Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Rhizobia and Nodulation Test
2.2. Screening of Isolates for Abiotic Stress Tolerance
2.3. Morphology and Phenotypic Characterization
2.4. Extraction of Total DNA for Amplification of 16S rRNA and Housekeeping Genes
2.5. Plant Growth Promoting Assay
3. Results
3.1. Isolation and Growth Characteristics of Rhizobium Strains
3.2. Phenotypic Characterization and Abiotic Stress Tolerance
3.3. Genotypic Characterization
3.4. Plant Growth Promoting Ability of Isolated Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gong, H.; Li, J.; Sun, M.; Xu, X.; Ouyang, Z. Lowering carbon footprint of wheat-maize cropping system in North China Plain: Through microbial fertilizer application with adaptive tillage. J. Clean. Prod. 2020, 268, 122255. [Google Scholar]
- de Lajudie, P.; Laurent-Fulele, E.; Willems, A.; Torek, U.; Coopman, R.; Collins, M.D.; Kersters, K.; Dreyfus, B.; Gillis, M. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int. J. Syst. Evol. Microbiol. 1998, 48, 1277–1290. [Google Scholar]
- Dreyfus, B.; Garcia, J.-L.; Gillis, M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Evol. Microbiol. 1988, 38, 89–98. [Google Scholar]
- Jordan, D.C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Evol. Microbiol. 1982, 32, 136–139. [Google Scholar]
- Jarvis, B.D.W.; Van Berkum, P.; Chen, W.X.; Nour, S.M.; Fernandez, M.P.; Cleyet-Marel, J.C.; Gillis, M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Evol. Microbiol. 1997, 47, 895–898. [Google Scholar]
- Frank, B. Ueber die Parasiten in den Wurzelanschwillungen der Papilionaceen. Bot Ztg 1879, 37, 394–399. [Google Scholar]
- Chen, W.X.; Yan, G.H.; Li, J.L. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Evol. Microbiol. 1988, 38, 392–397. [Google Scholar]
- Khalid, R.; Zhang, Y.J.; Ali, S.; Sui, X.H.; Zhang, X.X.; Amara, U.; Chen, W.X.; Hayat, R. Rhizobium pakistanensis sp. nov., isolated from groundnut (Arachis hypogaea) nodules grown in rainfed Pothwar, Pakistan. Antonie Van Leeuwenhoek 2015, 107, 281–290. [Google Scholar]
- Peoples, M.B.; Herridge, D.F.; Ladha, J.K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production. In Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems; Springer: Berlin, Germany, 1995; pp. 3–28. [Google Scholar]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar]
- Latif, R.; Ali, S.; Hayat, R. Nitrogen fixation and yield of peanut affected by inorganic fertilizers, variety and inoculums interaction in rainfed areas of Punjab. Soil Environ. 2008, 27, 77–83. [Google Scholar]
- El-Akhal, M.R.; Rincón, A.; Arenal, F.; Lucas, M.M.; El Mourabit, N.; Barrijal, S.; Pueyo, J.J. Genetic diversity and symbiotic efficiency of rhizobial isolates obtained from nodules of Arachis hypogaea in northwestern Morocco. Soil Biol. Biochem. 2008, 40, 2911–2914. [Google Scholar]
- Zhang, X.; Nick, G.; Kaijalainen, S.; Terefework, Z.; Paulin, L.; Tighe, S.W.; Graham, P.H.; Lindström, K. Phylogeny and diversity of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan, China. Syst. Appl. Microbiol. 1999, 22, 378–386. [Google Scholar]
- Chen, Q.; Zhang, X.; Terefework, Z.; Kaijalainen, S.; Li, D.; Lindström, K. Diversity and compatibility of peanut (Arachis hypogaea L.) bradyrhizobia and their host plants. Plant. Soil 2003, 255, 605–617. [Google Scholar]
- Yang, J.K.; Xie, F.L.; Zou, J.; Zhou, Q.; Zhou, J.C. Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea) in China. Soil Biol. Biochem. 2005, 37, 141–153. [Google Scholar]
- Rosália, C.E.; Santos, S.; Stamford, N.P.; Freitas, A.D.S.; Vieira, I.M.D.M.B.; Souto, S.M.; Neves, M.C.P.; Rumjanek, N.G. Efetividade de rizóbios isolados de solos da região Nordeste do Brasil na fixação do N2 em amendoim (Arachis hypogaea L.). Acta Scientiarum. Agron. 2005, 27, 301–307. [Google Scholar]
- Taurian, T.; Ibanez, F.; Fabra, A.; Aguilar, O.M. Genetic diversity of rhizobia nodulating Arachis hypogaea L. in central Argentinean soils. Plant. Soil 2006, 282, 41–52. [Google Scholar]
- Graham, P.H.; Sadowsky, M.J.; Keyser, H.H.; Barnet, Y.M.; Bradley, R.S.; Cooper, J.E.; De Ley, D.J.; Jarvis, B.D.W.; Roslycky, E.B.; Strijdom, B.W. Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int. J. Syst. Evol. Microbiol. 1991, 41, 582–587. [Google Scholar]
- Das, S.; Dash, H.R.; Mangwani, N.; Chakraborty, J.; Kumari, S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J. Microbiol. Methods 2014, 103, 80–100. [Google Scholar]
- Vincent, J.M. A Manual for the Practical Study of the Root-Nodule Bacteria; Blackwell Scientific Publishing: Oxford-Edinburgh, UK, 1970. [Google Scholar]
- Somasegaran, P.; Hoben, H.J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Gao, J.L.; Sun, J.G.; Li, Y.; Wang, E.T.; Chen, W.X. Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int. J. Syst. Evol. Microbiol. 1994, 44, 151–158. [Google Scholar]
- Terefework, Z.; Kaijalainen, S.; Lindström, K. AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J. Biotechnol. 2001, 91, 169–180. [Google Scholar]
- Poly, F.; Monrozier, L.J.; Bally, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 2001, 152, 95–103. [Google Scholar]
- Gaunt, M.W.; Turner, S.L.; Rigottier-Gois, L.; Lloyd-Macgilp, S.A.; Young, J.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 2001, 51, 2037–2048. [Google Scholar]
- Turner, S.L.; Young, J.P.W. The glutamine synthetases of rhizobia: Phylogenetics and evolutionary implications. Mol. Biol. Evol. 2000, 17, 309–319. [Google Scholar]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil 1. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar]
- Hayat, R.; Khalid, R.; Ehsan, M.; Ahmed, I.; Yokota, A.; Ali, S. Molecular characterization of soil bacteria for improving crop yield in Pakistan. Pak. J. Bot 2013, 45, 1045–1055. [Google Scholar]
- Bric, J.M.; Bostock, R.M.; Silverstone, S.E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar]
- Moulin, L.; Béna, G.; Boivin-Masson, C.; Stępkowski, T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol. Phylogenetics Evol. 2004, 30, 720–732. [Google Scholar]
- El-Akhal, M.R.; Rincon, A.; Mourabit, N.E.; Pueyo, J.J.; Barrijal, S. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (Arachis hypogaea L.) grown in Moroccan soils. J. Basic Microbiol. 2009, 49, 415–425. [Google Scholar]
- Hungria, M.; de O. Chueire, L.M.; Coca, R.G.; Megías, M. Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biol. Biochem. 2001, 33, 1349–1361. [Google Scholar]
- Garland, J.L.; Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [Google Scholar]
- Wang, J.Y.; Wang, R.; Zhang, Y.M.; Liu, H.C.; Chen, W.F.; Wang, E.T.; Sui, X.H.; Chen, W.X. Bradyrhizobium daqingense sp. nov. isolated from soybean nodules. Int. J. Syst. Evol. Microbiol. 2013, 63, 616–624. [Google Scholar]
- Yue, L.C.; Jing, Y.W.; En, T.W. Bradyrhizobium lablabi sp. nov. isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int. J. Syst. Evol. Microbiol. 2010, 61, 2496–2502. [Google Scholar]
- Muñoz, V.; Ibanez, F.; Tonelli, M.L.; Valetti, L.; Anzuay, M.S.; Fabra, A. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Syst. Appl. Microbiol. 2011, 34, 446–452. [Google Scholar]
- Urtz, B.E.; Elkan, G.H. Genetic diversity among Bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). Can. J. Microbiol. 1996, 42, 1121–1130. [Google Scholar]
- Van Rossum, D.; Schuurmans, F.P.; Gillis, M.; Muyotcha, A.; Van Verseveld, H.W.; Stouthamer, A.H.; Boogerd, F.C. Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl. Environ. Microbiol. 1995, 61, 1599–1609. [Google Scholar]
- Santos, C.E.R.S.; Stamford, N.P.; Borges, W.L.; Neves, M.C.P.; Rumjanek, N.G.; Nascimento, L.R.; Freitas, A.D.S.; Vieira, I.M.M.B.; Bezerra, R.V. Faixa hospedeira de rizóbios isolados das espécies Arachis hypogaea, Stylosanthes guyanensis e Aeschynomene americana. Embrapa Agrobiol. Artig. Em Periódico Indexado (ALICE) 2007, 2, 20–27. [Google Scholar]
- Taurian, T.; Aguilar, O.; Fabra, A. Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdoba, Argentina. Symbiosis 2002, 33, 59–72. [Google Scholar]
- Graham, P.H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can. J. Microbiol. 1992, 38, 475–484. [Google Scholar]
- Martins, L.M.V.; Neves, M.C.P.; Rumjanek, N.G. Growth characteristics and symbiotic efficiency of rhizobia isolated from cowpea nodules of the north-east region of Brazil. Soil Biol. Biochem. 1997, 29, 1005–1010. [Google Scholar]
- Chanway, C.P.; Holl, F.B. Suitability of intrinsic antibiotic resistance as a method of strain identification in Rhizobium trifolii. Plant. Soil 1986, 93, 287–291. [Google Scholar]
- Stowers, M.D. Carbon metabolism in Rhizobium species. Annu. Rev. Microbiol. 1985, 39, 89–108. [Google Scholar]
- Wertz, J.E.; Goldstone, C.; Gordon, D.M.; Riley, M.A. A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J. Evol. Biol. 2003, 16, 1236–1248. [Google Scholar]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar]
- Amara, U.; Khalid, R.; Hayat, R. Soil bacteria and phytohormones for sustainable crop production. In Bacterial Metabolites in Sustainable Agroecosystem; Springer: Berlin, Germany, 2015; pp. 87–103. [Google Scholar]
- Halbleib, C.M.; Ludden, P.W. Regulation of biological nitrogen fixation. J. Nutr. 2000, 130, 1081–1084. [Google Scholar]
- Raymond, J.; Siefert, J.L.; Staples, C.R.; Blankenship, R.E. The natural history of nitrogen fixation. Mol. Biol. Evol. 2004, 21, 541–554. [Google Scholar]
- Sheirdil, R.A.; Hayat, R.; Zhang, X.-X.; Abbasi, N.A.; Ali, S.; Ahmed, M.; Khattak, J.Z.K.; Ahmad, S. Exploring Potential Soil Bacteria for Sustainable Wheat (Triticum aestivum L.) Production. Sustainability 2019, 11, 3361. [Google Scholar]
BN-6 | BN-12 | BN-19 | BN-20 | BN-23 | BN-25 | BN-39 | BN-50 | |||
---|---|---|---|---|---|---|---|---|---|---|
Salt Tolerance | Growth at/in: | Temperature Tolerance | ||||||||
4 °C | − | − | − | − | − | − | − | − | ||
37 °C | + | + | + | + | + | + | + | + | ||
50 °C | − | − | − | − | − | − | − | − | ||
NaCl (1%) | + | + | + | + | + | + | + | + | ||
NaCl (3%) | + | + | + | + | + | + | + | + | ||
NaCl (4%) | − | − | − | − | − | − | − | − | ||
pH4 | − | − | − | − | − | − | − | − | ||
pH6 | + | + | + | + | + | + | + | + | ||
pH10 | + | + | + | + | + | + | + | + | ||
Antibiotic Resistance | Tetracycline hydrochloride (5) | pH Tolerance | + | − | + | − | − | − | − | + |
Tetracycline hydrochloride (50) | − | − | + | − | − | − | − | − | ||
Chloramphenicol (100) | + | + | + | + | − | + | + | + | ||
Streptomycin sulfate (300) | + | + | + | − | + | + | + | + | ||
Ampicilin (50) | + | + | + | − | − | − | + | + | ||
Ampicilin (100) | − | − | + | − | − | − | − | − | ||
Neomycin sulfate (50) | + | + | + | + | + | + | + | + | ||
Erythromycin (300) | − | − | + | − | − | − | − | − | ||
Kanamycin sulfate (100) | − | − | + | − | − | − | − | − | ||
Kanamycin sulfate (300) | − | − | + | − | − | − | − | − |
Carbon-Source Utilization | BN−6 | BN−12 | BN−19 | BN−20 | BN−23 | BN−25 | BN−39 | BN−50 |
---|---|---|---|---|---|---|---|---|
α−Cyclodextrin | − | − | − | − | − | − | − | − |
Dextrin | − | + | + | + | + | + | + | + |
Glycogen | − | + | w | − | − | + | + | − |
Tween 40 | − | − | − | + | − | + | − | − |
Tween 80 | − | w | − | + | − | w | w | − |
N−acetyl−D−galactoseamine | − | + | + | + | + | + | + | + |
N−acetyl−D−glucoseamine | − | + | + | + | + | + | + | + |
Adonitol | + | + | + | + | + | + | + | + |
L−Arabinose | + | + | + | + | + | + | + | + |
D−Arabitol | + | + | + | + | + | + | + | + |
D−Cellobiose | + | + | + | + | + | + | + | + |
i−Erythritol | − | − | − | − | − | − | − | − |
D−Fructose | + | + | + | + | + | + | + | + |
L−Fructose | + | + | + | + | + | + | + | + |
D−Galactose | + | + | + | + | + | + | + | + |
Gentibiose | − | + | + | + | + | + | + | + |
α−D−Glucose | + | + | + | + | + | + | + | + |
m−Inositol | + | + | + | + | + | + | + | + |
α−D−lactose | + | + | w | + | + | w | + | + |
Lactulose | − | + | − | + | + | − | + | + |
Maltose | + | + | + | + | + | + | + | + |
D−Mannitol | + | + | + | + | + | + | + | + |
D−Mannose | + | + | + | + | + | + | + | + |
D−melibiose | − | + | + | + | + | − | + | + |
D−psicose | − | + | + | − | + | + | + | − |
D−raffinose | − | + | + | + | + | − | + | + |
L−Rhamnose | + | + | + | + | + | + | + | + |
D−Sorbitol | + | + | + | + | + | + | + | + |
Sucrose | + | + | + | + | + | + | + | + |
D−Trehalose | + | + | + | + | + | + | + | + |
Turanose | + | + | + | + | + | + | + | + |
Xylitol | + | + | + | − | + | − | + | + |
Pyruvic acid methyl ester | + | + | + | + | + | + | + | + |
Succinic acid mono−methyl−ester | + | + | + | − | w | − | + | + |
Acetic acid | − | + | + | + | + | + | + | + |
Cis−aconitic acid | − | + | + | + | + | − | + | + |
Formic acid | − | + | w | − | + | + | + | − |
D−galactonic acid | − | + | − | − | + | + | + | − |
D−galacturonic acid | + | − | − | − | − | − | − | − |
D−gluconic acid | + | + | + | − | + | + | + | − |
D−Glucosaminic acid | − | − | − | − | − | − | − | − |
D−glucuronic acid | + | + | − | − | + | + | + | + |
α−hydroxybutyric acid | − | + | + | − | + | + | + | + |
β−hydroxybutyric acid | + | − | − | − | − | − | − | − |
p−hydroxyphenylacetic acid | + | + | − | − | − | − | − | − |
Itaconic acid | + | − | − | − | − | − | − | − |
α−keto butyric acid | − | − | − | − | − | − | − | − |
α−keto glutaric acid | − | + | + | − | w | + | + | − |
α−keto valeric acid | − | + | − | − | − | − | − | − |
D,L−Lactic acid | − | + | + | + | + | + | + | + |
Malanoic acid | − | + | − | − | − | − | − | − |
Propionic acid | − | + | + | − | + | + | + | + |
Quinic acid | − | + | + | + | + | + | + | + |
D−saccharic acid | + | + | − | − | − | − | − | − |
Sebacic acid | − | + | − | − | − | − | − | − |
Succinic acid | − | + | + | + | + | + | + | + |
Bromosuccinic acid | − | + | + | + | + | + | + | + |
Succinamic acid | − | + | w | − | + | − | w | + |
Glucuronamide | − | + | − | − | − | − | − | − |
L−alaninamide | − | + | − | − | + | + | + | + |
D−alanine | − | − | + | − | + | − | + | + |
L−alanine | + | + | + | + | + | + | + | + |
L−alanyl−glycine | − | + | + | − | + | + | + | + |
L−asparagine | − | − | + | + | + | + | + | + |
L−aspartic acid | − | + | + | − | + | − | + | + |
Glycyl−L−glutamic acid | + | + | + | + | + | + | + | + |
L−glutamic acid | − | + | + | + | + | + | + | − |
L−histidine | + | + | + | − | + | + | + | + |
Hydroxy−L−proline | − | + | + | + | + | + | + | + |
L−ornithine | − | − | + | − | + | − | + | + |
L−phenylalanine | − | − | − | − | − | − | − | − |
L−proline | − | − | + | + | + | + | + | + |
L−pyroglutamic acid | − | + | − | − | + | + | + | + |
L−serine | + | + | + | − | + | + | + | + |
L−threonine | w | − | w | − | + | + | + | + |
D,L−carnitine | + | + | − | − | − | − | − | − |
γ−amino butyric acid | + | + | w | − | + | + | + | + |
Urocanic acid | + | + | − | − | w | + | + | + |
Uridine | + | + | + | − | + | + | + | + |
Thymidine | − | − | − | − | − | − | − | − |
Phenyethyl−amine | − | − | − | − | − | − | − | − |
Putrescine | − | − | − | − | − | − | − | − |
2−aminoethanol | − | + | w | − | w | + | + | − |
2,3−butanediol | − | w | − | − | − | + | + | − |
D,L−α−glycerol phosphate | w | − | − | − | − | − | − | − |
D−glucose−6−phosphate | + | + | − | − | + | − | + | + |
Strain ID | Sequence Similarity (%) | DNA Data Bank of Japan (DDBJ) Accession Numbers | 16S Rrna Gene Identification | ||||||
---|---|---|---|---|---|---|---|---|---|
16S rRNA | atpD | recA | glnII | 16S rRNA | atpD | recA | glnII | ||
BN-6 | 99.7 | 95.5 | 99.1 | 100 | AB969782 | LC061200 | AB971367 | AB971366 | R. alkalisoli |
BN-12 | 100 | 97.8 | 99.4 | 99.1 | AB969783 | LC061201 | LC061206 | LC061211 | R. massiliae |
BN-19 | 97.5 | 93.3 | 89.5 | 89.0 | AB854065 | AB856324 | AB855792 | AB856325 | R. loessense |
BN-20 | 99.9 | 100 | 89.2 | 99.2 | AB969784 | AB970799 | AB970801 | AB970800 | R. huautlense |
BN-23 | 99.9 | 98.2 | 99.6 | 100 | AB969785 | LC061202 | LC061207 | LC061212 | R. pusense |
BN-25 | 99.3 | 100 | 100 | 98.7 | AB969786 | LC061203 | LC061208 | LC061213 | R. herbae |
BN-39 | 100 | 95.7 | 99.5 | 99.6 | AB969787 | LC061204 | LC061209 | LC061214 | R. massiliae |
BN-50 | 99.7 | 100 | 99.7 | 99.4 | AB969788 | LC061205 | LC061210 | LC061215 | R. alkalisoli |
Strain ID | P-solubilization | pH * | IAA with Tryptophan | IAA without Tryptophan | nifH Gene |
---|---|---|---|---|---|
(μg mL−1) | |||||
BN-6 | 152 ± 1.3 | 4.67 | 35.9 ± 1.5 | 20.5 ± 1.1 | + |
BN-12 | 79.9 ± 2.7 | 4.89 | 71.0 ± 2.2 | 21.2 ± 0.8 | + |
BN-19 | 152 ± 5.0 | 4.50 | 54.6 ± 1.9 | 10.0 ± 1.0 | + |
BN-20 | 56 ± 3.0 | 5.34 | 65.7 ± 2.2 | 11.6 ± 1.3 | + |
BN-23 | 290 ± 3.5 | 6.32 | 48.6 ± 2.4 | 12.8 ± 1.5 | + |
BN-25 | 58 ± 3.8 | 4.95 | 55.0 ± 1.7 | 18.3 ± 1.6 | + |
BN-39 | 278 ± 5.6 | 5.85 | 24.2 ± 1.8 | 13.1 ± 0.7 | + |
BN-50 | 162 ± 2.1 | 5.91 | 45.2 ± 2.4 | 7.0 ± 1.1 | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, R.; Zhang, X.X.; Hayat, R.; Ahmed, M. Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment. Sustainability 2020, 12, 6259. https://doi.org/10.3390/su12156259
Khalid R, Zhang XX, Hayat R, Ahmed M. Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment. Sustainability. 2020; 12(15):6259. https://doi.org/10.3390/su12156259
Chicago/Turabian StyleKhalid, Rabia, Xiao Xia Zhang, Rifat Hayat, and Mukhtar Ahmed. 2020. "Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment" Sustainability 12, no. 15: 6259. https://doi.org/10.3390/su12156259
APA StyleKhalid, R., Zhang, X. X., Hayat, R., & Ahmed, M. (2020). Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment. Sustainability, 12(15), 6259. https://doi.org/10.3390/su12156259