotechnol. 1996, 16, 349–362. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. Current and future prospects for the use of pulsed electric field in the meat industry. Crit. Rev. Food Sci. Nutr. 2018, 59, 1660–1674. [Google Scholar] [CrossRef]
- Liu, T.; Burritt, D.J.; Eyres, G.T.; Oey, I. Pulsed electric field processing reduces the oxalate content of oca (Oxalis tuberosa) tubers while retaining starch grains and the general structural integrity of tubers. Food Chem. 2018, 245, 890–898. [Google Scholar] [CrossRef]
- Bolton, D.J.; Catarame, T.; Byrne, C.; Sheridan, J.J.; McDowell, D.A.; Blair, I.S. The ineffectiveness of organic AIDS, freezing and pulsem electric fields to control Escherichia coli O157:H7 in beef burgers. Lett. Appl. Microbiol. 2002, 34, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.C.; Martin, S.E.; Wicklund, R.A.; Paulson, D.D.; Desantos, F.A.; Brewer, M.S. Effect of high-intensity pulsem electric fields on survival of Escherichia coli K-12 suspended In meat injection solutions. J. Food Saf. 2007, 27, 411–425. [Google Scholar] [CrossRef]
- Arroyo, C.; Lascorz, D.; O’Dowd, L.; Noci, F.; Arimi, J.; Lyng, J.G. Effect of pulsed electric field treatment at various sta ges during conditioning on quality attriubutes of beef longissimus thoracis et lumborum muscle. Meat Sci. 2015, 99, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.; Juncher, D.; Henckel, P.; Karlsson, A.; Bertelsen, G.; Skibsted, L.H. Oxidative stability of chilled pork chops following long-term freeze storage. Meat Sci. 2004, 68, 479–484. [Google Scholar] [CrossRef]
- Solomon, M.B.; Liu, M.; Patel, J.R.; Bowker, B.C.; Sharma, M. Hydrodynamic Pressure Processing to Improve Meat Quality and Safety. In Advanced Technologies for Meat Processing; Nollet, L.M.L., Toldra, F., Eds.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Campus, M. High pressure processing of meat, meat products and sea food. Food Eng. Rev. 2010, 2, 256–273. [Google Scholar] [CrossRef]
- Cheftel, J.C. Review: High-pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1995, 1, 75–90. [Google Scholar] [CrossRef]
- Jofré, A.; Aymerich, T.; Grèbol, N.; Garriga, M. Efficiency of high hydrostatic pressure AT 600 MPa against food-borne microorganisms by challenge tests on convenience meat products. LWT Food Sci Technol. 2009, 42, 924–928. [Google Scholar] [CrossRef]
- Black, E.P.; Hirneisen, K.A.; Hoover, D.G.; Kniel, K.E. Fate of Escherichia coli O157:H7 in group beef following high-pressure processing and freezing. J. Appl. Microbiol. 2010, 108, 1352–1360. [Google Scholar] [CrossRef]
- Zhou, G.H.; Xu, X.L.; Liu, Y. Preservation technologies for fresh meat. A review. Meat Sci. 2010, 86, 119–128. [Google Scholar] [CrossRef]
- Dasan, B.G.; Onal-Ulusoy, B.; Pawlat, J.; Diatczyk, J.; Sen, Y.; Mutlu, M. A new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food Bioprocess Technol. 2017, 10, 650–661. [Google Scholar] [CrossRef]
- McClurkin-Moore, J.D.; Ileleji, K.E.; Keener, K.M. The effect of high voltage atmospheric cold plasma treatment on the shelf-life of distillers wet grains. Food Bioprocess Technol. 2017, 10, 1431–1440. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, H.; Zhang, J. Inactivation of spoilage bacteria in package by dielectric barrier discharge atmospheric cold plasmadTreatment time effects. Food Bioprocess Technol. 2016, 9, 1648–1652. [Google Scholar] [CrossRef]
- Xu, L.; Garner, A.L.; Tao, B.; Keener, K.M. Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Rød, S.K.; Hansen, F.; Leipold, F.; Knochel, S. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiol. 2012, 30, 233–238. [Google Scholar] [CrossRef]
- Fröhling, A.; Durek, J.; Schnabel, U.; Ehlbeck, J.; Bolling, J.; Schlüter, O. Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innov. Food Sci. Emerg. Technol. 2012, 16, 381–390. [Google Scholar] [CrossRef]
- Noriega, E.; Shama, G.; Laca, A.; Diaz, M.; Kong, M.G. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 2011, 28, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Yun, H.; Jung, S.; Jung, Y.; Jung, H.; Choe, W.; Jo, C. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol. 2011, 28, 9–13. [Google Scholar] [CrossRef]
- Dirks, B.P.; Dobrynin, D.; Fridman, G.; Mukhin, Y.; Fridman, A.; Quinlan, J.J. Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce campylobacter jejuni and Salmonella Enterica. J. Food Prot. 2012, 75, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Jayasena, D.D.; Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Cheorun, J. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef]
- Sarangapani, C.; Ryan Keogh, D.; Dunne, J.; Bourke, P.; Cullen, P.J. Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chem. 2017, 235, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Lee, J.; Lim, Y.; Choe, W.; Yong, H.I.; Jo, C. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 113–118. [Google Scholar] [CrossRef]
- Lee, J.; Jo, K.; Lim, Y.; Jeon, H.J.; Choe, J.H.; Jo, C.; Jung, S. The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chem. 2018, 240, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wu, J.; Li, C.; Lin, L. Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. J. Food Saf. 2016, 37, 1–10. [Google Scholar] [CrossRef]
Concept | Search Strings |
---|---|
Meat And Unconventional methods And Paper restriction | Meat and high pressure process or sonication or pulsating electric fieldor pulsed light or cold plasma or vacuum packing Language: (English) and documents types: (article, review, book, book chapter, conferences paper, conference review) |
Product | Process Conditions | Storage Time (Weeks) | Number of Microorganisms [cfu/1g of Product] | Source | ||||
---|---|---|---|---|---|---|---|---|
From the Cola Group | Enterococci | Mesophilic | Psychrophilic | Acidifying | ||||
Raw smoked sirloin | Control sample | 0 | 3.3 × 102 | 4.7 × 102 | 5.3 × 105 | 6.0 × 104 | 4.7 × 106 | [36] |
6 | 6.0 × 101 | 2.2 × 103 | 0.8 × 108 | 4.0 × 108 | 3.3 × 108 | |||
8 | 2.0 × 102 | 9.3 × 102 | 2.3 × 108 | 1.8 × 108 | 3.0 × 108 | |||
500 MPa/10 min | 0 | - | 4.0 × 102 | 1.8 × 104 | <100 | 1.0 × 103 | ||
6 | - | <100 | 2.0 × 108 | 2.1 × 108 | 3.6 × 108 | |||
8 | - | <100 | 1.0 × 108 | 1.5 × 108 | 2.1 × 108 | |||
500 MPa/30 min | 0 | - | 1.5 × 102 | 3.8 × 103 | <100 | <100 | ||
6 | - | <100 | 1.0 × 108 | 1.4 × 108 | 9.5 × 107 | |||
8 | - | <100 | 8.9 × 107 | 1.2 × 107 | 1.4 × 108 | |||
Control sample | 0 | <10 | <100 | 2.5 × 104 | 2.5 × 102 | 2.0 × 102 | [35] | |
6 | 2.5 × 101 | <100 | 1.1 × 107 | 1.2 × 107 | 9.4 × 106 | |||
8 | 1.5 × 103 | <100 | 1.1 × 108 | 1.1 × 108 | 6.0 × 107 | |||
600MPa/30 min | 0 | <10 | <100 | <10 | <10 | <10 | ||
6 | <10 | <100 | <10 | <10 | <10 | |||
8 | <10 | <100 | <10 | <10 | <10 | |||
Haunch of beef | Control sample | 0 | - | - | 6.3 × 108 | - | - | [29] |
650 MPa/10 min | 0 | - | - | 1.4 × 105 | - | - | ||
650 MPa/20 min | 0 | - | - | 0.6 × 102 | - | - |
Product | Type of Microorganism | Reduction (cfu) | Process Parameters | Source |
---|---|---|---|---|
Pork meat | E. coli | 2.5/cm2 | Ultrasound + water vapour 30–40 kHz, 130 °C, 2 s, 3.5–5 atm. | [47] |
S. typhimurium | 2.0/cm2 | |||
Y. enterocolitica | 2.1/cm2 | |||
Chicken breast | Psychrophilic bacteria | 0.2/g | Ultrasound 20 kHz, 5 min | [48] |
Chicken wing | Gram-negative bacteria (S. anatum, E.coli, Proteus sp., Pseudomonas fluorescens) | 1.0/cm2 | Ultrasound + water 40 kHz 2.5 W/cm2 | [49] |
Pork skin | S. typhimurium, S. derby, S. infantis Y. enterocolitica | 1.1/cm2 | Ultrasound 30–40 kHz 1 s | [50] |
S. typhimurium, S. derby, S. infantis, Y. enterocolitica | 3.3/cm2 | Ultrasound 30–40 kHz 4 s |
Product | Pulse Energy J/cm2 | Microbial Reduction log cfu/cm2 | Source | |
---|---|---|---|---|
Listeria Monocytogenes | Salmonella Typhimurium | |||
Spanish salami | 0.70 | 0.89 | 0.26 | [65] |
Spanish salami | 11.90 | 1.81 | 1.48 | |
Dried loin slices | 0.70 | 1.01 | 0.51 | |
Dried loin slices | 11.90 | 1.61 | 1.73 | |
Beef carpaccio | 11.90 | 0.90 | 1.00 | [66] |
Products | Product Shelf Life in Traditional Packaging | Product Shelf Life in Vacuum Packaging | Source |
---|---|---|---|
Beef | 3 days | 8 days | [35] |
Pork | 2 days | 6 days | |
Poultry meat | 1–2 days | 7 days | |
Cooked Beef | 5 days | 12 days | |
Cooked pork | 5 days | 12 days | |
Smoked meat | 2–4 weeks | 6–12 weeks | |
Sliced ham | 3–4 days | 3 weeks | |
Frankfurters | 1–2 days | 2 weeks | |
Minced meat | 2–3 days | 45–60 days | [79] |
Specification | Nuisance to the Service | Application Costs on the Technological Line | Possibilities of Application on the Technological Line |
---|---|---|---|
PL | The need to work in safety glasses at the workplace - point action but with reflections | Low | For use in a belt conveyor system |
OMF | Harmless | Midium | For use in a belt conveyor system |
Sonication | Very harmful - the need for acoustic shields | High | Special, separate room for use on material |
Low temperature plasma | Work in an insulated system under a glass bowl, in an atmosphere of gases and under vacuum | High | Special, separate room for use on material |
HHP | Harmless | Very high | Special, separate room for use on material |
Vacuum packing with shrinking | Harmless | Medium | For use in a belt conveyor system |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudy, M.; Kucharyk, S.; Duma-Kocan, P.; Stanisławczyk, R.; Gil, M. Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment. Sustainability 2020, 12, 5948. https://doi.org/10.3390/su12155948
Rudy M, Kucharyk S, Duma-Kocan P, Stanisławczyk R, Gil M. Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment. Sustainability. 2020; 12(15):5948. https://doi.org/10.3390/su12155948
Chicago/Turabian StyleRudy, Mariusz, Sylwia Kucharyk, Paulina Duma-Kocan, Renata Stanisławczyk, and Marian Gil. 2020. "Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment" Sustainability 12, no. 15: 5948. https://doi.org/10.3390/su12155948
APA StyleRudy, M., Kucharyk, S., Duma-Kocan, P., Stanisławczyk, R., & Gil, M. (2020). Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment. Sustainability, 12(15), 5948. https://doi.org/10.3390/su12155948