A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems
Abstract
:1. Introduction
- The stability of the system voltage and frequency is improved by prioritizing the loads based on their stability index so that more unstable load buses are disconnected on priority.
- Mathematical modeling-based strategy for optimal selection of loads from unstable and non-critical loads to be shed using MILP to improve frequency response with minimum frequency overshoot during islanded operation of the distribution system connected with the DGs.
2. Methodology
- Average system frequency calculation module
- Power imbalance calculation module
- Stability index calculation module
- Intelligent load shedding module
2.1. Average System Frequency Calculation Module
2.2. Power Imbalance Calculation Module (PICM)
2.3. Stability Index Calculation Module (SICM)
2.4. Intelligent Load Shedding Module (ILSM)
- (1)
- A combination of only non-critical and more unstable loads will be shed if the power mismatch is less than the total non-critical load in the system.
- (2)
- If the power mismatch is more than the total amount of non-critical loads in the system, the module will shed an optimal combination of more unstable non-critical and semi-critical loads to match the power imbalance in the system. However, non-critical loads will be shed on priority.
- (3)
- Lastly, if the power imbalance is more than the amount of non-critical plus the semi-critical loads, all the non-critical and semi-critical loads will be shed and an optimal combination of critical loads will be determined for balancing the load and supply. It is a better solution to disconnect a few of the critical loads instead of total blackout in case of extreme contingency.
3. Test System Modeling
Conventional and Adaptive Technique Modeling
4. Results
- Scenario I: Islanding and DG-tripping events were simulated in this scenario for the 28-bus system to compare the system frequency response (SFR) of the proposed technique with two adaptive techniques, one based on an exhaustive search tool [28] to locate an optimal combination of loads and other based on stability index calculation [27] to disconnect unstable loads on priority.
- Scenario II: An overloading event was simulated in an islanded system for the 28-bus system to compare the SFR for conventional, Adaptive-I, Adaptive-II, and proposed techniques to validate the effectiveness.
4.1. Scenario I
4.1.1. Islanding Event
4.1.2. DG Tripping in an Islanded System
4.2. Scenario II
4.3. Scenario III
4.3.1. Islanding Event (69-Bus System)
4.3.2. DG-Tripping Event (69-Bus System)
5. Discussions
5.1. Islanding Event
5.2. DG Tripping in Islanded System
6. Conclusions
7. Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Hi | Inertia constant of the ith generator |
M | Number of DGs connected in the system |
N | Total number of loads in the system |
PDGi | Total dispatched power of DGi |
MaxDGi | Maximum generation capacity of DGi |
d(fsys)/dt | Rate of change of the system frequency |
Pi, Qi, Ri, and Xi, | Active power, reactive power, resistance, and reactance, respectively |
NCL, SCL, and CL | Non-critical, semi-critical, and critical load sets, respectively |
w | Dummy variable for MILP problem |
α, β, and γ | Coefficients of the linear problem for load priority and optimization |
fn | Nominal frequency |
SIi | Stability index of ith load |
PSR | Total spinning reserves |
xi | Load’s circuit breaker status |
∆P | Power imbalance |
PLi | Real-time load value at bus i |
fi | Frequency of ith generator |
Vsi | Sending end voltage for the ith bus |
δ | Coefficient of dummy variable |
References
- Xu, T.P.D.; Li, Z.; Shieh, S.S.; Jang, S.S. Efficiency improvement of cogeneration system using statistical model. Energy Convers. Manag. 2013, 68, 169–176. [Google Scholar]
- Williams, J.H.; DeBenedictis, A.; Ghanadan, R.; Mahone, A.; Moore, J.; Morrow, W.R., III; Price, S.; Torn, M.S. The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity. Science 2012, 335, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Narula, K.; Nagai, Y.; Pachauri, S. The role of Decentralized Distributed Generation in achieving universal rural electrification in South Asia by 2030. Energy Policy 2012, 47, 345–357. [Google Scholar] [CrossRef]
- Silva, M.; Morais, H.; Vale, Z. An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation. Energy Convers. Manag. 2012, 64, 273–288. [Google Scholar] [CrossRef] [Green Version]
- Barker, P.P.; Mello, R.W.D. Determining the impact of distributed generation on power systems. I. Radial distribution systems. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA, 16–20 July 2000; pp. 1645–1656. [Google Scholar]
- Azmy, A.M.; Erlich, I. Impact of distributed generation on the stability of electrical power system. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005; pp. 1056–1063. [Google Scholar]
- Xypolytou, E.; Gawlik, W.; Zseby, T.; Fabini, J. Impact of Asynchronous Renewable Generation Infeed on Grid Frequency: Analysis Based on Synchrophasor Measurements. Sustainability 2018, 10, 1605. [Google Scholar] [CrossRef] [Green Version]
- Lopes, J.A.P.; Moreira, C.L.; Madureira, A.G. Defining control strategies for MicroGrids islanded operation. IEEE Trans. Power Syst. 2006, 21, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Girgis, A.A.; Ham, F.M. A New FFT-Based Digital Frequency Relay for Load Shedding. IEEE Trans. Power Syst. 1982, 2, 433–439. [Google Scholar] [CrossRef]
- Anderson, P.M.; Mirheydar, M. An adaptive method for setting underfrequency load shedding relays. IEEE Trans. Power Syst. 1992, 7, 647–655. [Google Scholar] [CrossRef]
- Jiang, H.; Yan, G.; Ji, H.; Liu, L.; Shan, D. An improved under frequency load shedding scheme based on rate of change of frequency. In Proceedings of the International Conference on Electrical and Control. Engineering (ICECE), Wuhan, China, 25–27 June 2010; pp. 292–3295. [Google Scholar]
- Rafinia, A.; Moshtagh, J.; Rezaei, N. Stochastic optimal robust design of a new multi-stage under-frequency load shedding system considering renewable energy sources. Int. J. Electr. Power Energy Syst. 2020, 118, 105735. [Google Scholar] [CrossRef]
- Chuvychin, V.N.; Gurov, N.S.; Venkata, S.S.; Brown, R.E. An adaptive approach to load shedding and spinning reserve control during underfrequency conditions. IEEE Trans. Power Syst. 1996, 11, 1805–1810. [Google Scholar] [CrossRef]
- Ford, J.J.; Bevrani, H.; Ledwich, G. Adaptive load shedding and regional protection. Int. J. Electr. Power Energy Syst. 2009, 31, 611–618. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, L.; Wu, K.; Liu, W.; Zhou, J. Minimum load-shedding calculation approach considering loads difference. In Proceedings of the IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Kuala Lampur, Malaysia, 20–23 May 2014; pp. 344–348. [Google Scholar]
- Nourollah, S.; Aminifar, F.; Gharehpetian, G.B. A Hierarchical Regionalization-Based Load Shedding Plan to Recover Frequency and Voltage in Microgrid. IEEE Trans. Smart Grid. 2019, 10, 3818–3827. [Google Scholar] [CrossRef]
- Hooshmand, R.; Moazzam, M.I. Optimal design of adaptive under frequency load shedding using artificial neural networks in isolated power system. Int. J. Electr. Power Energy Syst. 2012, 42, 220–228. [Google Scholar] [CrossRef]
- Santos, A.Q.; Monaro, R.; Coury, D.; Oleskovicz, M. Real-time closed loop system controlled by an Artificial Neural Network for estimation of the optimal load shedding. In Proceedings of the 12th IET International Conference on Developments in Power System Protection, Copenhagen, Denmark, 31 March–3 April 2014. [Google Scholar]
- Moazzami, M.; Khodabakhshian, A.; Hooshmand, R.-A. A New Optimal Under-frequency Load-shedding Method Using Hybrid Culture–Particle Swarm Optimization–Co-evolutionary Algorithm and Artificial Neural Networks. Electr. Power Compon. Syst. 2015, 43, 69–82. [Google Scholar] [CrossRef]
- Amraee, T.; Darebaghi, M.G.; Soroudi, A.; Keane, A. Probabilistic under frequency load shedding considering rocof relays of distributed generators. IEEE Trans. Power Syst. 2018, 33, 3587–3598. [Google Scholar] [CrossRef] [Green Version]
- Çimen, H.; Aydın, M. Optimal Load Shedding Strategy for Selçuk University Power System with Distributed Generation. Procedia-Soc. Behav. Sci. 2015, 195, 2376–2381. [Google Scholar] [CrossRef] [Green Version]
- Khezri, R.; Golshannavaz, S.; Vakili, R.; Memar-Esfahani, B. Multi-layer fuzzy-based under-frequency load shedding in back-pressure smart industrial microgrids. Energy 2017, 132, 96–105. [Google Scholar] [CrossRef]
- Alhelou, H.H.; Hamedani-Golshan, M.E.; Njenda, T.C.; Siano, P. Wide-area measurement system-based optimal multi-stage under-frequency load-shedding in interconnected smart power systems using evolutionary computing techniques. Appl. Sci. 2019, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.Q.; Shaker, H.R.; Jørgensen, B.N. A Holistic Fuzzy Measure for Load Priority in Under Frequency Load Shedding Schemes. In Proceedings of the International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat-Kenitra, Morocco, 21–23 November 2018; pp. 1–6. [Google Scholar]
- López, K.; Pérez, S.; Rodríguez, L. Optimal under voltage load shedding based on voltage stability index. Ing. Investig. 2016, 36, 43–50. [Google Scholar]
- Yusof, N.A.; Rosli, H.M.; Mokhlis, H.; Karimi, M.; Selvaraj, J.; Sapari, N.M. A new under-voltage load shedding scheme for islanded distribution system based on voltage stability indices. IEEE Trans. Power Syst. 2017, 12, 665–675. [Google Scholar] [CrossRef]
- Laghari, J.A.; Mokhlis, H.; Karimi, M.; Bakar, A.H.A.; Mohamad, H. A New Under-Frequency Load Shedding Technique Based on Combination of Fixed and Random Priority of Loads for Smart Grid Applications. IEEE Trans. Power Syst. 2015, 30, 2507–2515. [Google Scholar] [CrossRef]
- Dreidy, M.; Mokhlis, H.; Mekhilef, S.J.E. Application of meta-heuristic techniques for optimal load shedding in islanded distribution network with high penetration of solar PV generation. Energies 2017, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Laghari, J.A.; Mokhlis, H.; Bakar, A.H.A.; Mohamad, H. Application of computational intelligence techniques for load shedding in power systems: A review. Energy Convers. Manag. 2013, 75, 130–140. [Google Scholar] [CrossRef]
- Chakravorty, M.; Das, D. Voltage stability analysis of radial distribution networks. Int. J Electr. Power Energy Syst. 2001, 23, 129–135. [Google Scholar] [CrossRef]
- Muhammad, M.A.; Mokhlis, H.; Naidu, K.; Amin, A.; Franco, J.F.; Othman, M. Distribution Network Planning Enhancement via Network Reconfiguration and DG Integration using Dataset Approach and Water Cycle Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 86–93. [Google Scholar] [CrossRef]
Load Ranking | Bus No. | Load | Load Ranking | Bus No. | Load | ||
---|---|---|---|---|---|---|---|
P (MW) | Q (MVAR) | P (MW) | Q (MVAR) | ||||
1 | 1050 | 0.044 | 0.04 | 11 | 1046 | 0.32 | 0.16 |
2 | 1013 | 0.069 | 0.042 | 12 | 1141 | 0.22 | 0.214 |
3 | 1047 | 0.059 | 0.088 | 13 | 1064 | 0.22 | 0.192 |
4 | 1026 | 0.091 | 0.028 | 14 | 1057 | 0.46 | 0.125 |
5 | 1012 | 0.314 | 0.125 | 15 | 1058 | 0.385 | 0.213 |
6 | 1010 | 0.45 | 0.08 | 16 | 1154 | 0.315 | 0.126 |
7 | 1039 | 0.4532 | 0.244 | 17 | 1004 | 0.33 | 0.128 |
8 | 1020 | 0.078 | 0.06 | 18 | 1151 | 0.455 | 0.106 |
9 | 1019 | 0.22 | 0.14 | 19 | 1056 | 0.595 | 0.344 |
10 | 1018 | 0.2 | 0.12 | 20 | 1029 | 0.532 | 0.425 |
Load Rank | Bus No. | P (MW) | Q (MVAR) | Load Rank | Bus No. | P (MW) | Q (MVAR) | Load Rank | Bus No. | P (MW) | Q (MVAR) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 6 | 2.6 | 2.2 | 17 | 26 | 14 | 10 | 33 | 49 | 384.7 | 274.5 |
2 | 7 | 40.4 | 30 | 18 | 27 | 14 | 10 | 34 | 50 | 384.7 | 274.5 |
3 | 8 | 75 | 54 | 19 | 28 | 26 | 18.6 | 35 | 51 | 40.5 | 28.3 |
4 | 9 | 30 | 22 | 20 | 29 | 26 | 18.6 | 36 | 52 | 3.6 | 2.7 |
5 | 10 | 28 | 19 | 21 | 33 | 14 | 10 | 37 | 53 | 4.35 | 3.5 |
6 | 11 | 145 | 104 | 22 | 34 | 9.5 | 14 | 38 | 54 | 26.4 | 19 |
7 | 12 | 145 | 104 | 23 | 35 | 6 | 4 | 39 | 55 | 24 | 17.2 |
8 | 13 | 8 | 5 | 24 | 36 | 26 | 18.6 | 40 | 59 | 100 | 72 |
9 | 14 | 8 | 5.5 | 25 | 37 | 26 | 18.55 | 41 | 61 | 1244 | 888 |
10 | 16 | 45.5 | 30 | 26 | 39 | 24 | 17 | 42 | 62 | 32 | 23 |
11 | 17 | 60 | 35 | 27 | 40 | 24 | 17 | 43 | 64 | 227 | 162 |
12 | 18 | 60 | 35 | 28 | 41 | 1.2 | 1 | 44 | 65 | 59 | 42 |
13 | 20 | 1 | 0.6 | 29 | 43 | 6 | 4.3 | 45 | 66 | 18 | 13 |
14 | 21 | 114 | 81 | 30 | 45 | 39.22 | 26.3 | 46 | 67 | 18 | 13 |
15 | 22 | 5 | 3.5 | 31 | 46 | 39.22 | 26.3 | 47 | 68 | 28 | 20 |
16 | 24 | 28 | 20 | 32 | 48 | 79 | 56.4 | 48 | 69 | 28 | 20 |
DG | Bus No. | P (MW) | Q (MVAR) |
---|---|---|---|
Hydro 1 | 11 | 0.79 | 0.54 |
Hydro 2 | 49 | 0.86 | 0.62 |
Biomass | 61 | 1.59 | 1.13 |
Loads Ranked | Bus No. | P (MW) |
---|---|---|
a | 1050 | 0.044 |
b | 1013 | 0.069 |
c | 1047,1026 | 0.15 |
d | 1012 | 0.314 |
e | 1010,1039 | 0.903 |
f | 1020, 1019, 1018, 1046 | 0.818 |
g | 1141 | 0.22 |
h | 1064 | 0.22 |
Sr. No | Proposed | Adaptive-I | Adaptive-II | Conventional | ||||
---|---|---|---|---|---|---|---|---|
Rank | Stability | Rank | Stability | Rank | Stability | Rank | Stability | |
1 | 7 | 0.0757 | 7 | 0.0757 | 7 | 0.0757 | 7 | 0.0757 |
2 | 6 | 0.1686 | 6 | 0.1686 | 6 | 0.1686 | 6 | 0.1686 |
3 | 11 | 0.236 | 11 | 0.236 | 11 | 0.236 | 11 | 0.236 |
4 | 9 | 0.313 | 9 | 0.313 | 9 | 0.313 | 9 | 0.313 |
5 | 10 | 0.3161 | 10 | 0.3161 | 10 | 0.3161 | 10 | 0.3161 |
6 | 2 | 0.3267 | 2 | 0.3267 | 2 | 0.3267 | 2 | 0.3267 |
7 | 1 | 0.3336 | 1 | 0.3336 | 1 | 0.3336 | 1 | 0.3336 |
8 | 4 | 0.3448 | 4 | 0.3448 | 4 | 0.3448 | 4 | 0.3448 |
9 | 8 | 0.3491 | 8 | 0.3491 | 8 | 0.3491 | 8 | 0.3491 |
10 | 5 | 0.3619 | 5 | 0.3619 | 5 | 0.3619 | 5 | 0.3619 |
11 | 3 | 0.4244 | 3 | 0.4244 | 3 | 0.4244 | 3 | 0.4244 |
12 | 14 | 0.1975 | 14 | 0.1975 | 14 | 0.1975 | 14 | 0.1975 |
13 | 15 | 0.2487 | 15 | 0.2487 | 15 | 0.2487 | 15 | 0.2487 |
14 | 16 | 0.2644 | 16 | 0.2644 | 16 | 0.2644 | 16 | 0.2644 |
15 | 13 | 0.2964 | 13 | 0.2964 | 13 | 0.2964 | 13 | 0.2964 |
16 | 12 | 0.4083 | 12 | 0.4083 | 12 | 0.4083 | 12 | 0.4083 |
17 | 18 | 0.0874 | 18 | 0.0874 | 18 | 0.0874 | 18 | 0.0874 |
18 | 17 | 0.2291 | 17 | 0.2291 | 17 | 0.2291 | 17 | 0.2291 |
19 | 20 | 0.2318 | 20 | 0.2318 | 20 | 0.2318 | 20 | 0.2318 |
20 | 19 | 0.2842 | 19 | 0.2842 | 19 | 0.2842 | 19 | 0.2842 |
Parameters | Islanding Event | DG-Tripping Event | ||||||
---|---|---|---|---|---|---|---|---|
Prop | Adap-I | Adap-II | Conv | Prop | Adap-I | Adap-II | Conv | |
Power imbalance (MW) | 0.39 | 0.39 | 0.39 | 0.39 | 1.891 | 1.891 | 1.891 | 1.89 |
Load shed amount (MW) | 0.38 | 0.32 | 0.453 | 0.57 | 1.890 | 2.071 | 2.304 | 2.127 |
Excessive load shed (MW) | −0.001 | −0.007 | 0.063 | 0.18 | −0.001 | 0.18 | 0.414 | 0.237 |
Loads switched off | 2, 11 | b, d | 7 | 1–5 | 1, 4, 5, 6, 7, 10, 15 | a–g | 1–11,14 | 1–13 |
Frequency undershoot (Hz) | 49.453 | 49.452 | 49.48 | 49.1 | 48.8 | 49 | 48.86 | 48.54 |
Frequency overshoot (Hz) | - | - | 50.28 | 50.5 | - | 50.28 | 53.6 | 51.7 |
Sr. No | Proposed | Adaptive-I | Adaptive-II | Conventional | ||||
---|---|---|---|---|---|---|---|---|
Rank | Stability | Rank | Stability | Rank | Stability | Rank | Stability | |
1 | 2 | - | 2 | - | 7 | - | 1 | - |
2 | 11 | - | 5 | - | 6 | 0.1667 | 2 | - |
3 | 7 | 0.0749 | 7 | 0.0749 | 11 | 0.2393 | 4 | - |
4 | 6 | 0.1667 | 6 | 0.1667 | 9 | 0.3186 | 5 | - |
5 | 9 | 0.3186 | 11 | 0.2393 | 1 | 0.3206 | 3 | - |
6 | 1 | 0.3206 | 9 | 0.3186 | 10 | 0.3214 | 7 | 0.0749 |
7 | 10 | 0.3214 | 1 | 0.3206 | 2 | 0.3395 | 6 | 0.1667 |
8 | 4 | 0.3488 | 10 | 0.3214 | 4 | 0.3488 | 11 | 0.2393 |
9 | 8 | 0.3555 | 4 | 0.3488 | 8 | 0.3555 | 9 | 0.3186 |
10 | 5 | 0.3783 | 8 | 0.3555 | 5 | 0.3783 | 10 | 0.3214 |
11 | 3 | 0.4287 | 3 | 0.4287 | 3 | 0.4287 | 8 | 0.3555 |
12 | 14 | 0.1894 | 14 | 0.1894 | 14 | 0.1894 | 14 | 0.1894 |
13 | 15 | 0.2465 | 15 | 0.2465 | 15 | 0.2465 | 15 | 0.2465 |
14 | 16 | 0.2504 | 16 | 0.2504 | 16 | 0.2504 | 16 | 0.2504 |
15 | 13 | 0.2906 | 13 | 0.2906 | 13 | 0.2906 | 13 | 0.2906 |
16 | 12 | 0.4234 | 12 | 0.4234 | 12 | 0.4234 | 12 | 0.4234 |
17 | 18 | 0.0851 | 18 | 0.0851 | 18 | 0.0851 | 18 | 0.0851 |
18 | 20 | 0.2225 | 20 | 0.2225 | 20 | 0.2225 | 20 | 0.2225 |
19 | 17 | 0.2404 | 17 | 0.2404 | 17 | 0.2404 | 17 | 0.2404 |
20 | 19 | 0.285 | 19 | 0.285 | 19 | 0.285 | 19 | 0.285 |
Sr. No | Proposed | Adaptive-I | Adaptive-II | Conventional | ||||
---|---|---|---|---|---|---|---|---|
Rank | Stability | Rank | Stability | Rank | Stability | Rank | Stability | |
1 | 2 | - | 2 | - | 7 | - | 1 | - |
2 | 11 | - | 5 | - | 6 | 0.1689 | 2 | - |
3 | 7 | 0.0762 | 7 | 0.0762 | 11 | 0.2339 | 3 | - |
4 | 6 | 0.1689 | 6 | 0.1689 | 9 | 0.312 | 4 | - |
5 | 9 | 0.312 | 11 | 0.2339 | 10 | 0.3151 | 5 | - |
6 | 10 | 0.3151 | 9 | 0.312 | 2 | 0.3272 | 7 | 0.0762 |
7 | 1 | 0.3311 | 10 | 0.3151 | 1 | 0.3311 | 6 | 0.1689 |
8 | 4 | 0.3424 | 1 | 0.3311 | 4 | 0.3424 | 11 | 0.2339 |
9 | 8 | 0.3483 | 4 | 0.3424 | 8 | 0.3483 | 9 | 0.312 |
10 | 5 | 0.3631 | 8 | 0.3483 | 5 | 0.3631 | 10 | 0.3151 |
11 | 3 | 0.4216 | 3 | 0.4216 | 3 | 0.4216 | 8 | 0.3483 |
12 | 14 | 0.1941 | 14 | 0.1941 | 14 | 0.1941 | 14 | 0.1941 |
13 | 15 | 0.2437 | 15 | 0.2437 | 15 | 0.2437 | 15 | 0.2437 |
14 | 16 | 0.2615 | 16 | 0.2615 | 16 | 0.2615 | 16 | 0.2615 |
15 | 13 | 0.2959 | 13 | 0.2959 | 13 | 0.2959 | 13 | 0.2959 |
16 | 12 | 0.409 | 12 | 0.409 | 12 | 0.409 | 12 | 0.409 |
17 | 18 | 0.0875 | 18 | 0.0875 | 18 | 0.0875 | 18 | 0.0875 |
18 | 17 | 0.2295 | 17 | 0.2295 | 17 | 0.2295 | 17 | 0.2295 |
19 | 20 | 0.2301 | 20 | 0.2301 | 20 | 0.2301 | 20 | 0.2301 |
20 | 19 | 0.2804 | 19 | 0.2804 | 19 | 0.2804 | 19 | 0.2804 |
Parameters | Prop | Adap-I | Adap-II | Conv |
---|---|---|---|---|
Power imbalance (MW) | 0.75 | 0.75 | 0.75 | 0.75 |
Excessive load shed (MW) | 0.001 | 0.068 | 0.02 | 0.15 |
Loads switched off | 7, 8, 9 | F | 6, 11 | 6, 7 |
Frequency undershoot (Hz) | 49.38 | 49.43 | 49.44 | 48.81 |
Frequency overshoot (Hz) | 50.07 | 50.09 | 50.33 | 50.87 |
Parameters | Islanding Event | DG Tripping Event | ||||
---|---|---|---|---|---|---|
Prop | Adap-II | Adap-I | Prop | Adap-II | Adap-I | |
Power imbalance (MW) | 0.563 | 0.563 | 0.563 | 0.797 | 0.797 | Blackout |
Excessive load shed (MW) | 0 | 0.031 | Blackout | 0 | 0.125 | |
Loads switched off | 3, 4, 6, 7, 14, 16, 20 | 7, 10, 11, 12, 13–24 | 2–7, 9–12, 14–17, 19–22, 24, 32, 33 | 1–31, 33, 35, 36 | ||
Frequency undershoot (Hz) | 49.42 | 49.44 | 49.39 | 49.53 | ||
Frequency overshoot (Hz) | - | 50.09 | - | 50.7 |
Sr. No | Islanding | DG Tripping | ||||||
---|---|---|---|---|---|---|---|---|
Proposed | Adaptive-II | Proposed | Adaptive-II | |||||
Rank | Stability | Rank | Stability | Rank | Stability | Rank | Stability | |
1 | 7 | 0.4995 | 7 | 0.4995 | 7 | - | 7 | - |
2 | 23 | 0.5135 | 23 | 0.5135 | 14 | - | 10 | - |
3 | 22 | 0.5179 | 22 | 0.5179 | 16 | - | 11 | - |
4 | 21 | 0.5344 | 21 | 0.5344 | 4 | - | 12 | - |
5 | 14 | 0.5399 | 14 | 0.5399 | 6 | - | 13 | - |
6 | 16 | 0.5987 | 16 | 0.5987 | 20 | - | 14 | - |
7 | 17 | 0.6075 | 17 | 0.6075 | 3 | - | 15 | - |
8 | 18 | 0.6108 | 18 | 0.6108 | 11 | 0.2039 | 16 | - |
9 | 11 | 0.6201 | 11 | 0.6201 | 23 | 0.2084 | 17 | - |
10 | 15 | 0.6276 | 15 | 0.6276 | 22 | 0.2089 | 18 | - |
11 | 13 | 0.6440 | 13 | 0.6440 | 21 | 0.2171 | 19 | - |
12 | 20 | 0.6483 | 20 | 0.6483 | 17 | 0.2233 | 20 | - |
13 | 12 | 0.6638 | 12 | 0.6638 | 18 | 0.2255 | 21 | - |
14 | 10 | 0.6731 | 10 | 0.6731 | 10 | 0.2298 | 22 | - |
15 | 24 | 0.6896 | 24 | 0.6896 | 15 | 0.2321 | 23 | - |
16 | 19 | 0.6896 | 19 | 0.6896 | 13 | 0.2332 | 24 | - |
17 | 4 | 0.7071 | 4 | 0.7071 | 12 | 0.2357 | 4 | 0.2343 |
18 | 9 | 0.7128 | 9 | 0.7128 | 9 | 0.2403 | 9 | 0.2519 |
19 | 1 | 0.7290 | 1 | 0.7290 | 8 | 0.2449 | 8 | 0.252 |
20 | 8 | 0.7310 | 8 | 0.7310 | 5 | 0.2562 | 5 | 0.2587 |
21 | 2 | 0.7348 | 2 | 0.7348 | 2 | 0.2762 | 6 | 0.2672 |
22 | 3 | 0.7538 | 3 | 0.7538 | 1 | 0.2813 | 2 | 0.2765 |
23 | 5 | 0.7704 | 5 | 0.7704 | 24 | 0.2836 | 3 | 0.2766 |
24 | 6 | 0.7848 | 6 | 0.7848 | 19 | 0.2836 | 1 | 0.2837 |
25 | 31 | 0.5748 | 31 | 0.5748 | 31 | 0.2283 | 31 | 0.2379 |
26 | 30 | 0.5806 | 30 | 0.5806 | 30 | 0.2306 | 30 | 0.2404 |
27 | 29 | 0.5974 | 29 | 0.5974 | 29 | 0.2389 | 29 | 0.249 |
28 | 28 | 0.6144 | 28 | 0.6144 | 28 | 0.2469 | 28 | 0.2574 |
29 | 27 | 0.6254 | 27 | 0.6254 | 27 | 0.2522 | 27 | 0.2629 |
30 | 26 | 0.6399 | 26 | 0.6399 | 26 | 0.2591 | 36 | 0.2673 |
31 | 25 | 0.6746 | 25 | 0.6746 | 36 | 0.267 | 26 | 0.2702 |
32 | 36 | 0.7151 | 36 | 0.7151 | 35 | 0.276 | 35 | 0.2763 |
33 | 33 | 0.7303 | 33 | 0.7303 | 25 | 0.2767 | 25 | 0.2885 |
34 | 35 | 0.7344 | 35 | 0.7344 | 33 | 0.3233 | 33 | 0.331 |
35 | 32 | 0.7825 | 32 | 0.7825 | 32 | 0.3559 | 32 | 0.3641 |
36 | 34 | 0.7989 | 34 | 0.7989 | 34 | 0.365 | 34 | 0.3733 |
Parameters | Islanding | DG Tripping | ||||
---|---|---|---|---|---|---|
Prop.St.Pr | Pro.St | Prop(W/O) Priority | Prop.St.Pr | Prop.St | Prop(W/O) Priority | |
Power imbalance (MW) | 0.39 | 0.39 | 0.39 | 1.891 | 1.891 | 1.891 |
Additional load disconnected (MW) | 0.001 | 0.001 | 0.001 | −0.001 | 0 | 0 |
Loads switched off | 2, 11 | 2, 11 | 2, 11 | 1, 4, 5, 6, 7, 10, 15 | 7, 8, 10, 14, 15, 16 | 1, 4, 6, 7, 8, 14, 16 |
Frequency undershoot (Hz) | 49.453 | 49.453 | 49.453 | 48.8 | 48.89 | 48.78 |
Frequency overshoot (Hz) | - | - | - | - | 50.03 | 50.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, S.; Mokhlis, H.; Othman, M.; Muhammad, M.A.; Laghari, J.A.; Mansor, N.N.; Mohamad, H.; Pourdaryaei, A. A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems. Sustainability 2020, 12, 6234. https://doi.org/10.3390/su12156234
Sarwar S, Mokhlis H, Othman M, Muhammad MA, Laghari JA, Mansor NN, Mohamad H, Pourdaryaei A. A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems. Sustainability. 2020; 12(15):6234. https://doi.org/10.3390/su12156234
Chicago/Turabian StyleSarwar, Sohail, Hazlie Mokhlis, Mohamadariff Othman, Munir Azam Muhammad, J. A. Laghari, Nurulafiqah Nadzirah Mansor, Hasmaini Mohamad, and Alireza Pourdaryaei. 2020. "A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems" Sustainability 12, no. 15: 6234. https://doi.org/10.3390/su12156234
APA StyleSarwar, S., Mokhlis, H., Othman, M., Muhammad, M. A., Laghari, J. A., Mansor, N. N., Mohamad, H., & Pourdaryaei, A. (2020). A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems. Sustainability, 12(15), 6234. https://doi.org/10.3390/su12156234