Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis Moench.) in Reclaimed Land, South Korea: Three-Year Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Microclimate
2.2. Biomass and Carbon Estimation
2.3. Change of Neighboring Herbaceous Vegetation
2.4. Energy Value and Pellet Criteria
2.5. Volumetric Soil Moisture Content
2.6. Soil Chemical Properties
2.7. Quantification of Photosynthetic Pigments
2.8. Measurement of Photosynthetic Gas Exchanges
2.9. Statistical Analysis
3. Results
3.1. Biomass, Carbon Storage, and CO2 Absorption
3.2. Fuel Pellet Utilization
3.3. Changes of Physical and Chemical Properties in Pedosphere
3.4. Changes in the Flora Distribution of SRC and Neighboring Vegetation
3.5. Changes of Photosynthetic Pigment Contents
3.6. Changes of Photosynthetic Gas Exchange
4. Discussion
4.1. Biomass and Bioenergy Potential on Reclaimed Land
4.2. Potential Impact of Microclimate on Photosynthetic Parameters
4.3. Successional Patterns in Flora on SRC
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Specification. | Q | Ash | N | Cl | S | As | Cd | Cr | Cu | Pb | Hg | Ni | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≥(MJ kg−1) | ≤(%) | ≤(mg kg−1) | ||||||||||||
KR | G1 | 18.0 | 0.7 | 0.3 | 0.05 | 0.05 | 1.0 | 0.5 | 10 | 10 | 10 | 0.05 | 10 | 100 |
G2 | 1.5 | 0.5 | ||||||||||||
G3 | 16.9 | 3.0 | 0.7 | |||||||||||
G4 | 6.0 | 1.0 | ||||||||||||
US | P | NA | 1.0 | NA | 0.03 | NA | ||||||||
S | 2.0 | NA | ||||||||||||
U | 6.0 | NA | ||||||||||||
EU | A1 | 16.64 | 0.7 | 0.3 | 0.02 | 0.04 | 1.0 | 0.5 | 10 | 10 | 10 | 0.1 | 10 | 100 |
A2 | 1.2 | 0.5 | 0.05 | |||||||||||
B | 2.0 | 1.0 | 0.03 |
References
- FAO. Global Forest Resources Assessment 2010: Specifications of National Reporting Tables for FRA 2010; Forest Resources Assessment Programme; United Nations Food and Agricultural Organization: Rome, Italy, 2007; p. 135. [Google Scholar]
- UNFF. United Nations Forum on Forests. 2018. Available online: http://www.un.org/esa/forests/index.html (accessed on 5 November 2016).
- Etienne, X.L.; Yu, J. Inverse price spread and illiquid trading in Korea-ETS. Carbon Manag. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Lee, J.I. A Study on the Energy Utilization of Woody Biomass; Gyeonggi Research Institute: Suwon, Korea, 2009; pp. 9–74. (In Korean) [Google Scholar]
- Lee, J.C.; Kang, K.Y. Analyses of GHG reduction effectiveness and economic feasibility in the wood pellet fuel switching project. J. Korean Wood Sci. Technol. 2013, 41, 594–605. [Google Scholar] [CrossRef] [Green Version]
- McAlpine, R.G.; Brown, C.L.; Herrick, A.M.; Ruark, H.E. Silage sycamore. Forest Farmer 1966, 26, 6–7. [Google Scholar]
- Herrick, A.M.; Brown, C.L. A new concept in cellulose production-silage sycamore. Agr. Sci. Rev. 1967, 5, 8–13. [Google Scholar]
- Schreiner, E.J. Mini-Rotation Forestry; USDA Forest Service Research: Madison, WI, USA, 1970; p. 32. [Google Scholar]
- Zsuffa, L. Hybrid poplar pulpwood production trials in South-eastern Ontario. For. Chron. 1973, 49, 125. [Google Scholar] [CrossRef] [Green Version]
- Hyun, Y.I.; Kim, J.H.; Han, Y.C.; Lee, K.J. Wood biomass production of twelve tree species in coppice plantations managed under 1-, 2- and 3- year rotations. J. Korean For. Soc. 1982, 55, 30–36, (In Korean with English abstract). [Google Scholar]
- Kim, H.C.; Yeo, J.K.; Koo, Y.B.; Shin, H.N.; Choi, J.Y.; Lee, H.H. Growth and biomass production of fast growing tree species treated with slurry composting and biofiltration liquid fertilizer. Korean J. Soil Sci. Fertil. 2011, 44, 206–214, (In Korean with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Park, P.S.; Kim, K.Y.; Jang, W.S. Comparison of seedling survival rate and growth among 8 different tree species in Seosan reclamation area. J. Korean For. Soc. 2009, 98, 496–503, (In Korean with English abstract). [Google Scholar]
- Lee, S.W.; Cheon, B.H.; Woo, S.Y.; Kim, K.H.; Han, B.H.; Jang, J.H.; Kim, J.Y.; Oh, J.S.; Kwak, M.J.; Lee, T.Y.; et al. Monitoring for Wood Biomass Production and Environmental Effect of Short Rotation Coppice Culture in Saemangeum Reclaimed Land; Korea Forest Service: Daejeon, Korea, 2015; pp. 147–166. (In Korean) [Google Scholar]
- Kaminska, A. Method for increasing the calorific value of fragmented wood biomass. Tech. Trans. 2011, 108, 97–105. [Google Scholar]
- Isebrands, J.G.; Karnosky, D.F. Environmental benefits of poplar culture. In Poplar Culture in North America; Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J., Eds.; NRC Research Press: Ottawa, Canada, 2001; pp. 207–218. [Google Scholar]
- Westphal, L.M.; Isebrands, J.G. Phytoremediation of Chicago’s Brownfields: Consideration of Ecological Approaches and Social Issues, in Brownfields Proc; North Central Research Station: Chicago, IL, USA, 2001; pp. 1–9. [Google Scholar]
- Kim, C.H.; Choi, J.H.; Lee, K.B.; Kim, H.K.; Lee, N.S. A Study on the flora and life form of the western coast reclaimed land in Korea. J. Korean Isl. Stud. 2013, 25, 213–226. (In Korean) [Google Scholar]
- Yoon, S.K.; Park, E.J.; Choi, Y.I.; Bae, E.K.; Kim, J.H.; Park, S.Y.; Kang, K.S.; Lee, H. Responses to drought and salt stress in leaves of poplar (Populus alba × Populus glandulosa): Expression profiling by oligonucleotide microarray analysis. Plant Physiol. Biochem. 2014, 84, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Korea Meteorological Administration National Climate Data Service System. Available online: https://data.kma.go.kr/tmeta/stn/selectStnDetail.do (accessed on 5 December 2017).
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 2000, 38, 171–186. [Google Scholar] [CrossRef]
- Ferdousee, N.; Kabir, A.; Ahmed, R.; Kwon, M.; Hoque, A.R.; Mohiuddin, M.; Kim, W. Water stress effects on Dipterocarpus turbinatus seedlings. For. Sci. Technol. 2010, 6, 18–23. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Dietze, M.C.; Jackson, R.B.; Phillips, R.P.; Rhoades, C.C.; Rustad, L.E.; Vose, J.M. Forest biogeochemistry in response to drought. Glob. Change Biol. 2016, 22, 2318–2328. [Google Scholar] [CrossRef]
- Salinger, M.J.; Griffiths, G.M. Trends in New Zealand daily temperature and rainfall extremes. Int. J. Climatol. 2001, 21, 1437–1452. [Google Scholar] [CrossRef]
- Macinnis-Ng, C.; Schwendenmann, L. Litterfall, carbon and nitrogen cycling in a southern hemisphere conifer forest dominated by kauri (Agathis australis) during drought. Plant Ecol. 2015, 216, 247–262. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, M.K.; Lee, W.S. An investigation of large-scale climate indices with the influence on temperature and precipitation variation in Korea. Atmosphere 2008, 18, 83–95, (In Korean with English abstract). [Google Scholar]
- Wang, H.; He, S. The north China/northeastern Asia severe summer drought in 2014. J. Clim. 2015, 28, 6667–6681. [Google Scholar] [CrossRef]
- Porteous, A.; Mullan, B. The 2012–2013 Drought: An Assessment and Historical Perspective; MPI Tech Paper; Ministry for Primary Industries, National Institute of Water and Atmospheric Research: Wellington, New Zealand, 2013; p. 57. [Google Scholar]
- Clark, A.; Tait, A. Drought, Agricultural Production and Climate Change: A Way Forward to a Better Understanding; Client Report WLG2008-33; National Institute of Water and Atmosphere: Wellington, New Zealand, 2008. [Google Scholar]
- Lee, K.B.; Xu, M.; Kim, J.D.; Jung, K.Y. Soil characteristics and utilization on reclaimed land in Jangsu Province coastal region of China. J. Korean Soc. Int. Agric. 2006, 18, 245–252, (In Korean with English abstract). [Google Scholar]
- Jang, J.H.; Woo, S.Y.; Kim, S.H.; Inkyin, K.; Kwak, M.J.; Lee, H.K.; Lee, T.Y.; Lee, W.Y. Effect of increased soil fertility and plant growth promoting rhizobacteria inoculation on biomass yield, energy value and physiological response of poplar in short rotation coppices in a reclaimed tideland: A case study in Saemangeum area of Korea. Biomass Bioenerg. 2017, 107, 29–38. [Google Scholar] [CrossRef]
- Kim, D.; Kim, M.; Kim, M.; Park, K. Improvement of Saemangeum dredged soils using coffee sludge for vegetation soil. Adv. Mater. Sci. Eng. 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Suh, K.H. Using sunshine duration to estimate photosynthetic photon flux density at Taegu, Korea. Korean J Ecol. 1996, 19, 65–70, (In Korean with English abstract). [Google Scholar]
- Shin, H.N.; Kim, H.C.; Kang, K.S.; Lee, J.C. Differences in biomass production by rotation interval and planting density in short-rotation Forestry. In Proceedings of the Annual Forestry Conference of Korean Society of Forest Science, Jeju, Korea, 8 February 2012; Korean Society of Forest Science: Seoul, Korea, 2012. [Google Scholar]
- Makkonen, K.; Helmisaari, H.S. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. For. Ecol. Manage. 1998, 102, 283–290. [Google Scholar] [CrossRef]
- Caims, M.A.; Brown, S.; Helmer, E.H.; Baumgrardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
- Noh, N.J.; Son, Y.H.; Kim, J.S.; Kim, R.H.; Seo, K.Y.; Seo, K.W.; Koo, J.W.; Kyung, J.H.; Park, I.H.; Lee, Y.J.; et al. A Study on Estimation of Biomass, Stem Density and Biomass Expansion Factor for Stand Age Classes of Japanese Larch (Larix leptolepis) Stands in Gapyeong Area. J. Korean For. BioEnergy 2006, 25, 1–8, (In Korean with English abstract). [Google Scholar]
- Han, J.S. A Study on Planting Management Method for Enlargement and Quality of CO2 Uptake by Tree in the Landfill Site of Metropolitan Area, Korea. Master’s Thesis, University of Seoul, Seoul, Korea, 2008. (In Korean with English abstract). [Google Scholar]
- Ovington, J.D. The composition of tree. Forestry 1956, 29, 22–29. [Google Scholar] [CrossRef]
- Reichle, D.E.; Dinger, B.E.; Edward, N.T.; Harris, W.F.; Sollins, P. Carbon flow and storage in a forest ecosystem. In Carbon and the Biosphere; Woodwell, G.M., Pecan, E.V., Eds.; US Atom Energy Commiss, Office of Information Services: Upton, NY, USA, 1973; pp. 345–365. [Google Scholar]
- Ajtay, G.L.; Ketner, P.; Duvigneaus, P. Terrestrial Production and Phytomass, 1st ed.; John Wiley & Sons: Chichester, UK, 1979; pp. 129–181. [Google Scholar]
- Chow, P.; Rolfe, G.L. Carbon and hydrogen contents of short rotation biomass of five hardwood species. Wood Fiber Sci. 1989, 21, 30–36. [Google Scholar]
- Jo, H.K. Carbon uptake and emissions in urban landscape, and the role of urban greenspace for several cities in Kangwon province. J. Korean Inst. Landsc. Archit. 1999, 27, 39–53. (In Korean) [Google Scholar]
- Braun-Blanquet, J. Plant Sociology: Basics of Vegetation Science; Springer: Berlin, Germany, 1965; p. 865. [Google Scholar]
- Taylor, H.C. A vegetation survey of the Cape of Good Hope nature reserve. I. The use of association-analysis and Braun-Blanquet methods. Bothalia 1984, 15, 245–258. [Google Scholar] [CrossRef]
- National Institute of Forest Science. Specifications and Quality Standards of Wood Products; National Institute of Forest Science: Seoul, Korea, 2015; pp. 98–99. (In Korean) [Google Scholar]
- Pellet Fuels Institute. Pellet Fuels Institute Standard Specification for Residential/Commercial Densified Fuel QA/QC Handbook; Pellet Fuels Institute: Arlington, VA, USA, 2011; p. 13. [Google Scholar]
- European Pellet Council. Part 3: Pellet quality requirements. In EN Plus Handbook; European Pellet Council: Brussels, Belgium, 2015; p. 7. [Google Scholar]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kung, H.Y.; Hua, J.S.; Chen, C.T. Drought forecast model and framework using wireless sensor networks. J. Inf. Sci Eng. 2006, 22, 751–769. [Google Scholar]
- Bremner, J.M. Chemical methods. In Methods of Soil Analysis; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1966; pp. 85–1122. [Google Scholar]
- Allison, L.E. Agronomy Monograph 9. In Methods of Soil Analysis: And Chemical and Microbiological Properties; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1367–1378. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pingrey, D.W. Forest Products Energy Overview: Energy and Wood Products Industry; Forest Products Research Society: Madison, WI, USA, 1976; pp. 1–14. [Google Scholar]
- Duca, D.; Riva, G.; Pedretti, E.F.; Toscano, G. Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 2014, 135, 9–14. [Google Scholar] [CrossRef]
- Fernandez, M.J.; Barro, R.; Perez, J.; Losada, J.; Ciria, P. Influence of the agricultural management practices on the yield and quality of poplar biomass (a 9-year study). Biomass Bioenerg. 2016, 93, 87–96. [Google Scholar] [CrossRef]
- Yeo, J.K.; Shin, H.N.; Kim, H.C.; Woo, K.S. Growth characteristics and adaptability of three-year-old poplar clones in a reclaimed tidal flat. J. Agricult. Life Sci. 2011, 45, 17–23. [Google Scholar]
- Klasnja, B.; Kopitovic, S.; Orlovic, S. Wood and bark of some poplar and willow clones as fuelwood. Biomass Bioenerg. 2002, 23, 427–432. [Google Scholar] [CrossRef]
- Yeo, J.K.; Woo, K.S.; Koo, Y.B.; Kim, Y.S. Growth performance and adaptability of three-year-old poplar and willow clones in a riparian area. J. Korean Soc. Environ. Res. Technol. 2007, 10, 40–50. [Google Scholar]
- Koo, Y.B.; Yeo, J.K. The status and prospect of poplar research in Korea. J. Korea For. Energy 2003, 22, 1–17. [Google Scholar]
- Manzone, M.; Calvo, A. Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy. Renew. Energy 2016, 86, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, N.; Rodríguez-Soalleiro, R.; Pérez-Cruzado, C.; Cañellas, I.; Sixto, H.; Ceulemans, R. Above-and below-ground carbon accumulation and biomass allocation in poplar short rotation plantations under Mediterranean conditions. For. Ecol. Manag. 2018, 428, 57–65. [Google Scholar] [CrossRef]
- Kim, H.C.; Lee, S.J.; Lee, W.Y.; Kang, J.W. Selection of poplar clones for short rotation coppice in a riparian area. J. Korean For. Soc. 2016, 105, 103–107, (In Korean with English abstract). [Google Scholar]
- Kim, H.C.; Shin, H.; Lee, H.H.; Yeo, J.K.; Kang, K.S. Growth response and adaptability of poplar species treated with liquid pig manure. J. Korean For. Soc. 2013, 102, 420–427, (In Korean with English abstract). [Google Scholar]
- Son, Y.M.; Kim, R.H.; Kang, J.T.; Lee, K.S.; Kim, S.W. A practical application and development of carbon emission factors for 4 major species of warm temperate forest in Korea. J. Korean For. Soc. 2014, 103, 593–598, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Osuna, J.L.; Baldocchi, D.D.; Kobayashi, H.; Dawson, T.E. Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks. Tree Physiol. 2015, 35, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009, 103, 561–579. [Google Scholar] [CrossRef] [Green Version]
- Sekhar, K.M.; Reddy, K.S.; Reddy, A.R. Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop. Photosynth. Res. 2017, 132, 151–164. [Google Scholar] [CrossRef]
- Fabio, E.S.; Smart, L.B. Effects of nitrogen fertilization in shrub willow short rotation coppice production–a quantitative review. GCB Bioenergy 2018, 10, 548–564. [Google Scholar] [CrossRef]
- Schweier, J.; Molina-Herrera, S.; Ghirardo, A.; Grote, R.; Díaz-Pinés, E.; Kreuzwieser, J.; Haas, E.; Butterbach-Bahl, K.; Rennenberg, H.; Schnitzler, J.-P.; et al. Environmental impacts of bioenergy wood production from poplar short-rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy 2017, 9, 1207–1221. [Google Scholar] [CrossRef] [Green Version]
- San Miguel, G.; Corona, B.; Ruiz, D.; Landholm, D.; Laina, R.; Tolosana, E.; Sixto, H.; Cañellas, I. Environmental, energy and economic analysis of a biomass supply chain based on a poplar short rotation coppice in Spain. J. Clean. Prod. 2015, 94, 93–101. [Google Scholar] [CrossRef]
- Kwon, K.C.; Lee, D.K. Above- and below-ground biomass and energy content of Quercus mongolica. J. Korean For. Energy 2006, 25, 31–38. [Google Scholar]
- Ovington, J.D. Quantitative ecology and the woodland ecosystem concept. Adv. Ecol. Res. 1962, 1, 103–192. [Google Scholar]
- Santatonio, D. Processing modeling of forest growth responses to environmental stress. In Modeling Growth and Production of Tree Roots; Dickson, R.K., Meldah, R.S., Ruark, G.A., Warren, W.G., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 124–141. [Google Scholar]
- Myung, S.Y.; Eon, Y.J.; Dong, J.I.; Park, Y.K.; Kang, B.S.; Jeon, J.K. Characteristics of thermal decomposition of major components of biomass isolated from wood. J. Korean Ind. Eng. Chem. 2004, 15, 896–900. [Google Scholar]
- Hann, D.W.; Weiskittel, A.R. Evaluation of alternative approaches for predicting individual tree volume increment. West J. Appl. For. 2010, 25, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Bond, B.J.; Czarnomski, N.M.; Cooper, C.; Day, M.E.; Greenwood, M.S. Developmental decline in height growth in Douglas-fir. Tree Physiol. 2007, 27, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.W.; Hamann, J.D. Individual-tree height-, diameter-and crown-width increment equations for young Douglas-fir plantations. New For. 2008, 35, 173–186. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar] [CrossRef]
- Masuda, T.; Tanaka, A.; Melis, A. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol. Biol. 2003, 51, 757–771. [Google Scholar] [CrossRef]
- Lei, Y.; Yin, C.; Li, C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol. Plantarum 2006, 127, 182–191. [Google Scholar] [CrossRef]
- Karataş, İ.; Öztürk, L.; Demir, Y.; Ünlükara, A.; Kurunç, A.; Düzdemir, O. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress. Toxicol. Ind. Health 2014, 30, 693–700. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, M.; Zhang, G.C.; Zhao, Q.K. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica 2013, 51, 370–378. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, B. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass. Crop Sci. 2001, 41, 1168–1173. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, C.; Wu, M.; Chen, G. Characterization of photosynthetic performance during reproductive stage in high-yield hybrid rice LYPJ exposed to drought stress probed by chlorophyll a fluorescence transient. Plant Growth Regul. 2017, 81, 489–499. [Google Scholar] [CrossRef]
- Sfichi-Duke, L.; Ioannidis, N.E.; Kotzabasis, K. Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress: A comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. Planta 2008, 228, 341. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Ito, H.; Tanaka, A. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. Photosynth. Res. 2015, 126, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Lei, S.; Yunzhou, Q.; Fengchou, J.; Changhai, S.; Chao, Y.; Yuxin, L.; Mengyu, L.; Baodi, D. Physiological mechanism contributing to efficient use of water in field tomato under different irrigation. Plant Soil Environ. 2009, 55, 128–133. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Weissert, L.F.; Salmond, J.A.; Schwendenmann, L. Photosynthetic CO2 uptake and carbon sequestration potential of deciduous and evergreen tree species in an urban environment. Urban Ecosyst. 2017, 20, 663–674. [Google Scholar] [CrossRef]
- Yilmaz, D.; Cannavo, P.; Séré, G.; Vidal-Beaudet, L.; Legret, M.; Damas, O.; Peyneau, P.E. Physical properties of structural soils containing waste materials to achieve urban greening. J. Soils. Sediments 2018, 18, 442–455. [Google Scholar] [CrossRef]
- Fernàndez, R.J.; Reynolds, J.F. Potential growth and drought tolerance of eight desert grasses: Lack of a trade-off? Oecologia 2000, 123, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K. Halophytes of Korea; Nature and Ecology: Seoul, Korea, 2013; pp. 331–368. (In Korean) [Google Scholar]
- Birmele, J.; Kopp, G.; Brodbeck, F.; Konold, W.; Sauter, U.H. Successional changes of phytodiversity on a short rotation coppice plantation in Oberschwaben, Germany. Front. Plant Sci. 2015, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Li, F.R.; Zhang, A.S.; Duan, S.S.; Kang, L.F. Patterns of reproductive allocation in Artemisia halodendron inhabiting two contrasting habitats. Acta Oecologica 2005, 28, 57–64. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, X.; Zhou, R.; Zuo, X.; Zhang, J.; Li, Y. Physiological acclimation of two psammophytes to repeated soil drought and rewatering. Acta Physiol. Plant 2011, 33, 79–91. [Google Scholar] [CrossRef]
- Kim, E.K. Flora and Soil Characteristics on the Reclaimed Tidal Flats in the West Coast of Korea. Ph.D. Thesis, Yonsei University, Seoul, Korea, 2005. (In Korean with English abstract). [Google Scholar]
- Oh, W.Y.; Choi, B.K. Eco-Friendly Restoration of Coastal Reclaimed Land; Landscape Architecture: Korea, Seoul, 2001; p. 108. (In Korean) [Google Scholar]
GHG 1 Reduction Project (Boiler Fuel Switching) | Investment Cost (Million USD 2) | Annual GHG Reductions (Mg CO2 Year −1) | Annual GHG Reduction Effect (kg CO2 USD−1 Year−1) | Annual Total Profit (Million USD Year−1) |
---|---|---|---|---|
From B-C oil to Wood pellet | 6.41 | 6,702 | 0.14 | 10.06 |
From B-C oil to Wood chip | 9.12 | 10,604 | 0.16 | 20.9 |
Sum | 15.54 | 17,306 | 0.30 | 30.96 |
From Kerosene to Wood pellet | 1.11 | 595 | 0.53 | 1.78 |
From Kerosene to Wood chip | 13.15 | 7,071 | 0.54 | 27.29 |
Sum | 14.26 | 7,666 | 1.07 | 29.07 |
RT * | Part of Tree | A | B | r2 |
2013 (13W) | Stem | 75.365 | 0.0796 | 0.87 |
Branch | 6.8379 | 0.1173 | 0.8167 | |
Leaf | 4.8937 | 0.0865 | 0.89 | |
Root | (aboveground biomass 1) × 0.35 a | |||
RT | Part of Tree | A | B | r2 |
2014 (14W) | Stem | 58.951 | 0.0753 | 0.93 |
Branch | 8.8832 | 0.0836 | 0.89 | |
Leaf | 4.148 | 0.0768 | 0.93 | |
Root | (aboveground biomass 1) × 0.35 a | |||
RT | Part of Tree | A | B | r2 |
2015 (15D) | Stem | 86.014 | 0.0667 | 0.93 |
Branch | 8.8055 | 0.078 | 0.85 | |
Leaf | 4.549 | 0.0825 | 0.93 | |
Root | (aboveground biomass 1) × 0.35 a |
Sites | AR (ha) | RT (Tree Age) | MH (m) | MD (cm) | Biomass (ODT (Mg) ha−1) | C (MgC ha−1) | CO2 (MgCO2 ha−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Stem | Branch | Leaf | Root | Total | |||||||
2012 a | 2.3 | 13W X (1) | 2.8 | 1.5 | 3.5 | 0.8 | 0.9 | 1.8 | 7.02 | 3.2 | 11.8 |
14W Y (2) | 4.5 | 2.9 | 14.1 | 3.1 | 1.9 | 6.6 | 25.8 | 11.8 | 43.5 | ||
15D Z (3) | 6.3 | 4.2 | 20.2 | 3.8 | 2.5 | 9.2 | 35.6 | 16.4 | 60.1 | ||
2013 b | 19 | 13W (NA) | – | ||||||||
14W (1) | 1.8 | 1.5 | 1.3 | 0.5 | 0.3 | 0.73 | 1.5 | 0.7 | 2.5 | ||
15D (2) | 2.9 | 2.6 | 1.9 | 0.4 | 0.5 | 0.9 | 3.8 | 1.7 | 6.5 | ||
2014 c | 34.3 | 13W (NA) | – | ||||||||
14W (NA) | – | ||||||||||
15D (1) | 1.3 | 1.9 | 0.6 | 0.05 | 0.2 | 0.3 | 1.2 | 0.5 | 2.0 | ||
Total | 55.6 | 3.5 | 2.9 | 2.9 | 4.2 | 3.2 | 10.5 | 40.6 | 18.7 | 68.6 |
Sites (ha) | Biomass (ODT (Mg) 2.3 ha−1) | C (MgC 2.3 ha−1) | CO2 (MgCO2 2.3 ha−1) | ||||
Stem | Branch | Leaf | Root | Total | |||
2012 a (2.3) | 46.42 | 8.68 | 5.68 | 21.25 | 81.98 | 37.71 | 138.27 |
Sites (ha) | Biomass (ODT (Mg) 19 ha−1) | C (MgC 19 ha−1) | CO2 (MgCO2 19 ha−1) | ||||
Stem | Branch | Leaf | Root | Total | |||
2013 b (19) | 36.50 | 7.75 | 9.73 | 18.89 | 72.87 | 33.52 | 122.91 |
Sites (ha) | Biomass (ODT (Mg) 34.3 ha−1) | C (MgC 34.3 ha−1) | CO2 (MgCO2 34.3 ha−1) | ||||
Stem | Branch | Leaf | Root | Total | |||
2014 c (34.3) | 20.15 | 1.76 | 8.19 | 10.54 | 40.64 | 18.69 | 68.54 |
Sites (ha) | Biomass (ODT (Mg) 55.6 ha−1) | C (MgC 55.6 ha−1) | CO2 (MgCO2 55.6 ha−1) | ||||
Stem | Branch | Leaf | Root | Total | |||
Total (55.6) | 103.07 | 18.14 | 23.59 | 50.68 | 195.49 | 89.92 | 329.72 |
Q (MJ kg−1) | Ash Content (%) | N (%) | Cl (%) | S (%) | |||
18.8–19.4 * (0.39) | 1.20–1.65 ** (0.20) | 0.79–0.94 ** (0.50) | 0.0012–0.006 * (0.00) | 0.022–0.026 * (0.00) | |||
>18.0 z | <3.0 | <1.0 | <0.05 | <0.05 | |||
As | Cd | Cr | Cu | Pb | Hg | Ni | Zn |
(mg kg−1) | |||||||
N.D a,* | 0.3–0.5 * (0.08) | 0.4 * (0.00) | 4–5 * (0.42) | 0.2–0.4 * (0.08) | N.D a,* | N.D a,* | 18–20 * (0.93) |
≤1 | ≤0.5 | ≤10 | ≤10 | ≤10 | ≤0.05 | ≤10 | ≤100 |
Sites | pH(1:5) | EC(1:5) (dS m−1) | OM (%) | CEC (cmol kg−1) |
2012 | 7.7 | 0.08 | 2.0 a | 7.9 a |
2013 | 7.4 | 0.10 | 1.16 b | 7.89 a |
2014 | 7.6 | 0.11 | 0.66 c | 7.82 a |
Sites | avail. P | T-N | NaCl | Texture |
(mg kg−1) | (%) | (%) | ||
2012 | 16.5 a | 0.16 a | 0.005 a | SiL |
2013 | 15.29 ab | 0.06 ab | 0.006 a | SiL |
2014 | 13.19 b | 0.04 ab | 0.007 a | SiL |
Sites | K | Na | Mg | Ca |
(cmol kg−1) | ||||
2012 | 0.01 | 0.01 | 0.01 | 0.01 |
2013 | 0.01 | 0.01 | 0.01 | 0.01 |
2014 | 0.01 | 0.01 | 0.01 | 0.01 |
Sites | RT (Tree Age) | Species | CL | MN | DS | F (%) | RD (%) | n (EA ha−1) |
---|---|---|---|---|---|---|---|---|
SRC2012 | 13W X (1) | Setaria viridis | H | 6.2 (0.42) | 33.33 | 36.56 | 2000 | |
Phragmites communis Trin. | H | 13.33 | 16.13 | 800 | ||||
Echinochloa crus-galli (L.) P.Beauv. | H | 6.67 | 8.60 | 400 | ||||
Aster subulatus Michx. | H | + | 46.67 | 38.71 | 2800 | |||
14W Y (2) | Sonchus brachyotus | H | 6.0 (1.20) | 20.00 | 16.67 | 1200 | ||
Setaria viridis | H | + | 26.67 | 23.33 | 1600 | |||
Phragmites communis Trin. | H | 20.00 | 22.22 | 1200 | ||||
Panicum bisulcatum | G | 13.33 | 15.56 | 800 | ||||
Calamagrostis epigeios | H | 13.33 | 14.44 | 800 | ||||
Setaria faberi | H | 6.67 | 7.78 | 400 | ||||
15D Z (3) | Setaria viridis | H | 5.2 (1.12) | + | 28.57 | 31.51 | 1600 | |
Phragmites communis Trin. | H | 21.43 | 17.81 | 1200 | ||||
Panicum bisulcatum | G | 7.14 | 6.85 | 400 | ||||
Calamagrostis epigeios | H | 21.43 | 19.18 | 1200 | ||||
Aster subulatus var. sandwicensis | G | 21.43 | 24.66 | 1200 | ||||
NV2012 | 13W X (1) | Aster subulatus Michx. | H | 5.3 (1.21) | 33.33 | 37.50 | 800 | |
Phragmites communis Trin. | H | + | 66.67 | 62.50 | 1600 | |||
14W Y (2) | Phragmites communis Trin. | H | 5.2 (0.98) | + | 100.00 | 100.00 | 2400 | |
15D Z (3) | Phragmites communis Trin. | H | 4.0 (0.0) | + | 100.00 | 100.00 | 1200 |
Sites | RT (Tree Age) | Species | CL | MN | DS | F (%) | RD (%) | n (EA ha−1) |
---|---|---|---|---|---|---|---|---|
SRC2013 | 13W X (NA) | NA | ||||||
14W Y (1) | Echinochloa crus-galli (L.) P.Beauv. | H | 3.3 (1.03) | + | 100.00 | 100.00 | 2400 | |
15D Z (2) | Aster subulatus var. sandwicensis | G | 5.3 (0.82) | + | 66.67 | 68.75 | 1600 | |
Setaria viridis | H | 16.67 | 12.50 | 400 | ||||
Phragmites communis Trin. | H | 16.67 | 18.75 | 400 | ||||
NV2013 | 13W X (NA) | NA | ||||||
14W Y (1) | Phragmites communis Trin. | H | 5.0 (1.41) | + | 33.33 | 37.50 | 400 | |
Echinochloa crus-galli var. echinatum (Willd.) Honda | G | + | 33.33 | 37.50 | 400 | |||
Calamagrostis epigeios | H | 33.33 | 25.00 | 400 | ||||
15D Z (2) | Aster subulatus var. sandwicensis | G | 4.5 (1.87) | 33.33 | 33.33 | 400 | ||
Echinochloa crus-galli var. echinatum (Willd.) Honda | G | 33.33 | 27.78 | 400 | ||||
Calamagrostis epigeios | H | + | 33.33 | 38.89 | 400 |
Sites | RT (Tree Age) | Species | CL | MN | DS | F (%) | RD (%) | n (EA ha−1) |
---|---|---|---|---|---|---|---|---|
SRC2014 | 13W X (NA) | NA | ||||||
14W Y (NA) | NA | |||||||
15D Z (1) | Echinochloa crus-galli (L.) P.Beauv. | H | 5.1 (0.93) | + | 77.78 | 78.26 | 2800 | |
Setaria viridis | H | 22.22 | 21.74 | 800 | ||||
NV2014 | 13W X (NA) | NA | ||||||
14W Y (NA) | NA | |||||||
15D Z (1) | Aster subulatus var. sandwicensis | G | 7.0 (2.0) | 33.33 | 23.81 | 40 | ||
Calamagrostis epigeios | H | 33.33 | 33.33 | 40 | ||||
Echinochloa crus-galli var. echinatum (Willd.) Honda | G | + | 33.33 | 42.86 | 40 |
Sites | RT | Chl a (mg g−1 FW) | Chl b (mg g−1 FW) | ChlT (mg g−1 FW) | Chl a/b | Car (mg g−1 FW) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
June | October | June | October | June | October | June | October | June | October | ||
2012 + | 13W X (1) | 1.22 ± 0.06 Z | 1.22 ± 0.06 | 0.26 ± 0.14 | 0.23 ± 0.02 | 1.58 ± 0.08 a** | 1.54 ± 0.12 a*** | 0.01 ± 0.00 b** | 0.01 ± 0.00 c** | 0.44 ± 0.02 a** | 0.43 ± 0.03 a** |
14W Y (2) | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.36 ± 0.02 | 0.36 ± 0.02 | 1.22 ± 0.48 a | 1.02 ± 0.43 b | 0.34 ± 0.02 a | 0.34 ± 0.02 a | 0.14 ± 0.03 b | 0.16 ± 0.05 b | |
15D Z (3) | 0.02 ± 0.00 | 0.51 ± 0.14 | 0.33 ± 0.13 | 0.18 ± 0.05 | 1.24 ± 0.39 aA | 0.70 ± 0.19 bA | 0.01 ± 0.00 bA | 0.29 ± 0.01 bA | 0.13 ± 0.02 bB | 0.13 ± 0.01 bA | |
2013 ++ | 13W (NA) | – | |||||||||
14W (1) | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.33 ± 0.13 | 0.28 ± 0.12 | 0.99 ± 0.48 a* | 0.91 ± 0.08 a** | 0.00 ± 0.00 a* | 0.01 ± 0.00 b* | 0.17 ± 0.06 a* | 0.19 ± 0.01 a* | |
15D (2) | 0.01 ± 0.00 | 0.62 ± 0.30 | 0.19 ± 0.04 | 0.15 ± 0.05 | 0.75 ± 0.19 aA | 0.57 ± 0.17 bA | 0.01 ± 0.00 aA | 0.29 ± 0.02 aA | 0.13 ± 0.03 bB | 0.14 ± 0.04 bA | |
2014 +++ | 13W (NA) | – | |||||||||
14W (NA) | – | ||||||||||
15D (1) | 0.02 ± 0.00 | 0.43 ± 0.10 | 0.21 ± 0.03 | 0.14 ± 0.04 | 0.85 ± 0.12 A* | 0.57 ± 0.14 A* | 0.01 ± 0.00 A* | 0.30 ± 0.02 A* | 0.20 ± 0.01 A* | 0.16 ± 0.03 A* |
Sites | RT | Pn (μmol m−2 s−1) | Gs (mol m−2 s−1) | Tr (mmol m−2 s−1) | WUE (mmol μmol−1) | ||||
---|---|---|---|---|---|---|---|---|---|
June | October | June | October | June | October | June | October | ||
2012 + | 13W X (1) | 22.72 ± 2.64 Za | 22.89 ± 0.86 b | 1.03 ± 0.06 b*** | 0.99 ± 0.00 a*** | 9.55 ± 0.21 a** | 9.44 ± 0.00 a*** | 2.38 ± 0.25 a | 2.42 ± 0.09 b* |
14W Y (2) | 23.41 ± 1.31 a | 27.07 ± 0.83 a | 1.28 ± 0.08 a | 0.92 ± 0.01 b | 10.29 ± 0.22 b | 8.87 ± 0.02 b | 2.27 ± 0.12 a | 3.05 ± 0.10 a | |
15D Z (3) | 17.66 ± 0.81 bC | 19.41 ± 2.09 cB | 0.90 ± 0.00 cB | 0.92 ± 0.06 bA | 9.14 ± 0.01 cB | 8.85 ± 0.23 bA | 1.93 ± 0.09 bB | 2.20 ± 0.24 cB | |
2013 ++ | 13W (NA) | – | |||||||
14W (1) | 23.77 ± 1.02 a | 24.67 ± 1.65 a | 0.99 ± 0.06 a** | 0.73 ± 0.00 b* | 9.56 ± 0.24 a** | 8.29 ± 0.02 b* | 2.49 ± 0.08 a | 2.98 ± 0.20 a** | |
15D (2) | 19.96 ± 1.24 bB | 20.37 ± 0.83 bAB | 0.67 ± 0.00 bC | 0.86 ± 0.00 aB | 8.05 ± 0.01 bC | 8.92 ± 0.02 aA | 2.48 ± 0.15 aA | 2.28 ± 0.09 bB | |
2014 +++ | 13W (NA) | – | |||||||
14W (NA) | – | ||||||||
15D (1) | 21.83 ± 2.09 A | 22.46 ± 2.87 A | 0.94 ± 0.01 A* | 0.75 ± 0.00 C** | 9.29 ± 0.04 A* | 8.39 ± 0.01 B** | 2.35 ± 0.22 A | 2.68 ± 0.34 A* |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Woo, S.Y.; Kwak, M.J.; Je, S.M.; Lee, J.K.; Kim, I.R. Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis Moench.) in Reclaimed Land, South Korea: Three-Year Monitoring. Sustainability 2020, 12, 6244. https://doi.org/10.3390/su12156244
Jang J, Woo SY, Kwak MJ, Je SM, Lee JK, Kim IR. Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis Moench.) in Reclaimed Land, South Korea: Three-Year Monitoring. Sustainability. 2020; 12(15):6244. https://doi.org/10.3390/su12156244
Chicago/Turabian StyleJang, Jihwi, Su Young Woo, Myeong Ja Kwak, Sun Mi Je, Jong Kyu Lee, and Ie Reh Kim. 2020. "Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis Moench.) in Reclaimed Land, South Korea: Three-Year Monitoring" Sustainability 12, no. 15: 6244. https://doi.org/10.3390/su12156244
APA StyleJang, J., Woo, S. Y., Kwak, M. J., Je, S. M., Lee, J. K., & Kim, I. R. (2020). Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis Moench.) in Reclaimed Land, South Korea: Three-Year Monitoring. Sustainability, 12(15), 6244. https://doi.org/10.3390/su12156244