Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California
Abstract
:1. Introduction
1.1. Background
1.2. Environmental Policy to Control Salt and Selenium Pollutant Loading
1.3. Grassland Bypass Project
1.4. San Joaquin River Improvement Project (SJRIP)
2. Materials and Methods
2.1. Study Sites
2.2. Selected Fields
2.3. Irrigation Data
2.4. Soil Salinity Surveys Using the EM38-MK2
2.5. Soil Sampling Locations (Ground-Truthing)
2.6. Soil Analysis
2.7. ECa to ECe Calibration and Spatial Maps
2.8. Leaching Fraction Estimation
2.9. Forage Sampling and Analysis
3. Results and Discussion
3.1. Irrigation Water
3.2. Soil Chemistry
3.3. Soil Survey Quality Checks and Calibration of ECa to ECe
- b0, b1, b2, b3 and b4 are the regression parameters;
- z1 and z2 are the transformed and de-correlated EM signal readings (i.e., vertical 1.5 m and horizontal 0.75 m);
- x and y are the centered and scaled location coordinates.
3.4. Soil Salinity Derived from the ESAP Calibration Software and Leaching Fraction (LF)
3.5. Leaching Fraction and Drainage through the Profile
3.6. Spatial Variability in Soil Salinity
3.7. Forage Analysis
4. Summary
5. Conclusions
6. Future Work
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nachshon, U. Cropland soil salinization and associated hydrology: Trends, processes and examples. Water 2018, 10, 1030. [Google Scholar] [CrossRef] [Green Version]
- Letey, J. Soil salinity poses challenges for sustainable agriculture and wildlife. Calif. Agric. 2000, 54, 43–48. [Google Scholar] [CrossRef]
- Letey, J.; Williams, C.F.; Alemi, M. Salinity, drainage and selenium problems in the Western San Joaquin Valley of California. Irrig. Drain. Syst. 2002, 16, 253–259. [Google Scholar] [CrossRef]
- Scudiero, E.; Corwin, D.L.; Anderson, R.G.; Yemoto, K.; Clary, W.; Wang, Z.; Skaggs, T.H. Remote sensing is a viable tool for mapping soil salinity in agricultural lands. Calif. Agric. 2017, 71, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Grattan, S.R.; Oster, J.D.; Letey, J.; Kaffka, S.R. Drainage Water Reuse: Concepts, Practices and Potential Crops. In Salinity and Drainage in San Joaquin Valley, California: Science, Technology, and Policy; Chang, A.C., Brawer Silva, D., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 277–302. ISBN 978-94-007-6851-2. [Google Scholar]
- Grattan, S.R.; Oster, J.D.; Benes, S.E.; Kaffka, S.R. Use of Saline Drainage Waters for Irrigation. In Agricultural Salinity Assessment and Management; American Society of Civil Engineers: Reston, VA, USA, 2011; Volume 22, pp. 687–719. ISBN 9780784476482. [Google Scholar]
- Suyama, H.; Benes, S.E.; Robinson, P.H.; Getachew, G.; Grattan, S.R.; Grieve, C.M. Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water: Field evaluation. Anim. Feed Sci. Technol. 2007, 135, 329–345. [Google Scholar] [CrossRef]
- Suyama, H.; Benes, S.E.; Robinson, P.H.; Grattan, S.R.; Grieve, C.M.; Getachew, G. Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation. Agric. Water Manag. 2007, 88, 159–172. [Google Scholar] [CrossRef]
- Cornacchione, M.V.; Suarez, D.L. Emergence, Forage Production, and Ion Relations of Alfalfa in Response to Saline Waters. Crop Sci. 2015, 55, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Benes, S.; Galdi, G.; Hutmacher, R.B.; Grattan, S.R.; Chahal, I.; Putnam, D.H. Opportunities for Management of Alfalfa (Medicago sativa L.) Under High Salinity Conditions. In Proceedings of the 2018 California Alfalfa and Forage Symposium, Reno, NV, USA, 27–28 November 2018. [Google Scholar]
- Díaz, F.J.; Grattan, S.R.; Reyes, J.A.; de la Roza-Delgado, B.; Benes, S.E.; Jiménez, C.; Dorta, M.; Tejedor, M. Using saline soil and marginal quality water to produce alfalfa in arid climates. Agric. Water Manag. 2018, 199, 11–21. [Google Scholar] [CrossRef]
- Schoups, G.; Hopmans, J.W.; Young, C.A.; Vrugt, J.A.; Wallender, W.W.; Tanji, K.K.; Panday, S. Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc. Natl. Acad. Sci. USA 2005, 102, 15352–15356. [Google Scholar] [CrossRef] [Green Version]
- Oster, J.D.; Grattan, S.R. Drainage water reuse. Irrig. Drain. Syst. 2002, 16, 297–310. [Google Scholar] [CrossRef]
- Suarez, D.L.; Wood, J.D.; Lesch, S.M. Effect of SAR on water infiltration under a sequential rain-irrigation management system. Agric. Water Manag. 2006, 86, 150–164. [Google Scholar] [CrossRef]
- Quinn, N.W.T.; McGahan, J.C.; Delamore, M.L. Innovative strategies reduce selenium in Grasslands drainage. Calif. Agric. 1998, 52, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Linneman, C.; Falaschi, A.; Oster, J.D.; Kaffka, S.; Benes, S.E. Drainage Reuse by Grassland Area Farmers: The Road to Zero Discharge. In Proceedings of the Groundwater Issues and Water Management—Strategies Addressing the Challenges of Sustainability Meeeting, U.S. Committee on Irrigation and Drainage (US-CID), Sacramento, CA, USA, 4–7 March 2014. [Google Scholar]
- Environmental Monitoring Systems Laboratory. Methods for the Determination of Inorganic Substances in Environmental Samples (600/R-93/100); United States Environmental Protection Agency, Office of Research and Development: Cincinnati, OH, USA, 1993; Volume 600.
- San Joaquin Valley Drainage Program. A Management Plan for Agricultural Subsurface Drainage and Related Problems on the Westside San Joaquin Valley; Final Report, September 1990; San Joaquin Valley Drainage Program: Sacramento, CA, USA, 1990. [Google Scholar]
- Quinn, N.W.T. The San Joaquin Valley: Salinity and Drainage Problems and the Framework for a Response. In Salinity and Drainage in San Joaquin Valley, California; Chang, A.C., Brawer Silva, D., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Quinn, N.W.T. Policy Innovation and Governance for Irrigation Sustainability in the Arid, Saline San Joaquin River Basin. Sustainability 2020, 12, 4733. [Google Scholar] [CrossRef]
- California Environmental Protection Agency. Total Maximum Daily Load for Salinity and Boron in the Lower San Joaquin River; Staff Report by the California Regional Water Quality Control Board, Central Valley Region, California Environmental Protection Agency: Sacramento, CA, USA, 2002.
- Kratzer, C.R.; Pickett, P.J.; Rashmawi, E.A.; Cross, C.L.; Bergeron, K.D. An Input Output Model of the San Joaquin River from the Lander Avenue Bridge to the Airport Way Bridge; Appendix C of the California State Water Resources Control Board; Technical Committee Report on Regulation of Agricultural Drainage to the San Joaquin River; California State Water Resources Control Board: Sacramento, CA, USA, 1987; p. 173.
- U.S. Bureau of Reclamation. Grassland Bypass Project, Record of Decision and Final Environmental Impact Statement/Environmental Impact Report; Entrix for Mid-Pacific Region, South-Central California Area Office: Fresno, CA, USA, 2009.
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Kelley, J.; Higgins, C.W.; Pahlow, M.; Noller, J. Mapping Soil Texture by Electromagnetic Induction: A Case for Regional Data Coordination. Soil Sci. Soc. Am. J. 2017, 81, 923–931. [Google Scholar] [CrossRef]
- Weller, U.; Zipprich, M.; Sommer, M.; Castell, W.Z.; Wehrhan, M. Mapping Clay Content across Boundaries at the Landscape Scale with Electromagnetic Induction. Soil Sci. Soc. Am. J. 2007, 71, 1740. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Lesch, S.M. Protocols and Guidelines for Field-scale Measurement of Soil Salinity Distribution with ECa-Directed Soil Sampling. J. Environ. Eng. Geophys. 2013, 18, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Lesch, S.M. Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Comput. Electron. Agric. 2005, 46, 103–133. [Google Scholar] [CrossRef]
- Lesch, S.M.; Rhoades, J.D.; Corwin, D.L. The ESAP-95 Version 2.01R User Manual and Tutorial Guide. Research Report No. 146. USDA-ARS; George, E.B., Jr., Ed.; Salinity Laboratory: Riverside, CA, USA, 2000. [Google Scholar]
- Lesch, S.M.; Strauss, D.J.; Rhoades, J.D. Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 2. An Efficient Spatial Sampling Algorithm Suitable for Multiple Linear Regression Model Identification and Estimation. Water Resour. Res. 1995, 31, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, J.D. Soluble Salts. In Methods of Soil Analysis: Part 2; Chemical and Microbiological Properties; Page, A.L., Ed.; Monograph Number 9 (Second Edition); American Society of Agronomy: Madison, WI, USA, 1982; pp. 167–179. [Google Scholar]
- Rhoades, J.D.; Manteghi, N.A.; Shouse, P.J.; Alves, W.J. Soil Electrical Conductivity and Soil Salinity: New Formulations and Calibrations. Soil Sci. Soc. Am. J. 1989, 53, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Letey, J.; Feng, G.L. Dynamic versus steady-state approaches to evaluate irrigation management of saline waters. Agric. Water Manag. 2007, 91, 1–10. [Google Scholar] [CrossRef]
- Corwin, D.L.; Rhoades, J.D.; Šimůnek, J. Leaching requirement for soil salinity control: Steady-state versus transient models. Agric. Water Manag. 2007, 90, 165–180. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Ityel, E.; Dudley, L.; Cohen, S.; Yermiyahu, U.; Presnov, E.; Zigmond, L.; Shani, U. Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers. Agric. Water Manag. 2008, 95, 587–597. [Google Scholar] [CrossRef]
- Lesch, S.M.; Strauss, D.J.; Rhoades, J.D. Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 1. Statistical Prediction Models: A Comparison of Multiple Linear Regression and Cokriging. Water Resour. Res. 1995, 31, 373–386. [Google Scholar] [CrossRef]
Field | Date | Number of Transects | No. of Survey Sites within Field | Avg. Distance between Sites (m) | ||||
---|---|---|---|---|---|---|---|---|
Spring | Fall | Spring | Fall | Spring | Fall | Spring | Fall | |
2016 | ||||||||
10-6 (TWG) | May | October | 21 | 23 | 5785 | 5101 | 1.9 | 2.3 |
13-1 (TWG) | May | October | 18 | 24 | 3812 | 3488 | 1.5 | 2.4 |
13-2 (ALF) | June | September | 19 | 20 | 3515 | 3625 | 1.8 | 1.8 |
13-6 (ALF) | June | September | 24 | 26 | 4283 | 4038 | 1.8 | 2.1 |
2017 | ||||||||
10-6 (TWG) | April | October | 21 | 22 | 4366 | 4346 | 2.5 | 2.6 |
13-1 (TWG) | April | September | 28 | 27 | 4533 | 3399 | 2.1 | 2.6 |
13-2 (ALF) | May | September | 28 | 28 | 3816 | 3076 | 2.3 | 2.8 |
13-6 (ALF) | April | September | 24 | 24 | 2900 | 2815 | 2.7 | 2.8 |
Sampling Month | ECw 1 | pH | SAR 2 | Boron (mg/L) | Ca2+ | Mg2+ | Na+ | Cl− | SO42− | HCO3− | CO32− |
---|---|---|---|---|---|---|---|---|---|---|---|
(dS/m) | -------------- (mmol/L)-------------- | (mg/L) | (mg/L) | ||||||||
Field 10-6 (TWG) | |||||||||||
Aug. 2016 | 4.5 | 8.3 | 1.2 | 3.7 | 5.1 | . | . | 17.0 | 26.5 | 145 | 3 |
Sept. 2016 | 6.9 | 8.1 | 12.6 | 15.2 | 15.7 | 14.8 | 49.0 | 36.2 | 39.0 | 124 | 2 |
April 2017 | 5.7 | 7.9 | 9.5 | 9.6 | 16.9 | 9.0 | 34.2 | 20.1 | 35.4 | 177 | 1 |
May 2017 | 5.2 | 7.8 | 10.4 | 12.5 | 19.8 | 12.0 | 41.5 | 13.8 | 20.8 | 155 | <1 |
Sept. 2017 | 3.3 | 7.8 | 7.8 | 5.3 | 9.0 | 5.6 | 21.2 | 10.7 | 20.4 | 113 | <1 |
Average | 5.1 | 8.0 | 8.3 | 9.3 | 13.3 | 10.3 | 36.5 | 19.6 | 28.4 | 143 | . |
Field 13-1 (TWG) | |||||||||||
Aug. 2016 | 3.2 | 7.8 | 5.0 | 2.2 | 4.1 | 2.7 | 9.3 | 10.6 | 19.9 | 137 | 1 |
Sept. 2016 | 0.4 | 7.2 | 4.6 | 3.5 | 19.7 | 10.8 | 17.8 | 14.9 | 28.1 | 170 | 1 |
April 2017 | 9.2 | 8.1 | 12.4 | 14.4 | 18.3 | 12.6 | 48.7 | 30.6 | 45.0 | 191 | 2 |
June 2017 | 2.9 | 7.8 | 4.2 | 2.9 | 17.8 | 9.7 | 15.4 | 14.9 | 26.4 | 161 | 1 |
Sept. 2017 | 3.6 | 7.6 | 4.9 | 3.3 | 15.4 | 8.7 | 16.9 | 13.5 | 25.0 | 150 | <1 |
Average | 3.9 | 7.7 | 6.2 | 5.3 | 15.0 | 8.9 | 21.6 | 16.9 | 28.9 | 162 | . |
Field 13-2 (ALF) | |||||||||||
Aug. 2016 | 1.0 | 8.4 | 4.2 | 0.94 | 2.1 | 1.5 | 5.6 | 3.1 | 4.6 | 76 | 2 |
Sept. 2016 | 0.7 | 7.9 | 3.5 | 0.73 | 2.1 | 1.8 | 4.8 | 3.3 | 3.2 | 85 | 1 |
Sept. 2017 | 0.6 | 7.2 | 2.4 | 0.60 | 1.3 | 1.0 | 2.6 | 1.0 | 2.4 | 55 | <1 |
Average | 0.8 | 7.8 | 3.4 | 0.76 | 1.8 | 1.4 | 4.3 | 2.5 | 3.4 | 72 | . |
Field 13-6 (ALF) | |||||||||||
Aug. 2016 | 3.9 | 8.2 | 2.8 | 1.08 | 8.7 | 5.0 | 7.4 | 15.6 | 24.7 | 160 | 3 |
Sept. 2016 | 0.4 | 7.7 | 4.0 | 2.58 | 18.0 | 9.1 | 14.5 | 13.5 | 24.6 | 151 | 1 |
April 2017 | 3.4 | 7.8 | 4.0 | 2.80 | 16.9 | 8.9 | 14.4 | 11.9 | 24.4 | 146 | <1 |
May 2017 | 3.0 | 7.8 | 4.4 | 3.00 | 17.9 | 9.8 | 16.2 | 14.0 | 28.6 | 142 | <1 |
Sept. 2017 | 3.7 | 7.8 | 4.1 | 2.50 | 16.6 | 9.3 | 14.9 | 13.5 | 25.0 | 152 | <1 |
Average | 2.9 | 7.9 | 3.8 | 2.39 | 15.6 | 8.4 | 13.5 | 13.7 | 25.5 | 150 | . |
Field 10-6 | Field 13-1 | Field 13-2 | Field 13-6 | |||||
---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | |
ECe 1 (dS m−1) | 15.2 | 3.8–25 | 18.9 | 13.5–25.1 | 13.3 | 9.9–16.3 | 10.5 | 6.4–14.3 |
SP 2 (%) | 53.8 | 62.7–156 | 83.5 | 75.5–92.6 | 84.6 | 70.9–114 | 72.5 | 52.6–85.5 |
SAR3 | 22.1 | 8.7–38.1 | 20.8 | 15.3–30.0 | 10.7 | 4.9–15.5 | 7.6 | 4.9–11.5 |
B (mg L−1) | 21.9 | 4.1–38.5 | 18.9 | 12.7–26.7 | 11.4 | 5.4–19.1 | 4.0 | 2.1–7.0 |
Ca2+ (mmolc L−1) | 12.0 | 3.6–17.8 | 12.7 | 12.2–13.3 | 12.7 | 11.8–15.6 | 14.5 | 11.7–16.6 |
Mg2+ (mmolc L−1) | 14.9 | 2.2–31.7 | 15.5 | 12.4–18.9 | 7.3 | 6.4–9.6 | 8.1 | 5.8–10.2 |
Na+ (mmolc L−1) | 122.9 | 21.2–272 | 111.3 | 76.7–168.6 | 48.7 | 21.5–69.0 | 36.9 | 20.8–59.2 |
Cl− (mmolc L−1) | 63.3 | 6.5–147 | 51.6 | 29.0–76.4 | . | . | 25.5 | 8.2–39.8 |
SO42− (mmolc L−1) | 53.1 | 9.8–112 | 53.5 | 43.0–67.6 | 36.5 | 26.0–47.0 | 25.4 | 19.7–31.7 |
Spring 2016 | Fall 2016 | Spring 2017 | Fall 2017 | |
---|---|---|---|---|
10-6 (TWG) | 0.977 | 0.966 | 0.899 | 0.897 |
13-1 (TWG) | 0.868 | 0.216 1 | 0.878 | 0.536 1 |
13-2 (ALF) | 0.905 | 0.788 | 0.949 | 0.812 |
13-6 (ALF) | 0.79 | 0.844 | 0.963 | 0.917 |
Field | MLR Model Used | R-Squared (Averaged over 0–120 cm) | |
---|---|---|---|
Spring 2016 | 10-6 (TWG) | ln(ECe) = b0 + b1(z1) + b2(z2) | 0.910 1 |
13-1 (TWG) | ln(ECe) = b0 + b1(z1) + b2(y) | 0.784 1 | |
13-2 (ALF) | ln(ECe) = b0 + b1(z1) | 0.837 1 | |
13-6 (ALF) | ln(ECe) = b0 + b1(z1) | 0.550 1 | |
Fall 2016 | 10-6 (TWG) | ln(ECe) = b0 + b1(z1) + b2(z1^2) + b3(x) | 0.948 1 |
13-1 (TWG) | ln(ECe) = b0 + b1(z1) + b2(z2) + b3(z1^2) + b4(x) | 0.827 1 | |
13-2 (ALF) | ln(ECe) = b0 + b1(z1) | 0.436 2 | |
13-6 (ALF) | ln(ECe) = b0 + b1(z1) + b2(z2) | 0.846 1 | |
Spring 2017 | 10-6 (TWG) | ln(ECe) = b0 + b1(z1) | 0.793 1 |
13-1 (TWG) | ln(ECe) = b0 + b1(z1) + b2(z2) | 0.847 1 | |
13-2 (ALF) | ln(ECe) = b0 + b1(z1) + b2(z2) + b3(y) | 0.956 1 | |
13-6 (ALF) | ln(ECe) = b0 + b1(z1) + b2(z2) | 0.960 1 | |
Fall 2017 | 10-6 (TWG) | ln(ECe) = b0 + b1(z1) + b2(z2) | 0.831 1 |
13-1 (TWG) | ln(ECe) = b0 + b1(z1) + b2(z2) | 0.507 2 | |
13-2 (ALF) | ln(ECe) = b0 + b1(z1) + b2(y) | 0.609 2 | |
13-6 (ALF) | ln(ECe) = b0 + b1(z1) + b2(x) + b3(y) | 0.929 1 |
Depth (cm) | ECe (dS/m) | |||||||
---|---|---|---|---|---|---|---|---|
Spring 2016 | Fall 2016 | Spring 2017 | Fall 2017 | |||||
Mean | Range | Mean | Range | Mean | Range | Mean | Range | |
10-6 (TWG)- not drained | ||||||||
0–30 | 10.6 | 2.5–23.3 | 15.5 | 3.2–34.0 | 11.8 | 4.1–19.0 | 14.6 | 3.3–38.2 |
30–60 | 13.9 | 3.2–27.3 | 17.0 | 1.7–32.4 | 14.8 | 5.1–23.9 | 16.5 | 5.8–33.4 |
60–90 | 12.2 | 3.1–23.3 | 18.1 | 1.4–28.1 | 15.6 | 5.6–25.0 | 16.4 | 6.0–28.8 |
90–120 | 12.7 | 3.0–26.0 | 16.7 | 1.1–27.0 | 15.2 | 5.7–23.8 | 14.8 | 4.4–27.5 |
0–120 | 12.5 | 2.5–27.3 | 16.8 | 1.1–34.0 | 14.4 | 4.1–25.0 | 15.7 | 3.3–38.2 |
13-1 (TWG)- drained | ||||||||
0–30 | 13.0 1 | 10.3–17.3 | 12.6 | 6.8–40.7 | 12 | 6.1–17.7 | 13.4 | 9.5–16.6 |
30–60 | 19.6 | 13.2–33.3 | 17.0 1 | 9.1–31.0 | 16.3 | 7.2–25.1 | 19.6 | 14.2–25.4 |
60–90 | 20.8 | 15.1–31.4 | 17.5 | 11.4–45.5 | 18.5 | 9.3–27.1 | 20.3 1 | 14.9–26.0 |
90–120 | 23.2 | 18.6–29.8 | 19.2 | 8.2–47.9 | 18.6 | 9.6–26.4 | 21.0 1 | 16.1–25.0 |
0–120 | 19.3 | 10.3–33.3 | 16.6 | 6.8–47.9 | 16.4 | 6.1–27.1 | 18.6 | 9.5–26.0 |
13-2 (ALF)- drained | ||||||||
0–30 | 9.6 | 3.3–17.1 | 8.0 | 4.7–10.2 | 7.0 | 2.3–13.4 | 7.0 | 3.6–10.4 |
30–60 | 14.0 | 6.7–21.2 | 12.0 | 7.4–15.1 | 11.5 | 3.8–22.0 | 13.7 1 | 10.1–16.0 |
60–90 | 16.5 1 | 10.6–21.4 | 14.9 | 11.1–17.2 | 14.1 | 6.5–22.5 | 16.2 1 | 13.6–17.8 |
90–120 | 17.2 | 8.6–25.4 | 15.2 1 | 13.6–16.1 | 15.2 | 7.6–23.3 | 15.8 | 12.2–19.6 |
0–120 | 14.4 | 3.3–25.4 | 12.6 | 4.7–17.2 | 12.0 | 2.3–23.3 | 13.3 | 3.6–19.6 |
13-6 (ALF)- not drained | ||||||||
0–30 | 5.7 | 3.0–9.5 | 7.2 | 4.3–10.9 | 5.1 | 1.8–14.6 | 6.9 | 4.5–9.9 |
30–60 | 8.9 | 5.0–14.2 | 10.3 | 6.3–15.5 | 9.9 | 3.3–27.0 | 10.6 | 6.0–17.4 |
60–90 | 10.8 | 7.6–14.3 | 12.1 | 8.5–15.6 | 12.0 | 5.8–22.8 | 12.2 | 6.5–18.3 |
90–120 | 10.3 | 6.7–14.4 | 11.0 | 6.5–16.4 | 10.8 | 6.6–17.4 | 11.8 | 7.1–16.2 |
0–120 | 9.0 | 3.0–14.4 | 10.2 | 4.3–16.4 | 9.5 | 1.8–27.0 | 10.4 | 4.5–18.3 |
Leaching Fraction (%) | ||||
---|---|---|---|---|
Depth (cm) | Spring 2016 | Fall 2016 | Spring 2017 | Fall 2017 |
10-6 (TWG)- not drained | ||||
0–30 | 35.1 | 21.7 | 22.7 | 20.5 |
30–60 | 31.0 | 21.4 | 20.1 | 17.4 |
60–90 | 37.9 | 19.7 | 21.0 | 20.3 |
90–120 | 39.9 | 27.4 | 25.2 | 26.1 |
0–120 | 36.0 | 22.6 | 22.2 | 21.1 |
13-1 (TWG)- drained | ||||
0–30 | 19.7 | 16.6 | 19.1 | 15.2 |
30–60 | 13.1 | 12.2 | 14.1 | 10.2 |
60–90 | 12.0 | 11.5 | 11.7 | 9.8 |
90–120 | 10.8 | 10.0 | 11.5 | 9.4 |
0–120 | 13.9 | 12.6 | 14.1 | 11.2 |
13-2 (ALF)- drained | ||||
0–30 | 14.0 | 13.8 | 6.9 | 6.9 |
30–60 | 9.0 | 9.7 | 4.1 | 3.1 |
60–90 | 7.3 | 7.6 | 3.2 | 2.5 |
90–120 | 7.3 | 7.1 | 2.9 | 2.6 |
0–120 | 9.4 | 9.5 | 4.3 | 3.8 |
13-6 (ALF)- not drained | ||||
0–30 | 29.7 | 22.2 | 38.7 | 25.5 |
30–60 | 21.5 | 17.3 | 19.8 | 16.6 |
60–90 | 18.6 | 14.8 | 15.4 | 14.1 |
90–120 | 21.1 | 18.3 | 16.4 | 15.6 |
0–120 | 22.7 | 18.1 | 22.6 | 18.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Quinn, N.W.T.; Benes, S.E.; Cassel, F. Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California. Sustainability 2020, 12, 6362. https://doi.org/10.3390/su12166362
Singh A, Quinn NWT, Benes SE, Cassel F. Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California. Sustainability. 2020; 12(16):6362. https://doi.org/10.3390/su12166362
Chicago/Turabian StyleSingh, Amninder, Nigel W. T. Quinn, Sharon E. Benes, and Florence Cassel. 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California" Sustainability 12, no. 16: 6362. https://doi.org/10.3390/su12166362
APA StyleSingh, A., Quinn, N. W. T., Benes, S. E., & Cassel, F. (2020). Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California. Sustainability, 12(16), 6362. https://doi.org/10.3390/su12166362