GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province
Abstract
:1. Introduction
2. Feasibility and Assessment Framework
2.1. Technical Assessment Factors
2.2. Economic Assessment Factors
3. Results and Discussion
3.1. Feasibility of PV Plants at West Kalimantan Province
3.2. Feasibility of PV Plants at Selected Sites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2016. [Google Scholar]
- IRENA. Global Energy Transformation: A Roadmap to 2050; International Renewable Energy Agency: Abu Dhabi, UAE, 2018; ISBN 1059-910X. [Google Scholar]
- REN21. Renewables 2019 Global Status Report; REN21 Secretariat: Paris, France, 2019; Volume 8, ISBN 9783981891140. [Google Scholar]
- DNV-GL. Energy Transition Outlook 2019: A Global and Regional Forecast to 2050; DNV GL AS: Høvik, Norway, 2019. [Google Scholar]
- IFC. Utility-Scale Solar Photovoltaic Power Plants: A Project Developer’s Guide; International Finance Corporation: Washington, DC, USA, 2015. [Google Scholar]
- Choi, Y.; Suh, J.; Kim, S.M. GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Appl. Sci. 2019, 9, 1960. [Google Scholar] [CrossRef] [Green Version]
- Noorollahi, E.; Fadai, D.; Shirazi, M.A.; Ghodsipour, S.H. Land suitability analysis for solar farms exploitation using GIS and fuzzy analytic hierarchy process (FAHP)—A case study of Iran. Energies 2016, 9, 643. [Google Scholar] [CrossRef]
- Asakereh, A.; Soleymani, M.; Sheikhdavoodi, M.J. A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran. Sol. Energy 2017, 155, 342–353. [Google Scholar] [CrossRef]
- Charabi, Y.; Gastli, A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renew. Energy 2011, 36, 2554–2561. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Rughooputh, S.D.D.V.; Boojhawon, R. Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renew. Energy 2019, 133, 1201–1219. [Google Scholar] [CrossRef]
- Zoghi, M.; Houshang Ehsani, A.; Sadat, M.; Javad Amiri, M.; Karimi, S. Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN. Renew. Sustain. Energy Rev. 2017, 68, 986–996. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Teruel-Solano, J.; Soto-Elvira, P.L.; Socorro García-Cascales, M. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renew. Sustain. Energy Rev. 2013, 24, 544–556. [Google Scholar] [CrossRef]
- Merrouni, A.A.; Mezrhab, A.; Mezrhab, A. PV sites suitability analysis in the Eastern region of Morocco. Sustain. Energy Technol. Assess. 2016, 18, 6–15. [Google Scholar] [CrossRef]
- Giamalaki, M.; Tsoutsos, T. Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renew. Energy 2019, 141, 64–75. [Google Scholar] [CrossRef]
- Uyan, M. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region Konya/Turkey. Renew. Sustain. Energy Rev. 2013, 28, 11–17. [Google Scholar] [CrossRef]
- Sun, Y.W.; Hof, A.; Wang, R.; Liu, J.; Lin, Y.J.; Yang, D.W. GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province. Energy Policy 2013, 58, 248–259. [Google Scholar] [CrossRef]
- Huang, T.; Wang, S.; Yang, Q.; Li, J. A GIS-based assessment of large-scale PV potential in China. Energy Procedia 2018, 152, 1079–1084. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, T.; Wang, S.; Li, J.; Dai, S.; Wright, S.; Wang, Y.; Peng, H. A GIS-based high spatial resolution assessment of large-scale PV generation potential in China. Appl. Energy 2019, 247, 254–269. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J.; Pu, Y.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Pillai, G.; Naser, H.A.Y. Techno-economic potential of largescale photovoltaics in Bahrain. Sustain. Energy Technol. Assess. 2018, 27, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Fathoni, A.M.; Utama, N.A.; Kristianto, M.A. A Technical and Economic Potential of Solar Energy Application with Feed-in Tariff Policy in Indonesia. Procedia Environ. Sci. 2014, 20, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Gürtürk, M. Economic feasibility of solar power plants based on PV module with levelized cost analysis. Energy 2019, 171, 866–878. [Google Scholar] [CrossRef]
- Sarker, P.C.; Islam, M.R.; Paul, A.K.; Ghosh, S.K. Solar Photovoltaic Power Plants: Necessity and Techno-Economical Development. In Renewable Energy and the Environment. Renewable Energy Sources & Energy Storage; Islam, M., Roy, N., Rahman, S., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Rabiul Islam, M.D.; Rahman, F.; Xu, W. (Eds.) Advances in Solar Photovoltaic Power Plants; Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- IESR. Levelized Cost of Electricity in Indonesia: Understanding the Levelized Cost of Electricity Generation; IESR: London, UK, 2019. [Google Scholar]
- PwC Indonesia. Investment and Taxation Guide; PwC Indonesia: Jakarta, Indonesia, 2017; ISBN 9781786600356. [Google Scholar]
- President of the Republic of Indonesia Joko Widodo. Presidential Regulation No. 22 Year 2017 on General Plan on National Energy (RUEN); Dewan Perwakilan Rakyat DPR: Jakarta, Indonesia, 2017.
- Ruiz, H.; Sunarso, A.; Ibrahim Bathis, K.; Murti, S.A.; Budiarto, I. SolarBoost Web GIS. Available online: http://webmap.solarboost.tech/ (accessed on 1 May 2020).
- Ruiz, H.S.; Sunarso, A.; Ibrahim Bathis, K.; Murti, S.A.; Budiarto, I. GIS-AHP Multi-Decision-Criteria-Analysis for the Optimal Location of Solar Energy Plants at Indonesia. arXiv 2020, arXiv:2007.15351. [Google Scholar]
- The World Bank Group. Solar Resource and Photovoltaic Potential in Indonesia; Energy Sector Management Assistance Program, World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- The World Bank Group and Solargis. Solar Resource Maps of Indonesia; Global Solar Atlas 2.0, May 2017, Solargis: Bratislava, Slovakia; Available online: https://solargis.com/maps-and-gis-data/download/indonesia (accessed on 15 April 2019).
- IESR. Indonesia Clean Energy Outlook Imprint Indonesia Clean Energy Outlook; IESR: London, UK, 2020; pp. 1–71. [Google Scholar]
- Sabo, M.L.; Mariun, N.; Hizam, H.; Mohd Radzi, M.A.; Zakaria, A. Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia. Appl. Energy 2017, 191, 663–688. [Google Scholar] [CrossRef]
- OJK. Clean Energy Handbook For Financial Service Institutions; OJK: Jakarta, Indonesia, 2014; Volume 19.
- Vaillancourt, K. Electricity Transmission and Distribution; Technology Brief; IEA ETSAP: Paris, France, 2014; Volume E12, pp. 1–16. [Google Scholar]
- ADB. Technical Assistance Consultant’s Report Project Number 38479—Republic of Indonesia: Regional Roads Development Project (Financed by the Japan Special Fund); ADB: Toronto, ON, Canada, 2010; pp. 1–26. [Google Scholar]
No. | Level of Annual Energy [GWh/km2] | Average of Annual Energy [GWh/km2] | Exploitable Area [km2] | Percentage of Area [%] | Total of Annual Energy [GWh] |
---|---|---|---|---|---|
1 | 153.79–180.42 | 167.10 | 1843 | 3.70 | 307,975 |
2 | 180.43–184.83 | 182.63 | 9280 | 18.61 | 1,694,806 |
3 | 184.84–188.50 | 186.67 | 13,972 | 28.02 | 2,608,153 |
4 | 188.51–191.99 | 190.25 | 14,514 | 29.11 | 2,761,289 |
5 | 192.00–200.62 | 196.31 | 10,250 | 20.56 | 2,012,178 |
Total | 49,859 | 100.00 | 9,384,400 |
No. | Level of Electricity Cost [Cent USD/kWh] | Average of Electricity Cost [Cent USD/kWh] | Exploitable Area [km2] | Percentage of Area [%] |
---|---|---|---|---|
1 | 4.47–4.68 | 4.575 | 9749 | 19.55 |
2 | 4.69–4.78 | 4.735 | 14,848 | 29.78 |
3 | 4.79–4.86 | 4.825 | 9622 | 19.30 |
4 | 4.87–4.96 | 4.915 | 12,149 | 24.37 |
5 | 4.97–5.46 | 5.215 | 3491 | 7.00 |
Total | 49,859 | 100.00 |
No | Technical Parameter | Mempawah | Ngabang | Tayan |
---|---|---|---|---|
1 | Average solar irradiation [kWh/m2/day] | 4.85 | 4.83 | 4.84 |
2 | Available area [ha] | 1200 | 2300 | 3100 |
3 | Average annual energy generation [GWh/km2] | 196.25 | 195.25 | 195.50 |
4 | Total annual energy generation [GWh] | 235,500 | 449,075 | 606,050 |
5 | Estimated total power capacity [GW] | 26.88 | 51.26 | 69.18 |
6 | Elevation [meter] | 5 | 25 | 30 |
7 | Slope [%] | <2 | <5 | <5 |
8 | Distance from substation [km] | 2.85 | 4.36 | 0.18 |
9 | Distance from main road [km] | 0.68 | 1.27 | 0.25 |
10 | Distance from nearest city [km] | 0.9 | 1.66 | 57 |
11 | Distance from Pontianak city [km] | 58 | 80 | 80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunarso, A.; Ibrahim-Bathis, K.; Murti, S.A.; Budiarto, I.; Ruiz, H.S. GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province. Sustainability 2020, 12, 6283. https://doi.org/10.3390/su12156283
Sunarso A, Ibrahim-Bathis K, Murti SA, Budiarto I, Ruiz HS. GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province. Sustainability. 2020; 12(15):6283. https://doi.org/10.3390/su12156283
Chicago/Turabian StyleSunarso, Alfeus, Kunhali Ibrahim-Bathis, Sakti A. Murti, Irwan Budiarto, and Harold S. Ruiz. 2020. "GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province" Sustainability 12, no. 15: 6283. https://doi.org/10.3390/su12156283
APA StyleSunarso, A., Ibrahim-Bathis, K., Murti, S. A., Budiarto, I., & Ruiz, H. S. (2020). GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province. Sustainability, 12(15), 6283. https://doi.org/10.3390/su12156283