Experimental Evaluation of Information Interventions to Encourage Non-Motorized Travel: A Case Study in Hefei, China
Abstract
:1. Introduction
- Which type of information (pro-environment or health) plays a dominant role in promoting non-motorized travel?
- What cognitive or emotional process determines whether or not car owners change their car use behavior toward non-motorized travel in response to information intervention?
- Does a higher target set by health information bring about stronger encouragement of non-motorized travel?
2. Literature Review
2.1. Cognitive and Emotional Approaches to Travel Behavior Change
2.2. Protection Motivation Theory
2.3. Applying Protection Motivation Theory to Travel Behavior Change
3. Experiment Design
4. Results
4.1. Travel Behavior Change Before and After the Experiment
4.2. Stepwise Linear Regression of Protection Motivation Theory Constructs
5. Discussion
6. Conclusions and Suggestions
Author Contributions
Funding
Conflicts of Interest
References
- Garvill, J.; Marell, A.; Nordlund, A. Effects of Increased Awareness on Choice of Travel Mode. Transportation 2003, 30, 63–79. [Google Scholar] [CrossRef]
- Rijnsoever, F.V.; Farla, J.; Dijst, M.J. Consumer Car Preferences and Information Search Channels. Transp. Res. Part D Transp. Environ. 2009, 14, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Farag, S.; Lyons, G. Explaining Public Transport Information Use When a Car is Available: Attitude Theory Empirically Investigated. Transportation 2010, 37, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Laakso, S.S. Giving up cars—The Impact of a Mobility Experiment on Carbon Emissions and Everyday Routines. J. Clean. Prod. 2017, 169, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.H.D.; Ogilvie, D. Motivations for Active Commuting: A Qualitative Investigation of the Period of Home or Work Relocation. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Long, R.; Chen, H. Impact of Information Intervention on Travel Mode Choice of Urban Residents with Different Goal Frames: A Controlled Trial in Xuzhou, China. Transp. Res. Part A Policy Pr. 2016, 91, 134–147. [Google Scholar] [CrossRef]
- Lu, T.; Mondschein, A.; Buehler, R.; Hankey, S. Adding Temporal Information to Direct-Demand Models: Hourly Estimation of Bicycle and Pedestrian Traffic in Blacksburg, VA. Transp. Res. Part D Transp. Environ. 2018, 63, 244–260. [Google Scholar] [CrossRef]
- Graham-Rowe, E.; Skippon, S.; Gardner, B.; Abraham, C. Can We Reduce Car Use and, If So, How? A Review of Available Evidence. Transp. Res. Part A Policy Pr. 2011, 45, 401–418. [Google Scholar] [CrossRef]
- Rose, G.; Ampt, E. Travel Blending: An Australian Travel Awareness Initiative. Transp. Res. Part D Transp. Environ. 2001, 6, 95–110. [Google Scholar] [CrossRef]
- Brazil, W.; Caulfield, B. Does Green Make a Difference: The Potential Role of Smartphone Technology in Transport Behaviour. Transp. Res. Part C Emerg. Technol. 2013, 37, 93–101. [Google Scholar] [CrossRef]
- Chen, F.; Chen, H.; Yang, J.; Long, R.; Long, R. Impact of Information Intervention on the Recycling Behavior of Individuals with Different Value Orientations—An Experimental Study on Express Delivery Packaging Waste. Sustainability 2018, 10, 3617. [Google Scholar] [CrossRef] [Green Version]
- Hounsham, S. Painting the Town Green: How to Persuade People to Be Environmentally Friendly; Green Engage Communications/Transport: London, UK, 2006. Available online: https://www.greenfunders.org/resource/painting-the-town-green-how-to-persuade-people-to-be-environmentally-friendly/ (accessed on 29 July 2020).
- Klöckner, C.A.; Friedrichsmeier, T.A. Multi-Level Approach to Travel Mode Choice—How Person Characteristics and Situation Specific Aspects Determine Car Use in a Student Sample. Transp. Res. Part F: Traffic Psychol. Behav. 2011, 14, 261–277. [Google Scholar] [CrossRef]
- Klöckner, C.A.; Matthies, E. How Habits Interfere with Norm-Directed Behaviour: A Normative Decision-Making Model for Travel Mode Choice. J. Environ. Psychol. 2004, 24, 319–327. [Google Scholar] [CrossRef]
- Eriksson, L.; Garvill, J.; Nordlund, A.M. Interrupting Habitual Car Use: The Importance of Car Habit Strength and Moral Motivation for Personal Car Use Reduction. Transp. Res. Part F Traffic Psychol. Behav. 2008, 11, 10–23. [Google Scholar] [CrossRef]
- Geng, J.; Long, R.; Chen, H.; Li, W. Exploring the Motivation-Behavior Gap in Urban Residents’ Green Travel Behavior: A Theoretical and Empirical Study. Resour. Conserv. Recycl. 2017, 125, 282–292. [Google Scholar] [CrossRef]
- Osbourne, J.A.; Clarke, M. Factors Motivating the Acceptance of New Information and Communication Technologies in UK Healthcare. Int. J. Heal. Inf. Syst. Inform. 2006, 1, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Wolff, K.; Nordin, K.; Brun, W.; Berglund, G.; Kvale, G. Affective and Cognitive Attitudes, Uncertainty Avoidance and Intention to Obtain Genetic Testing: An Extension of the Theory of Planned Behaviour. Psychol. Heal. 2011, 26, 1143–1155. [Google Scholar] [CrossRef]
- Bamberg, S.; Ajzen, I.; Schmidt, P. Choice of Travel Mode in the Theory of Planned Behavior: The Roles of Past Behavior, Habit, and Reasoned Action. Basic Appl. Soc. Psychol. 2003, 25, 175–187. [Google Scholar] [CrossRef]
- Anable, J.; Lane, B.; Kelay, T. An Evidence Base Review of Public Attitudes to Climate Change and Transport Behaviour; Department for Transport: London, UK, 2006. Available online: https://www.fcrn.org.uk/sites/default/files/Evidence_of_public_attitudes_and_behaviour.pdf (accessed on 29 July 2020).
- Antimova, R.; Nawijn, J.; Peeters, P. The Awareness/Attitude-Gap in Sustainable Tourism: A Theoretical Perspective. Tour. Rev. 2012, 67, 7–16. [Google Scholar] [CrossRef]
- Clark, M.S.; Waddell, B.A. Effects of Moods on Thoughts about Helping, Attraction and Information Acquisition. Soc. Psychol. Q. 1983, 46, 31–35. [Google Scholar] [CrossRef]
- Witte, K.; Allen, M. A Meta-Analysis of Fear Appeals: Implications for Effective Public Health Campaigns. Heal. Educ. Behav. 2000, 27, 591–615. [Google Scholar] [CrossRef] [PubMed]
- Bamberg, S.; Hunecke, M.; Blöbaum, A. Social Context, Personal Norms and the Use of Public Transportation: Two Field Studies. J. Environ. Psychol. 2007, 27, 190–203. [Google Scholar] [CrossRef]
- Chorus, C.G.; Arentze, T.A.; Timmermans, H.J. A Random Regret-Minimization Model of Travel Choice. Transp. Res. Part B Methodol. 2008, 42, 1–18. [Google Scholar] [CrossRef]
- Scott, R.B.; Dennis, F.G.; Paul, B.L.; Gregory, D.M.; Peter, P. What do Users have to Fear? Using Fear Appeals to Engender Threats and Fear that Motivate Protective Behaviors in Users. MIS Q. 2015, 39, 837–864. [Google Scholar]
- Das, E.H.; de Wit, J.B.; Stroebe, W. Fear Appeals Motivate Acceptance of Action Recommendations: Evidence for a Positive Bias in the Processing of Persuasive Messages. Pers. Soc. Psychol. Bull. 2003, 29, 650–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change1. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef]
- Maddux, J.E.; Rogers, R.W. Protection Motivation and Self-Efficacy: A Revised Theory of Fear Appeals and Attitude Change. J. Exp. Soc. Psychol. 1983, 19, 469–479. [Google Scholar] [CrossRef]
- Floyd, D.L.; Rogers, R.W.; Prentice-Dunn, S. A Meta-Analysis of Research on Protection Motivation Theory. J. Appl. Soc. Psychol. 2000, 30, 407–429. [Google Scholar] [CrossRef]
- The United Nations Framework Convention on Climate Change, 2010. UNFCCC Glossary of Climate Change Acronyms, Archived 29 April 2010 at the Wayback Machine. Available online: https://unfccc.int/ (accessed on 24 October 2010).
- Verkoeyen, S.; Nepal, S.K. Understanding Scuba Divers’ Response to Coral Bleaching: An Application of Protection Motivation Theory. J. Environ. Manag. 2019, 231, 869–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuruppu, N.; Liverman, D. Mental Preparation for Climate Adaptation: The role of Cognition and Culture in Enhancing Adaptive Capacity of Water Management in Kiribati. Glob. Environ. Chang. 2011, 21, 657–669. [Google Scholar] [CrossRef]
- Koerth, J.; Vafeidis, A.T.; Hinkel, J.; Sterr, H. What Motivates Coastal Households to Adapt Pro-Actively to Sea-Level Rise and Increasing Flood Risk? Reg. Environ. Chang. 2013, 13, 897–909. [Google Scholar] [CrossRef]
- Horng, J.S.; Hu, M.L.M.; Teng, C.C.C.; Lin, L. Energy Saving and Carbon Reduction Behaviors in Tourism—a Perception Study of Asian Visitors from a Protection Motivation Theory Perspective. Asia Pac. J. Tourism Res. 2014, 19, 721–735. [Google Scholar] [CrossRef]
- Wang, W.; Lin, C.; Lu, W.; Lee, S.; Lin, C.; Lu, W.; When, S.L. Current Issues in Tourism When Destination Attractiveness Shifts in Response to Climate Change: Tourists’ Adaptation Intention in Taiwan’s Kenting National Park. Curr. Issues Tour. 2019, 22, 522–543. [Google Scholar] [CrossRef]
- Joireman, J.A.; Van Lange, P.A.M.; Van Vugt, M. Who Cares about the Environmental Impact of Cars? Those with an Eye toward the Future. Environ. Behav. 2004, 36, 187–206. [Google Scholar] [CrossRef]
- Steg, L.; Sievers, I. Cultural Theory and Individual Perceptions of Environmental Risks. Environ.Behav. 2000, 32, 250–269. [Google Scholar] [CrossRef]
- Tapsuwan, S.; Rongrongmuang, W. Climate Change Perception of the Dive Tourism Industry in Koh Tao Island, Thailand. J. Outdoor Recreat. Tour. 2015, 11, 58–63. [Google Scholar] [CrossRef]
- Thøgersen, J.; Møller, B. Breaking Car Use Habits: The Effectiveness of a Free One-Month Travelcard. Transportation 2008, 35, 329–345. [Google Scholar] [CrossRef]
- Fujii, S.; Taniguchi, A. Reducing Family Car-Use by Providing Travel Advice or Requesting Behavioral Plans: An Experimental Analysis of Travel Feedback Programs. Transp. Res. Part D Transp. Environ. 2005, 10, 385–393. [Google Scholar] [CrossRef]
- Bamberg, S. Is a Residential Relocation a Good Opportunity to Change People’s Travel Behavior? Results From a Theory-Driven Intervention Study. Environ. Behav. 2006, 38, 820–840. [Google Scholar] [CrossRef]
- Rompalo, A.; Chambers, R.; Rosenstock, S.; Goklish, N.; Lee, A.; Tingey, L. Exploring the Role of Sex and Sexual Experience in Predicting American Indian Adolescent Condom Use Intention Using Protection Motivation Theory. Sex Transm. Infect. 2017, 93, A17. [Google Scholar]
- Nabizadeh, S.M.; Taymoori, P.; Hazhir, M.S.; Shirazi, M.; Roshani, D.; Shahmoradi, B. Predicting Vitamin E and C Consumption Intentions and Behaviors among Factory Workers Based on Protection Motivation Theory. Environ. Heal. Prev. Med. 2018, 23, 51. [Google Scholar] [CrossRef] [PubMed]
- Menard, P.; Warkentin, M.; Lowry, P.B. The Impact of Collectivism and Psychological Ownership on Protection Motivation: A Cross-Cultural Examination. Comput. Secur. 2018, 75, 147–166. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P. ‘It Does not Harm the Environment!’ An Analysis of Industry Discourses on Tourism, Air Travel and the Environment. J. Sustain. Tour. 2007, 15, 402–417. [Google Scholar] [CrossRef]
- Lindenberg, S.; Steg, L. Normative, Gain and Hedonic Goal Frames Guiding Environmental Behavior. J. Soc. Issues 2007, 63, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Locke, E.A. Toward a Theory of task Motivation and Incentives. Organ. Behav. Hum. Perform. 1968, 3, 157–189. [Google Scholar] [CrossRef]
- Paulssen, M.; Temme, D.; Vij, A.; Walker, J.L. Values, Attitudes and Travel Behavior: A Hierarchical Latent Variable Mixed Logit Model of Travel Mode Choice. Transportation 2014, 41, 873–888. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.A.; Guerra, E. Mood and Mode: Does How We Travel Affect How We Feel? Transportation 2014, 42, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Rabl, A.; De Nazelle, A. Benefits of Shift from Car to Active Transport. Transp. Policy 2012, 19, 121–131. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Technology Perspectives: Towards Sustainable Urban Energy Systems; IEA: Paris, Frence, 2016. [Google Scholar]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary Reduction in Daily Global CO2 Emissions during the COVID-19 Forced Confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Golob, T.F.; Hensher, D.A. Greenhouse Gas Emissions and Australian Commuters’ Attitudes and Behavior Concerning Abatement Policies and Personal Involvement. Transp. Res. Part D Transp. Environ. 1998, 3, 1–18. [Google Scholar] [CrossRef]
- Plaut, P.O. Non-Motorized Commuting in the US. Transp. Res. Part D Transp. Environ. 2005, 10, 347–356. [Google Scholar] [CrossRef]
- Clark, B.; Chatterjee, K.; Melia, S. Changes to Commute Mode: The Role of Life Events, Spatial Context and Environmental Attitude. Transp. Res. Part A Policy Pr. 2016, 89, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Long, R.; Chen, H.; Yue, T.; Li, W.; Long, R. Exploring Multiple Motivations on Urban Residents’ Travel Mode Choices: An Empirical Study from Jiangsu Province in China. Sustainability 2017, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Long, R.; Chen, H.; Long, R. Urban Residents’ Response to and Evaluation of Low-Carbon Travel Policies: Evidence from a Survey of Five Eastern Cities in China. J. Environ. Manag. 2018, 217, 47–55. [Google Scholar] [CrossRef]
Subscale | Scoring | Items within Subscale |
---|---|---|
Threat Appraisal | ||
Severity | Range 1–5: 1 = Strong disagree 5 = Strong agree | If we heavily use cars to travel, the pollution will cause tremendous harm to our health and ecological system. |
Vulnerability | Range 1–5: 1 = No 2 = Probably not 3 = Don’t know 4 = Maybe 5 = Yes | Because we are heavily using cars to travel, our health and ecological system have already begun deteriorating. |
Reward | Range 1–5: 1 = Strong disagree 5 = Strong agree | Driving a car would enable me to get something valuable or meaningful. |
Coping Appraisal | ||
Self-efficacy | Range 1–5: 1 = Strong disagree 5 = Strong agree | I am very confident that I can cut back on using a car and choose walking or cycling as alternatives. |
Response efficacy | Range 1–5: 1 = Strong disagree 5 = Strong agree | Using walking or cycling is a very effective way of solving car-related health and pollution problems. |
Response cost | Range 1–5: 1 = Strong disagree 5 = Strong agree | Using walking or cycling instead of a car would sacrifice my interests, e.g., time and convenience. |
Demographic Variables | CG (n = 31) | IG 1(n = 37) | IG 2 (n = 39) | IG 3 (n = 39) |
---|---|---|---|---|
Age (%) | ||||
18 to 29 | 6 (19.4%) | 9 (24.3%) | 11(28.2%) | 10 (25.6%) |
30 to 39 | 23 (74.2%) | 22 (59.5%) | 23 (59%) | 25 (64.1%) |
40 to 49 | 2 (6.5%) | 4 (10.8%) | 3 (7.7%) | 3 (7.7%) |
50 and above | 0 (0%) | 2 (5.4%) | 2 (5.1%) | 1 (2.6%) |
Gender (%) | ||||
female | 9 (29%) | 13 (35.1%) | 15(38.5%) | 15 (38.5%) |
male | 22 (71%) | 24 (64.9%) | 24(61.5%) | 24 (61.5%) |
Marital status (%) | ||||
unmarried | 8 (25.8%) | 9 (24.3%) | 12(30.8%) | 11 (28.2%) |
married | 23 (74.2%) | 28 (75.7%) | 27(69.2%) | 28 (71.8%) |
Children under the age of 16 (%) | ||||
yes | 19 (61.3%) | 24 (64.9%) | 24(61.5%) | 23 (59%) |
no | 12 (38.7%) | 13 (35.1%) | 15(38.5%) | 16 (41%) |
Education (%) | ||||
primary or none | 2 (6.5%) | 4 (10.8%) | 5 (12.8%) | 5 (12.8%) |
secondary or higher | 8 (25.8%) | 11 (29.7%) | 11 (28.2%) | 11 (28.2%) |
university degree | 18 (58.1%) | 19 (51.4%) | 20 (51.3%) | 20 (51.3%) |
master’s degree or higher | 3 (9.7%) | 3 (8.1%) | 3 (7.7%) | 3 (7.7%) |
Household monthly income (%) | ||||
less than 2000 | 1 (3.2%) | 4 (10.8%) | 4 (10.3%) | 3 (7.7%) |
2000 to 4999 | 10 (32.3%) | 13 (35.1%) | 13 (33.3%) | 12 (30.8%) |
5000 to 9999 | 15 (48.4%) | 12 (32.4%) | 14 (35.9%) | 15 (38.5%) |
10,000 and above | 5 (16.1%) | 8 (21.6%) | 8 (20.5%) | 9 (23.1%) |
Variable | CG | (2) – (1) | IG 1 | (5) – (4) | IG 2 | (8) – (7) | IG 3 | (11) – (10) | (6) – (3) | (9) – (3) | (12) – (3) | (9) – (6) | (12) – (6) | (12) – (9) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | p-value H:(2) = (1) | T1 | T2 | p-value H:(5) = (4) | T1 | T2 | p-value H:(8) = (7) | T1 | T2 | p-value H:(11) = (10) | p-value H:(6) = (3) | p-value H:(9) = (3) | p-value H:(12) = (3) | p-value H:(9) = (6) | p-value H:(12) = (6) | p-value H:(12) = (9) | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) | |
Timefoot | 3.7 | 3.7 | 0 (1) | 3.72 | 3.75 | +0.03 (0.782) | 3.71 | 4.1 | +0.39 ** (0.015) | 3.75 | 4.4 | +0.65 *** (0.000) | +0.03 | +0.39 *** | +0.65 *** | +0.36 ** | +0.62 *** | +0.26 |
Tripfoot | 5.32 | 5.26 | −0.06 (0.572) | 5.35 | 5.14 | −0.21 (0.153) | 5.3 | 4.84 | −0.46 ** (0.026) | 5.38 | 4.67 | −0.71 *** (0.002) | −0.15 | −0.4 *** | −0.65 *** | −0.25 | −0.5 *** | −0.25 |
TTfoot | −0.222 | −0.627 | 0.181 | 0.373 | ||||||||||||||
Timebicycle | 3.08 | 3.03 | −0.05 (0.605) | 3.11 | 3.14 | +0.03 (0.715) | 3.17 | 3.48 | +0.31 ** (0.046) | 3.15 | 3.47 | +0.32 ** (0.039) | +0.08 | +0.34 ** | +0.36 ** | +0.26 | +0.28 | +0.02 |
Tripbicycle | 2.95 | 2.95 | 0(1) | 2.9 | 2.82 | −0.08 (0.550) | 2.96 | 2.77 | −0.19 (0.250) | 3.01 | 2.54 | −0.47 ** (0.041) | −0.08 | −0.19 | −0.47 *** | −0.11 | −0.39 *** | −0.28 |
TTbicycle | −0.148 | −0.164 | 0.256 | −0.668 | ||||||||||||||
Timecar | 4.6 | 4.62 | +0.02 (0.897) | 4.62 | 4.56 | −0.06 (0.803) | 4.56 | 4.14 | −0.42 ** (0.017) | 4.59 | 4.13 | −0.46 *** (0.009) | −0.08 | −0.44 *** | −0.48 *** | −0.36 ** | −0.4 *** | −0.04 |
Tripcar | 4.46 | 4.49 | +0.03 (0.821) | 4.42 | 4.4 | −0.02 (0.921) | 4.51 | 4.05 | −0.46 *** (0.007) | 4.45 | 3.98 | −0.47 ** (0.011) | −0.05 | −0.49 *** | −0.5 *** | −0.44 *** | −0.45 *** | −0.01 |
TTcar | 0.228 | −0.356 | −3.799 | −3.988 | ||||||||||||||
TTsum | −0.142 | −1.148 | −3.361 | −4.283 |
Model (n = 115) | Unstandardized Coefficient | t | Sig. | Collinearity Statistics | |||
---|---|---|---|---|---|---|---|
Beta | Std. Error | Tolerance | VIF | ||||
DTimefoot (R2 = 0.308, Durbin–Watson = 1.763) | Constant | 3.604 | 0.757 | 4.764 | 0.000 | ||
Severity | 0.641 | 0.143 | 4.494 | 0.000 | 0.89 | 1.124 | |
Reward | −0.321 | 0.142 | −2.132 | 0.035 | 0.89 | 1.124 | |
Self-efficacy | 0.695 | 0.248 | 2.741 | 0.008 | 0.900 | 1.112 | |
Household monthly income | −0.388 | 0.13 | −2.973 | 0.004 | 0.89 | 1.124 | |
DTripfoot (R2 = 0.251, Durbin–Watson = 2.423) | Constant | 3.194 | 0.911 | 3.508 | 0.001 | ||
Response Cost | −0.494 | 0.14 | −3.527 | 0.001 | 0.865 | 1.156 | |
Gender 1 | −1.222 | 0.357 | −3.422 | 0.001 | 0.892 | 1.121 | |
Education | −0.583 | 0.253 | −2.31 | 0.025 | 1.865 | 1.156 | |
DTimebicycle (R2 = 0.326, Durbin–Watson = 2.067) | Constant | −2.537 | 0.906 | −2.8 | 0.007 | ||
Self-efficacy | 0.383 | 0.118 | 3.253 | 0.002 | 0.725 | 1.38 | |
Severity | 0.473 | 0.153 | 3.094 | 0.003 | 0.755 | 1.325 | |
Age | 0.67 | 0.246 | 2.728 | 0.009 | 0.946 | 1.058 | |
DTripbicycle (R2 = 0.369, Durbin-Watson = 2.616) | Constant | 1.533 | 1.113 | 1.378 | 0.175 | ||
Severity | 1.013 | 0.258 | 3.927 | 0.000 | 0.468 | 2.138 | |
Gender | −0.839 | 0.321 | −2.616 | 0.012 | 0.98 | 1.02 | |
Children under the age of 16 2 | −0.784 | 0.317 | −2.474 | 0.017 | 0.924 | 1.082 | |
DTimecar (R2 = 0.565, Durbin–Watson = 2.393) | Constant | −2.076 | 0.828 | −2.507 | 0.016 | ||
Self-efficacy | −0.937 | 0.134 | −7.006 | 0.000 | 0.576 | 1.735 | |
Response Efficacy | −0.772 | 0.16 | −4.83 | 0.000 | 0.558 | 1.791 | |
Reward | 0.437 | 0.147 | 2.978 | 0.004 | 0.830 | 1.204 | |
Gender 1 | 0.5 | 0.248 | 2.02 | 0.048 | 0.956 | 1.046 | |
DTripcar (R2 = 0.681, Durbin–Watson = 2.039) | Constant | 1.466 | 0.694 | 2.111 | 0.000 | ||
Reward | 0.521 | 0.103 | 5.062 | 0.000 | 0.792 | 1.263 | |
Response cost | 0.31 | 0.074 | 4.04 | 0.000 | 0.862 | 1.16 | |
Self-efficacy | −0.277 | 0.08 | −3.456 | 0.001 | 0.751 | 1.332 | |
Children under the age of 16 2 | 0.762 | 0.173 | 4.415 | 0.000 | 0.846 | 1.182 | |
Gender 1 | 0.426 | 0.173 | 2.454 | 0.018 | 0.911 | 1.097 |
DTimefoot | DTripfoot | DTimebicycle | DTripbicycle | DTimecar | DTripcar | |
---|---|---|---|---|---|---|
Threat Appraisal | ||||||
Vulnerability | - | - | - | - | - | - |
Severity | Positive *** (H2a support) | - | Positive *** (H2a support) | Positive *** (H2a support) | - | - |
Reward | Negative ** (H3a support) | - | - | - | Positive *** (H3b support) | Positive *** (H3b support) |
Coping Appraisal | ||||||
Response efficacy | - | - | - | - | Negative *** (H4b support) | - |
Self-efficacy | Positive *** (H5a support) | - | Positive *** (H5a support) | - | Negative *** (H5b support) | Negative ** (H5b support) |
Response cost | - | Negative ** (H6a support) | - | - | - | Positive *** (H6b support) |
Variable | CG | IG 1 | IG 2 | IG 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T3 | Exact P (2-Sided) H:(2) = (1) | T1 | T3 | Exact P (2-Sided) H:(4) = (3) | T1 | T3 | Exact P (2-Sided) H:(6) = (5) | T1 | T3 | Exact P (2-Sided) H:(8) = (7) | |
(1) | (2) | (2) − (1) | (3) | (4) | (4) − (3) | (5) | (6) | (6) − (5) | (7) | (8) | (8) − (7) | |
Timefoot | 3.7 | 3.4 | −0.3 | 3.72 | 3.5 | −0.22 | 3.71 | 3.89 | 0.14 | 3.75 | 3.92 | 0.17 |
Tripfoot | 5.32 | 4.6 | −0.72 * | 5.35 | 4.7 | −0.65 * | 5.3 | 4.46 | −0.84 ** | 5.38 | 4.5 | −0.88 ** |
−4.044 | −3.452 | −2.314 | −2.535 | |||||||||
Timebicycle | 3.08 | 2.2 | −0.88 ** | 3.11 | 2 | −1.11 *** | 3.17 | 2.2 | −0.97 *** | 3.15 | 2.1 | −1.05 *** |
Tripbicycle | 2.95 | 1.4 | −1.55 *** | 2.9 | 1.5 | −1.4 *** | 2.96 | 1.6 | −1.36 *** | 3.01 | 1.5 | −1.51 *** |
−6.006 | −6.019 | −5.863 | −6.332 | |||||||||
Timecar | 4.6 | 5.2 | 0.6 * | 4.62 | 5.2 | 0.58 * | 4.56 | 5.13 | 0.57 * | 4.59 | 5.17 | 0.58 * |
Tripcar | 4.46 | 4.2 | −0.26 | 4.42 | 4.1 | −0.32 | 4.51 | 4.1 | −0.41 * | 4.45 | 4.08 | −0.37 |
1.324 | 0.899 | 0.467 | 0.668 | |||||||||
−8.726 | −8.572 | −7.71 | −8.199 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Long, R.; Yang, L.; Zhu, J.; Engeda Birhane, G. Experimental Evaluation of Information Interventions to Encourage Non-Motorized Travel: A Case Study in Hefei, China. Sustainability 2020, 12, 6201. https://doi.org/10.3390/su12156201
Geng J, Long R, Yang L, Zhu J, Engeda Birhane G. Experimental Evaluation of Information Interventions to Encourage Non-Motorized Travel: A Case Study in Hefei, China. Sustainability. 2020; 12(15):6201. https://doi.org/10.3390/su12156201
Chicago/Turabian StyleGeng, Jichao, Ruyin Long, Li Yang, Junqi Zhu, and Getnet Engeda Birhane. 2020. "Experimental Evaluation of Information Interventions to Encourage Non-Motorized Travel: A Case Study in Hefei, China" Sustainability 12, no. 15: 6201. https://doi.org/10.3390/su12156201
APA StyleGeng, J., Long, R., Yang, L., Zhu, J., & Engeda Birhane, G. (2020). Experimental Evaluation of Information Interventions to Encourage Non-Motorized Travel: A Case Study in Hefei, China. Sustainability, 12(15), 6201. https://doi.org/10.3390/su12156201