Behind the Review Curtain: Decomposition of Online Consumer Ratings in Peer-to-Peer Markets
Abstract
:1. Introduction
2. Literature Review
3. Data and Model
4. Empirical Analysis
5. Concluding Remarks
Funding
Conflicts of Interest
References
- Einav, L.; Farronato, C.; Levin, J. Peer-to-Peer Markets. Annu. Rev. Econ. 2016, 8, 615–635. [Google Scholar] [CrossRef] [Green Version]
- Rochet, J.C.; Tirole, J. Two-Sided Markets: A Progress Report. RAND J. Econ. 2006, 37, 645–667. [Google Scholar] [CrossRef] [Green Version]
- Dellarocas, C. The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms. Manag. Sci. 2003, 49, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, J.A.; Mayzlin, D. The Effect of Word of Mouth on Sales: Online Book Reviews. J. Mark. Res. 2006, 43, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Archak, N.; Ghose, A.; Ipeirotis, P.G. Deriving the pricing power of product features by mining consumer reviews. Manag. Sci. 2011, 57, 1485–1509. [Google Scholar] [CrossRef] [Green Version]
- Chintagunta, P.; Gopinath, S.; Venkataraman, S. The effects of online user reviews on movie box office performance: Accounting for sequential rollout and aggregation across local markets. Mark. Sci. 2010, 29, 944–957. [Google Scholar] [CrossRef]
- Sun, M. How does the variance of product ratings matter? Manag. Sci. 2012, 58, 696–707. [Google Scholar] [CrossRef] [Green Version]
- Dewenter, R.; Heimeshoff, U. Do Expert Reviews Really Drive Demand? Evidence from a German Car Magazine. Appl. Econ. Lett. 2015, 22, 1150–1153. [Google Scholar] [CrossRef] [Green Version]
- Cabral, L.; Hortaçsu, A. The Dynamics of Seller Reputation: Evidence from eBay. J. Ind. Econ. 2010, 58, 54–78. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, G.; Jullien, B.; Postel-Vinay, F. Reputation and Prices on the e-market: Evidence from a Major French Platform. Int. J. Ind. Organ. 2016, 45, 59–75. [Google Scholar] [CrossRef] [Green Version]
- Dospinescu, N.; Dospinescu, O.; Tatarusanu, M. Analysis of the Influence Factors on the Reputation of Food-Delivery Companies: Evidence from Romania. Sustainability 2020, 12, 4142. [Google Scholar] [CrossRef]
- Asak, E.O.; Ferguson, M.A.; Duman, S.A. Corporate social responsibility and CSR fit as predictors of corporate reputation: A global perspective. Public Relat. Rev. 2016, 42, 79–81. [Google Scholar]
- Teubner, T.; Hawlitschek, F.; Adam, M.T.P. Reputation Transfer. Bus. Inf. Syst. Eng. 2019, 61, 229–235. [Google Scholar] [CrossRef]
- Zervas, G.; Proserpio, D.; Byers, J.W. The rise of the sharing economy: Estimating the impact of AirBnB on the hotel industry. J. Mark. Res. 2017, 54, 687–705. [Google Scholar] [CrossRef] [Green Version]
- Basuroy, S.; Desai, K.K.; Talukdar, D. An empirical investigation of signaling in the motion picture industry. J. Mark. Res. 2006, 43, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Basuroy, S.; Chatterjee, S. Fast and frequent: Investigating box office revenues of motion picture sequels. J. Bus. Res. 2008, 61, 798–803. [Google Scholar] [CrossRef]
- Chandrasekaran, D.; Arts, J.W.C.; Tellis, G.J.; Frambach, R.T. Pricing in the international takeoff of new products. Int. J. Res. Mark. 2013, 30, 249–264. [Google Scholar] [CrossRef]
- Park, S.; Nicolau, J.L. Effects of general and particular online hotel ratings. Ann. Tour. Res. 2017, 62, 114–116. [Google Scholar] [CrossRef]
- Torres, E.N.; Singh, D.; Robertson-Ring, A. Consumer reviews and the creation of booking transaction value: Lessons from the hotel industry. Int. J. Hosp. Manag. 2015, 50, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.L.; Chen, C.; Wu, S. Online Consumer Review Factors Affecting Offline Hotel Popularity: Evidence from Tripadvisor. J. Travel Tour. Mark. 2016, 33, 211–223. [Google Scholar] [CrossRef]
- Neirotti, P.; Raguseo, E.; Paolucci, E. Are customers’ reviews creating value in the hospitality industry? Exploring the moderating effects of market positioning. Int. J. Inf. Manag. 2016, 36, 1133–1143. [Google Scholar] [CrossRef] [Green Version]
- Bulchand-Gidumal, J.; Melián-González, S.; Lopez-Valcarcel, B.G. A social media analysis of the contribution of destinations to client satisfaction with hotels. Int. J. Hosp. Manag. 2013, 35, 44–47. [Google Scholar] [CrossRef]
- Tutz, G. Sequential models in categorical regression. Comput. Stat. Data Anal. 1991, 11, 275–295. [Google Scholar] [CrossRef]
- Dospinescu, N.; Dospinescu, O. A Profitability Regression Model in Financial Communication of Romanian Stock Exchange’s Companies. Ecoforum J. 2019, 8, 18. [Google Scholar]
- Dhalla, R.; Carayannopoulos, S. Reputational Discounting: Factors Reducing the Influence of Organizational Reputation. Corp. Reput. Rev. 2013, 16, 150–167. [Google Scholar] [CrossRef]
- Tran, L.T.T.; Ly, P.T.M.; Le, L.T. Hotel choice: A closer look at demographics and online ratings. Int. J. Hosp. Manag. 2019, 82, 13–21. [Google Scholar] [CrossRef]
- Wyer, R.S. Category ratings as “subjective expected values”: Implications for attitude formation and change. Psychol. Rev. 1973, 80, 446–467. [Google Scholar] [CrossRef]
- Boyer, M.; Dionne, G. An Empirical Analysis of Moral Hazard and Experience Rating. Rev. Econ. Stat. 1989, 71, 128–134. [Google Scholar] [CrossRef]
- Posselt, T.; Gerstner, E.; Radic, D. Rating e-tailers’ money-back guarantees. J. Serv. Res. 2008, 10, 207–219. [Google Scholar] [CrossRef]
- Kyung, G.; Nussbaum, M.A.; Babski-Reeves, K. Driver sitting comfort and discomfort (part I): Use of subjective ratings in discriminating car seats and correspondence among ratings. Int. J. Ind. Ergon. 2008, 38, 516–525. [Google Scholar] [CrossRef]
- Dunn, M.J.; Searle, R. Effect of manipulated prestige-car ownership on both sex attractiveness ratings. Br. J. Psychol. 2010, 101, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, G.; Ratchford, B.T.; Kannan, P.K. The impact of online and offline information sources on automobile choice behavior. J. Interact. Mark. 2012, 26, 167–175. [Google Scholar] [CrossRef]
- Dospinescu, O.; Bogdan, A.; Dospinescu, N. Key Factors Determining the Expected Benefit of Customers When Using Bank Cards: An Analysis on Millennials and Generation Z in Romania. Symmetry 2019, 11, 1449. [Google Scholar] [CrossRef] [Green Version]
- Shapley, L.S.; Shubik, M. A method for evaluating the distribution of power in a committee system. Am. Political Sci. Rev. 1954, 48, 787–792. [Google Scholar] [CrossRef]
- Huettner, F.; Sunder, M. Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values. Electron. J. Stat. 2012, 6, 1239–1250. [Google Scholar] [CrossRef]
- Small, D.A.; Cryder, C. Prosocial consumer behavior. Curr. Opin. Psychol. 2016, 10, 107–111. [Google Scholar] [CrossRef]
Variable Name | Description | Obs | Mean | Std Dev | Min | Max |
---|---|---|---|---|---|---|
Average valence | Average rating scores from car passengers listed on BlaBlaCar. | 17,584 | 4.933 | 0.083 | 4.8 | 5 |
Demographics | ||||||
Age | The driver’s age. | 17,584 | 33.465 | 10.113 | 19 | 104 |
Gender | A dummy variable reflecting gender (1 = Female). | 17,584 | 0.374 | 0.108 | 0 | 1 |
Attitude | ||||||
Music | Binary variable indicating the driver’s preference for music. | 17,584 | 0.607 | 0.488 | 0 | 1 |
Pets | Binary variable indicating the driver’s preference for pets. | 17,584 | 0.580 | 0.494 | 0 | 1 |
Smoking | Binary variable indicating the driver’s preference for smoking. | 17,584 | 0.674 | 0.469 | 0 | 1 |
Conversational behavior | Variable indicating the driver’s preference for conversations, measured on a three-point scale (1 = Bla, 2 = BlaBla, 3 = BlaBlaBla). | 17,584 | 2.157 | 0.413 | 1 | 3 |
Experience | ||||||
Number of trips | Number of passed car drives. | 17,584 | 25.251 | 39.465 | 0 | 891 |
Registered since (in days) | The number of days since the driver registered on BlaBlaCar. | 17,584 | 824.963 | 524.094 | 353 | 3710 |
Binary variable indicating the driver’s experience level: | ||||||
Experience level 1: | Intermediate | 17,584 | 0.260 | 0.439 | 0 | 1 |
Experience level 2: | Experienced | 17,584 | 0.008 | 0.089 | 0 | 1 |
Experience level 3: | Expert | 17,584 | 0.503 | 0.500 | 0 | 1 |
Experience level 4: | Ambassador | 17,584 | 0.229 | 0.420 | 0 | 1 |
Guarantee | ||||||
Response rate | The driver’s response rate to messages from passengers. | 17,584 | 39.652 | 41.920 | 0 | 100 |
Verified phone | Binary variable indicating that the driver confirmed his phone number. | 17,584 | 0.993 | 0.083 | 0 | 1 |
Verified email | Binary variable indicating that the driver confirmed his email address. | 17,584 | 0.999 | 0.008 | 0 | 1 |
Short profile | Binary variable indicating that the driver filled in the short profile form. | 17,584 | 0.295 | 0.456 | 0 | 1 |
Vehicle | ||||||
The driver’s car is manufactured by: | ||||||
Alfa Romeo | 17,584 | 0.011 | 0.104 | 0 | 1 | |
Audi | 17,584 | 0.048 | 0.214 | 0 | 1 | |
BMW | 17,584 | 0.047 | 0.211 | 0 | 1 | |
Citroen | 17,584 | 0.074 | 0.262 | 0 | 1 | |
Dacia | 17,584 | 0.010 | 0.102 | 0 | 1 | |
Fiat | 17,584 | 0.035 | 0.185 | 0 | 1 | |
Ford | 17,584 | 0.068 | 0.252 | 0 | 1 | |
Honda | 17,584 | 0.015 | 0.119 | 0 | 1 | |
Hyundai | 17,584 | 0.012 | 0.108 | 0 | 1 | |
Kia | 17,584 | 0.010 | 0.099 | 0 | 1 | |
Mazda | 17,584 | 0.013 | 0.113 | 0 | 1 | |
Mercedes | 17,584 | 0.032 | 0.175 | 0 | 1 | |
Nissan | 17,584 | 0.018 | 0.132 | 0 | 1 | |
Opel | 17,584 | 0.070 | 0.256 | 0 | 1 | |
Other | 17,584 | 0.045 | 0.207 | 0 | 1 | |
Peugeot | 17,584 | 0.113 | 0.317 | 0 | 1 | |
Renault | 17,584 | 0.143 | 0.345 | 0 | 1 | |
Seat | 17,584 | 0.030 | 0.171 | 0 | 1 | |
Skoda | 17,584 | 0.028 | 0.165 | 0 | 1 | |
Toyota | 17,584 | 0.036 | 0.186 | 0 | 1 | |
Volkswagen | 17,584 | 0.128 | 0.334 | 0 | 1 | |
Volvo | 17,584 | 0.014 | 0.117 | 0 | 1 | |
The driver’s car convenience level: | ||||||
Level 1 | Simple | 17,584 | 0.041 | 0.198 | 0 | 1 |
Level 2 | Standard | 17,584 | 0.523 | 0.499 | 0 | 1 |
Level 3 | Sophisticated | 17,584 | 0.381 | 0.486 | 0 | 1 |
Level 4 | Luxury | 17,584 | 0.056 | 0.230 | 0 | 1 |
The driver’s car color: | ||||||
Car color 1 | Blue | 17,584 | 0.167 | 0.373 | 0 | 1 |
Car color 2 | Gray | 17,584 | 0.221 | 0.415 | 0 | 1 |
Car color 3 | Green | 17,584 | 0.058 | 0.234 | 0 | 1 |
Car color 4 | Other than gray, green, red, black, silver, or white. | 17,584 | 0.046 | 0.210 | 0 | 1 |
Car color 5 | Red | 17,584 | 0.076 | 0.266 | 0 | 1 |
Car color 6 | Black | 17,584 | 0.207 | 0.405 | 0 | 1 |
Car color 7 | Silver | 17,584 | 0.124 | 0.330 | 0 | 1 |
Car color 8 | White | 17,584 | 0.101 | 0.301 | 0 | 1 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Average valence | 1 | ||||||||||||||||
(2) Age | −0.0956 | 1 | |||||||||||||||
(3) Gender | −0.0504 | −0.0622 | 1 | ||||||||||||||
(4) Music | −0.0182 | −0.1323 | −0.0504 | 1 | |||||||||||||
(5) Pets | −0.0237 | 0.0402 | −0.0810 | 0.2875 | 1 | ||||||||||||
(6) Smoking | −0.0156 | 0.0537 | −0.0804 | 0.2821 | 0.4319 | 1 | |||||||||||
(7) Conversational behavior | 0.0067 | −0.0355 | −0.0563 | 0.2481 | 0.0961 | 0.0798 | 1 | ||||||||||
(8) Number of trips | −0.1657 | 0.1548 | −0.1193 | 0.0384 | 0.0744 | 0.0886 | 0.0123 | 1 | |||||||||
(9) Registered since (in days) | −0.1917 | 0.1007 | 0.1345 | 0.0631 | 0.0414 | −0.0256 | 0.0874 | 0.0312 | 1 | ||||||||
(10) Experience level | -0.1098 | −0.0156 | −0.0387 | 0.3765 | 0.3516 | 0.4203 | 0.1117 | 0.0680 | 0.0594 | 1 | |||||||
(11) Response rate | −0.1470 | 0.0094 | −0.0364 | 0.0207 | 0.0213 | 0.0557 | 0.0069 | 0.2894 | −0.1428 | 0.0582 | 1 | ||||||
(12) Verified phone | −0.0623 | 0.0036 | −0.0082 | 0.0049 | −0.0081 | 0.0082 | −0.0032 | 0.0378 | −0.0673 | 0.0018 | 0.0747 | 1 | |||||
(13) Verified email | −0.0060 | 0.0018 | 0.0058 | −0.0061 | −0.0064 | −0.0052 | 0.0029 | 0.0044 | −0.0077 | −0.0090 | 0.0071 | 0.0906 | 1 | ||||
(14) Short profile | −0.0712 | 0.1142 | −0.0999 | 0.1441 | 0.1179 | 0.1409 | 0.1091 | 0.1694 | 0.0066 | 0.1244 | 0.0890 | 0.0357 | 0.0049 | 1 | |||
(15) Car manufacturer | 0.0022 | 0.0110 | 0.0054 | −0.0052 | 0.0066 | 0.0035 | 0.0049 | −0.0079 | 0.0300 | −0.0024 | −0.0125 | −0.0000 | −0.0047 | 0.0039 | 1 | ||
(16) Car convenience level | −0.0352 | 0.0346 | 0.0210 | 0.0071 | 0.0145 | −0.0114 | 0.0155 | −0.0013 | 0.1979 | 0.0087 | −0.0377 | −0.0225 | −0.0069 | 0.0104 | 0.0709 | 1 | |
(17) Car color | 0.0479 | −0.0293 | −0.0305 | 0.0115 | −0.0055 | −0.0112 | 0.0159 | 0.0166 | −0.1251 | −0.0128 | 0.0617 | 0.0138 | 0.0101 | 0.0183 | −0.0184 | −0.0257 | 1 |
Independent Variable | Dependent Variable: Average Valence of Drivers | ||||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | |
Demographics | |||||||
Age | −0.001 *** | −0.001 *** | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Age2 | 0.000 * | 0.000 | −0.000** | −0.000 ** | −0.000 ** | −0.000 ** | −0.000 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Gender (Reference category: Male) | −0.010 *** | −0.010 *** | −0.007 *** | −0.007 *** | −0.006 *** | -0.001 | 0.000 |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.007) | (0.007) | |
Attitude | |||||||
Music | −0.006 *** | 0.011 *** | 0.010 *** | 0.010 *** | 0.010 ** | 0.009 ** | |
(0.001) | (0.001) | (0.001) | (0.001) | (0.004) | (0.004) | ||
Pets | −0.003 * | 0.006 *** | 0.005 *** | 0.005 *** | 0.012 *** | 0.012 *** | |
(0.001) | (0.001) | (0.001) | (0.001) | (0.004) | (0.004) | ||
Smoking | 0.000 | 0.013 *** | 0.012 *** | 0.012 *** | 0.010 ** | 0.010 ** | |
(0.002) | (0.001) | (0.001) | (0.001) | (0.004) | (0.004) | ||
Conversational behavior | 0.002 | 0.007 *** | 0.007 *** | 0.007 *** | 0.010 ** | 0.010 ** | |
(0.002) | (0.001) | (0.001) | (0.001) | (0.004) | (0.004) | ||
Experience | |||||||
Number of trips | −0.000 *** | −0.000*** | −0.000*** | −0.000 *** | −0.000 *** | ||
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |||
Registered since (in days) | −0.000 *** | −0.000*** | −0.000*** | −0.000 *** | −0.000 *** | ||
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |||
Experience level 2: Experienced | −0.081 *** | −0.074*** | −0.073*** | −0.074 *** | −0.072 *** | ||
(0.007) | (0.007) | (0.007) | (0.007) | (0.007) | |||
Experience level 3: Expert | −0.061 *** | −0.057*** | −0.057*** | −0.057 *** | −0.057 *** | ||
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |||
Experience level 4: Ambassador | −0.022 *** | −0.021 *** | -0.021*** | −0.021*** | −0.021 *** | ||
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |||
Guarantee | |||||||
Response rate | −0.000 *** | −0.000*** | −0.000 *** | −0.000 *** | |||
(0.000) | (0.000) | (0.000) | (0.000) | ||||
Verified phone | −0.049 *** | −0.049*** | −0.049 *** | −0.049 *** | |||
(0.004) | (0.004) | (0.004) | (0.004) | ||||
Verified email | 0.008* | 0.010 ** | 0.008 ** | 0.011 ** | |||
(0.004) | (0.004) | (0.004) | (0.004) | ||||
Short profile | −0.001 | −0.001 | −0.001 | −0.001 | |||
(0.001) | (0.001) | (0.001) | (0.001) | ||||
Vehicle | |||||||
Car manufacturer: Audi | −0.001 | −0.001 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: BMW | 0.003 | 0.003 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Citroen | 0.002 | 0.002 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Dacia | 0.001 | 0.001 | |||||
(0.008) | (0.008) | ||||||
Car manufacturer: Fiat | 0.008 | 0.008 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Ford | −0.001 | −0.001 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Honda | 0.005 | 0.005 | |||||
(0.007) | (0.007) | ||||||
Car manufacturer: Hyundai | 0.008 | 0.008 | |||||
(0.008) | (0.008) | ||||||
Car manufacturer: Kia | 0.004 | 0.004 | |||||
(0.008) | (0.008) | ||||||
Car manufacturer: Mazda | 0.005 | 0.004 | |||||
(0.007) | (0.007) | ||||||
Car manufacturer: Mercedes | −0.001 | −0.001 | |||||
(0.007) | (0.007) | ||||||
Car manufacturer: Nissan | 0.010 | 0.010 | |||||
(0.007) | (0.007) | ||||||
Car manufacturer: Opel | 0.003 | 0.003 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Other | 0.008 | 0.008 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Peugeot | 0.007 | 0.007 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Renault | 0.008 | 0.008 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Seat | 0.006 | 0.005 | |||||
(0.007) | (0.007) | ||||||
Car manufacturer: Skoda | −0.003 | −0.003 | |||||
(0.007) | (0.007) | ||||||
Car manufacturer: Toyota | 0.006 | 0.006 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Volkswagen | −0.000 | −0.000 | |||||
(0.006) | (0.006) | ||||||
Car manufacturer: Volvo | 0.009 | 0.009 | |||||
(0.007) | (0.007) | ||||||
Car convenience level 2: Standard | 0.003 | 0.003 | |||||
(0.003) | (0.003) | ||||||
Car convenience level 3: Sophisticated | 0.004 | 0.004 | |||||
(0.003) | (0.003) | ||||||
Car convenience level 4: Luxury | 0.005 | 0.004 | |||||
(0.004) | (0.004) | ||||||
Car color 2: Gray | 0.000 | −0.000 | |||||
(0.002) | (0.002) | ||||||
Car color 3: Green | 0.005 * | 0.005* | |||||
(0.003) | (0.003) | ||||||
Car color 4: Other | 0.005 | 0.005 | |||||
(0.003) | (0.003) | ||||||
Car color 5: Red | 0.002 | 0.002 | |||||
(0.003) | (0.003) | ||||||
Car color 6: Black | 0.006 *** | 0.006 *** | |||||
(0.002) | (0.002) | ||||||
Car color 7: Silver | 0.010 *** | 0.010 *** | |||||
(0.002) | (0.002) | ||||||
Car color 8: White | 0.000 | 0.000 | |||||
(0.002) | (0.002) | ||||||
Interactions | |||||||
Gender x Music | 0.000 | 0.000 | |||||
(0.003) | (0.003) | ||||||
Gender x Pets | −0.005* | −0.005 * | |||||
(0.003) | (0.003) | ||||||
Gender x Smoking | 0.002 | 0.002 | |||||
(0.003) | (0.003) | ||||||
Gender x Conversational behavior | −0.002 | −0.002 | |||||
(0.003) | (0.003) | ||||||
Constant | 4.975 *** | 4.977 *** | 4.959 *** | 5.009 *** | 4.994 *** | 5.006 *** | 4.992 *** |
(0.007) | (0.007) | (0.007) | (0.007) | (0.010) | (0.008) | (0.010) | |
Observations | 17,584 | 17,584 | 17,584 | 17,584 | 17,584 | 17,584 | 17,584 |
R-squared | 0.013 | 0.014 | 0.139 | 0.150 | 0.154 | 0.151 | 0.154 |
Dependent Variable: Average Valence of Drivers | |||
---|---|---|---|
Shapley R2 Decomposition (%) | |||
Independent Variable | I | Individual | Group |
Attitude | |||
Music | −0.002 * | 3.05 | 10.25 |
(0.001) | |||
Pets | −0.003 ** | 4.81 | |
(0.001) | |||
Smoking | −0.001 | 1.43 | |
(0.002) | |||
Conversational behavior | 0.002 | 0.96 | |
(0.002) | |||
Guarantee | |||
Verified email | −0.075 *** | 0.51 | 0.51 |
(0.001) | |||
Vehicle | |||
Car color 3: Green | 0.009 *** | 4.15 | 89.23 |
(0.003) | |||
Car color 6: Black | 0.009 *** | 16.78 | |
(0.002) | |||
Car color 7: Silver | 0.020 *** | 68.3 | |
(0.002) | |||
Constant | 5.002 *** | ||
(0.003) | |||
Observations | 17,584 | ||
R-squared | 0.008 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaimann, D. Behind the Review Curtain: Decomposition of Online Consumer Ratings in Peer-to-Peer Markets. Sustainability 2020, 12, 6185. https://doi.org/10.3390/su12156185
Kaimann D. Behind the Review Curtain: Decomposition of Online Consumer Ratings in Peer-to-Peer Markets. Sustainability. 2020; 12(15):6185. https://doi.org/10.3390/su12156185
Chicago/Turabian StyleKaimann, Daniel. 2020. "Behind the Review Curtain: Decomposition of Online Consumer Ratings in Peer-to-Peer Markets" Sustainability 12, no. 15: 6185. https://doi.org/10.3390/su12156185
APA StyleKaimann, D. (2020). Behind the Review Curtain: Decomposition of Online Consumer Ratings in Peer-to-Peer Markets. Sustainability, 12(15), 6185. https://doi.org/10.3390/su12156185