Grass Buffer Strips Improve Soil Health and Mitigate Greenhouse Gas Emissions in Center-Pivot Irrigated Cropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Corn Planting and Grass Management
2.3. Soil Sampling and Laboratory Analysis
2.4. Greenhouse Gas Measurements
2.5. Statistical Analysis
3. Results
3.1. Soil Nitrogen Pools
3.2. Soil Carbon Pools
3.3. Other Soil Properties
3.4. Greenhouse Gas Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.A.; Baddock, M.C.; Mbuh, M.J.; Gill, T.E. Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico, USA. Aeolian Res. 2012, 3, 459–466. [Google Scholar] [CrossRef]
- Lee, J.; Gill, T.E. Multiple causes of wind erosion in the Dust Bowl. Aeolian Res. 2015, 19, 15–36. [Google Scholar] [CrossRef]
- Sophocleous, M. Retracted: Conserving and Extending the Useful Life of the Largest Aquifer in North America: The Future of the High Plains/Ogallala Aquifer. Ground Water 2012, 50, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Hornbeck, R.; Keskin, P. The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought. Am. Econ. J. Appl. Econ. 2014, 6, 190–219. [Google Scholar] [CrossRef] [Green Version]
- Udawatta, R.P.; Garrett, H.E.; Kallenbach, R.L. Agroforestry and grass buffer effects on water quality in grazed pastures. Agrofor. Syst. 2010, 79, 81–87. [Google Scholar] [CrossRef]
- Wauters, E.; Bielders, C.L.; Poesen, J.; Govers, G.; Mathijs, E.E. Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy 2010, 27, 86–94. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, Q.; Wang, H.; Wu, J.-Y.; Yu, D. The effects of grass hedges and micro-basins on reducing soil and water loss in temperate regions: A case study of Northern China. Soil Tillage Res. 2012, 122, 22–35. [Google Scholar] [CrossRef]
- Josefsson, J.; Berg, A.; Hiron, M.; Pärt, T.; Eggers, S. Grass buffer strips benefit invertebrate and breeding skylark numbers in a heterogeneous agricultural landscape. Agric. Ecosyst. Environ. 2013, 181, 101–107. [Google Scholar] [CrossRef]
- Kumar, S.; Anderson, S.H.; Udawatta, R.P. Agroforestry and Grass Buffer Influences on Macropores Measured by Computed Tomography under Grazed Pasture Systems. Soil Sci. Soc. Am. J. 2010, 74, 203–212. [Google Scholar] [CrossRef]
- Paudel, B.R.; Udawatta, R.P.; Anderson, S.H. Agroforestry and grass buffer effects on soil quality parameters for grazed pasture and row-crop systems. Appl. Soil Ecol. 2011, 48, 125–132. [Google Scholar] [CrossRef]
- Moore, K.J.; Anex, R.P.; Elobeid, A.E.; Fei, S.-Z.; Flora, C.B.; Goggi, A.S.; Jacobs, K.L.; Jha, P.; Kaleita, A.L.; Karlen, D.L.; et al. Regenerating Agricultural Landscapes with Perennial Groundcover for Intensive Crop Production. Agronomy 2019, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Angadi, S.V.; Gowda, P.; Cutforth, H.W.; Idowu, O.J. Circles of live buffer strips in a center pivot to improve multiple ecosystem services and sustainability of irrigated agriculture in the southern Great Plains. J. Soil Water Conserv. 2016, 71, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Parkin, T.B.; Helmers, M.; Zhou, X.; Castellano, M.J. Denitrification and Nitrous Oxide Emissions in Annual Croplands, Perennial Grass Buffers, and Restored Perennial Grasslands. Soil Sci. Soc. Am. J. 2014, 79, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Breuer, L.; Huisman, J.; Keller, T.; Frede, H.-G. Impact of a conversion from cropland to grassland on C and N storage and related soil properties: Analysis of a 60-year chronosequence. Geoderma 2006, 133, 6–18. [Google Scholar] [CrossRef]
- Ghimire, R.; Thapa, V.R.; Cano, A.; Acosta-Martinez, V. Soil organic matter and microbial community responses to semiarid croplands and grasslands management. Appl. Soil Ecol. 2019, 141, 30–37. [Google Scholar] [CrossRef]
- Don, A.; Scholten, T.; Schulze, E.-D. Conversion of cropland into grassland: Implications for soil organic-carbon stocks in two soils with different texture. J. Plant Nutr. Soil Sci. 2009, 172, 53–62. [Google Scholar] [CrossRef]
- Jiao, Y.; Xu, Z.; Zhao, J.; Yang, W. Changes in soil carbon stocks and related soil proper-ties along a 50-year grassland-to-cropland conversion chronosequence in an agro-pastoral ecotone of Inner Mongolia, China. J. Arid. Land 2012, 4, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Liu, S.; Han, K.; Guan, S.; Zhou, D. Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agric. Ecosyst. Environ. 2017, 245, 83–91. [Google Scholar] [CrossRef]
- Bronson, K.F.; Zobeck, T.; Chua, T.T.; Acosta-Martinez, V.; Van Pelt, R.S.; Booker, J.D. Carbon and Nitrogen Pools of Southern High Plains Cropland and Grassland Soils. Soil Sci. Soc. Am. J. 2004, 68, 1695–1704. [Google Scholar] [CrossRef] [Green Version]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.O.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased Food and Ecosystem Security via Perennial Grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, D.; Zhou, X.; Parkin, T.B.; Helmers, M.; Castellano, M.J. Comparing Nitrate Sink Strength in Perennial Filter Strips at Toeslopes of Cropland Watersheds. J. Environ. Qual. 2015, 44, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culman, S.W.; Dupont, S.; Glover, J.; Buckley, D.H.; Fick, G.; Ferris, H.; Crews, T. Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agric. Ecosyst. Environ. 2010, 137, 13–24. [Google Scholar] [CrossRef]
- Kim, D.-G.; Isenhart, T.; Parkin, T.B.; Schultz, R.C.; Loynachan, T.E. Methane Flux in Cropland and Adjacent Riparian Buffers with Different Vegetation Covers. J. Environ. Qual. 2010, 39, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Evrendilek, F.; Celik, I.; Kilic, S. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. J. Arid. Environ. 2004, 59, 743–752. [Google Scholar] [CrossRef]
- Masarik, K.C.; Norman, J.M.; Brye, K.R. Long-Term Drainage and Nitrate Leaching below Well-Drained Continuous Corn Agroecosystems and a Prairie. J. Environ. Prot. 2014, 5, 240–254. [Google Scholar] [CrossRef] [Green Version]
- Berthrong, S.T.; Piñeiro, G.; Jobbágy, E.G.; Jackson, R.B. Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol. Appl. 2012, 22, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Udawatta, R.P.; Jose, S. Carbon Sequestration Potential of Agroforestry Practices in Temperate North America. In Carbon Sequestration Potential of Agroforestry Systems; Springer Science Business Media: Berlin, Germany, 2011; pp. 17–42. [Google Scholar]
- Gopalakrishnan, G.; Negri, M.C.; Salas, W. Modeling biogeochemical impacts of bioenergy buffers with perennial grasses for a row-crop field in I llinois. Gcb Bioenergy 2012, 4, 739–750. [Google Scholar] [CrossRef]
- Web Soil Survey. Available online: http://websoilsurvey.nrcs.usda.gov (accessed on 21 February 2013).
- Zibilske, L. Carbon mineralization 1. In Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties; Wiley: Hoboken, NJ, USA, 1994; pp. 835–863. [Google Scholar]
- Gianello, C.; Bremner, J.M. A simple chemical method of assessing potentially available organic nitrogen in soil. Commun. Soil Sci. Plant Anal. 1986, 17, 195–214. [Google Scholar] [CrossRef]
- Jenkinson, D.; Powlson, D. The effects of biocidal treatments on metabolism in soil—V. Soil Boil. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. (Eds.) Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- Ogden, C.B.; Van Es, H.M.; Schindelbeck, R. Miniature Rain Simulator for Field Measurement of Soil Infiltration. Soil Sci. Soc. Am. J. 1997, 61, 1041–1043. [Google Scholar] [CrossRef]
- Parkin, T.B.; Kaspar, T.C. Temperature Controls on Diurnal Carbon Dioxide Flux. Soil Sci. Soc. Am. J. 2003, 67, 1763–1772. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Mikha, M.M.; Idowu, O.J.; Marsalis, M.A. Land Use Effects on Soil Health in Semiarid Drylands. Agric. Environ. Lett. 2018, 3, 180022. [Google Scholar] [CrossRef]
- Sainju, U.M.; Allen, B.L.; Lenssen, A.W.; Ghimire, R. Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates. Field Crop. Res. 2017, 210, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Garten, C.; Classen, A.T.; Norby, R.J. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant Soil 2008, 319, 85–94. [Google Scholar] [CrossRef]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Chang Boil. 1998, 4, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Maag, M.; Vinther, F. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 1996, 4, 5–14. [Google Scholar] [CrossRef]
- Ghimire, R.; Machado, S.; Bista, P. Soil pH, Soil Organic Matter, and Crop Yields in Winter Wheat-Summer Fallow Systems. Agron. J. 2017, 109, 706–717. [Google Scholar] [CrossRef] [Green Version]
- Aizat, A.M.; Roslan, M.K.; Sulaiman, W.N.; Karam, D.S. The relationship between soil pH and selected soil properties in 48 years logged-over forest. Int. J. Environ. Sci. 2014, 4, 1129–1140. [Google Scholar]
Treatments | Spring | Summer | Fall |
---|---|---|---|
Inorganic N (kg ha−1) | |||
GBS | 3.21 ± 0.88 b | 0.64 ± 0.12 b | 1.83 ± 0.19 |
C-1 | 51.84 ± 10.31 a | 4.02 ± 0.91 ab | 1.74 ± 0.11 |
C-2 | 58.91 ± 15.00 a | 11.0 ± 3.27 a | 1.76 ± 0.12 |
C-3 | 53.80 ± 10.91 a | 7.99 ± 1.68 ab | 1.86 ± 0.12 |
PNM (kg ha−1) | |||
GBS | 1.55 ± 0.37 b | 0.39 ± 0.10 b | 1.06 ± 0.04 b |
C-1 | 56.69 ± 14.35 a | 6.64 ± 1.31 ab | 1.16 ± 0.04 ab |
C-2 | 63.71 ± 15.74 a | 18.96 ± 5.02 a | 1.24 ± 0.03 a |
C-3 | 56.53 ± 16.85 a | 13.94 ± 4.11 ab | 1.16 ± 0.04 ab |
LON (kg ha−1) | |||
GBS | 10.74 ± 2.56 b | 6.00 ± 0.50 b | 6.88 ± 0.47 |
C-1 | 55.61 ± 14.40 a | 10.73 ± 1.61 ab | 7.38 ± 0.65 |
C-2 | 52.94 ± 13.72 a | 19.26 ± 3.01 a | 8.50 ± 0.58 |
C-3 | 49.29 ± 15.31 a | 19.22 ± 1.66 a | 8.31 ± 0.41 |
TSN (Mg ha−1) | |||
GBS | 1.30 ± 0.09 | 1.18 ± 0.03 | 1.12 ± 0.02 |
C-1 | 1.29 ± 0.04 | 1.20 ± 0.05 | 1.17 ± 0.04 |
C-2 | 1.31 ± 0.05 | 1.33 ± 0.03 | 1.23 ± 0.03 |
C-3 | 1.35 ± 0.06 | 1.32 ± 0.04 | 1.22 ± 0.06 |
Treatments | Spring | Summer | Fall |
---|---|---|---|
PCM (kg ha−1) | |||
GBS | 83.80 ± 16.82 a | 58.26 ± 5.84 a | 24.01 ± 3.80 |
C-1 | 40.89 ± 5.59 b | 37.30 ± 2.66 b | 18.82 ± 4.18 |
C-2 | 41.30 ± 3.82 b | 47.51 ± 5.52 ab | 20.62 ± 3.14 |
C-3 | 43.59 ± 4.92 b | 38.20 ± 3.26 b | 16.44 ± 2.88 |
MBC (kg ha−1) | |||
GBS | 465.37 ± 48.37 a | 560.62 ± 31.74 | 442.60 ± 28.51 |
C-1 | 305.24 ± 24.10 b | 490.59 ± 27.12 | 385.93 ± 29.29 |
C-2 | 340.47 ± 31.02 b | 518.84 ± 27.82 | 389.10 ± 20.93 |
C-3 | 357.93 ± 39.11 ab | 490.62 ± 35.27 | 369.67 ± 35.31 |
SOC (Mg ha−1) | |||
GBS | 13.83 ± 1.16 | 11.87 ± 0.22 | 11.14 ± 0.30 |
C-1 | 11.86 ± 0.40 | 11.90 ± 0.34 | 11.51 ± 0.50 |
C-2 | 12.19 ± 0.45 | 13.21 ± 0.44 | 11.86 ± 0.29 |
C-3 | 12.91 ± 0.70 | 13.21 ± 0.39 | 12.55 ± 0.95 |
Treatments | Spring | Summer | Fall |
---|---|---|---|
Soil pH | |||
GBS | 7.90 ± 0.02 a | 7.85 ± 0.03 a | 7.93 ± 0.04 a |
C-1 | 7.36 ± 0.12 c | 7.43 ± 0.04 c | 7.66 ± 0.11 b |
C-2 | 7.46 ± 0.13 b | 7.53 ± 0.12 b | 7.76 ± 0.08 ab |
C-3 | 7.28 ± 0.13 d | 7.36 ± 0.06 c | 7.66 ± 0.12 b |
EC (ds m−1) | |||
GBS | 0.22 ± 0.01 b | 0.19 ± 0.02 | 0.21 ± 0.01 |
C-1 | 0.49 ± 0.07 a | 0.23 ± 0.01 | 0.20 ± 0.01 |
C-2 | 0.50 ± 0.08 a | 0.33 ± 0.05 | 0.23 ± 0.01 |
C-3 | 0.47 ± 0.07 a | 0.30 ± 0.02 | 0.20 ± 0.02 |
CEC (meq 100 g−1) | |||
GBS | 16.91 ± 0.37 | 17.3 ± 0.40 | 17.54 ± 0.28 |
C-1 | 17.95 ± 0.40 | 17.18 ± 0.27 | 17.15 ± 0.24 |
C-2 | 17.91 ± 0.42 | 17.38 ± 0.30 | 17.45 ± 0.46 |
C-3 | 17.29 ± 0.50 | 17.40 ± 0.46 | 17.60 ± 0.41 |
Treatments | Spring | Summer | Fall |
---|---|---|---|
WAS (%) | |||
GBS | 51.86 ± 6.26 | 48.63 ± 3.20 | 39.34 ± 1.79 a |
C-1 | 54.13 ± 6.49 | 47.45 ± 2.95 | 33.80 ± 1.95 b |
C-2 | 47.46 ± 6.74 | 44.93 ± 1.92 | 35.75 ± 1.75 ab |
C-3 | 52.81 ± 5.32 | 44.32 ± 2.33 | 37.27 ± 1.73 ab |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehin, S.M.-U.-; Ghimire, R.; Angadi, S.V.; Idowu, O.J. Grass Buffer Strips Improve Soil Health and Mitigate Greenhouse Gas Emissions in Center-Pivot Irrigated Cropping Systems. Sustainability 2020, 12, 6014. https://doi.org/10.3390/su12156014
Salehin SM-U-, Ghimire R, Angadi SV, Idowu OJ. Grass Buffer Strips Improve Soil Health and Mitigate Greenhouse Gas Emissions in Center-Pivot Irrigated Cropping Systems. Sustainability. 2020; 12(15):6014. https://doi.org/10.3390/su12156014
Chicago/Turabian StyleSalehin, Sk. Musfiq-Us-, Rajan Ghimire, Sangamesh V. Angadi, and Omololu J. Idowu. 2020. "Grass Buffer Strips Improve Soil Health and Mitigate Greenhouse Gas Emissions in Center-Pivot Irrigated Cropping Systems" Sustainability 12, no. 15: 6014. https://doi.org/10.3390/su12156014
APA StyleSalehin, S. M. -U. -, Ghimire, R., Angadi, S. V., & Idowu, O. J. (2020). Grass Buffer Strips Improve Soil Health and Mitigate Greenhouse Gas Emissions in Center-Pivot Irrigated Cropping Systems. Sustainability, 12(15), 6014. https://doi.org/10.3390/su12156014