Disproportioned Performances of Protected Areas in the Beijing-Tianjin-Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PAs within BTH
2.3. Validation of Performances
2.4. Statistical Analysis
3. Results
3.1. Landscape Composition of the PAs and BTH
3.2. Conservation Objective Value of the PAs and BTH
3.3. Functional and Structural Contributions of PAs
3.4. Correlations among ES Measures
4. Discussion
4.1. Values of Protected Areas
4.2. The Role of Governance and Type
4.3. Implications for Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soulé, M.E. What is conservation biology? Bioscience 1985, 35, 727–734. [Google Scholar]
- Olmsted, F.L. Yosemite and the Mariposa Grove: A Preliminary Report. 1865. Available online: www.yosemite.ca.us/library/olmsted/report.html (accessed on 20 April 2020).
- Muir, J. The Story of My Boyhood and Youth; Sierra Club: San Francisco, CA, USA, 2004. [Google Scholar]
- Protected Planet Report 2016; UNEP-WCMC and IUCN: Cambridge, UK; Gland, Switzerland, 2016.
- EEA (European Environmental Agency). An Introduction to Europe’s Protected Areas. Available online: https://www.eea.europa.eu/themes/biodiversity/europe-protected-areas (accessed on 6 May 2020).
- Nila, M.U.S.; Beierkuhnlein, C.; Jaeschke, A.; Hoffmann, S.; Hossain, M.L. Predicting the effectiveness of protected areas of natura 2000 under climate change. Ecol. Process. 2019, 8, 13. [Google Scholar] [CrossRef]
- Jing, W.; Junping, S.; Lei, S.; Ning, L.; Zhong, M.; Xiuxiang, M. Natural reserve system of China: Current status, problems and prospect. China Popul. Resour. Environ. 2016, 26, 270–273. [Google Scholar]
- Gao, G.; Xu, M.; Zou, C. Development achievement of natural conservation in 70 years of New China. China Environ. Manage. 2019, 11, 25–29. [Google Scholar]
- Wu, R.; Zhang, S.; Yu, D.W.; Zhao, P.; Li, X.; Wang, L.; Yu, Q.; Ma, J.; Chen, A.; Long, Y. Effectiveness of China’s nature reserves in representing ecological diversity. Front. Ecol. Environ. 2011, 9, 383–389. [Google Scholar] [CrossRef]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; van Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessments: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Font, X.; Garay, L.; Jones, S. Sustainability motivations and practices in small tourism enterprises in european protected areas. J. Clean Prod. 2016, 137, 1439–1448. [Google Scholar] [CrossRef]
- Hiwasaki, L. Community-based tourism: A pathway to sustainability for Japan’s protected areas. Soc. Nat. Resour. 2006, 19, 675–692. [Google Scholar] [CrossRef]
- Plummer, R.; Fennell, D.A. Managing protected areas for sustainable tourism: Prospects for adaptive co-management. J. Sustain. Tour 2009, 17, 149–168. [Google Scholar] [CrossRef]
- Graham, J.; Amos, B.; Plumptre, T.W. Governance Principles for Protected Areas in the 21st Century; Institute on Governance: Ottawa, ON, Canada, 2003. [Google Scholar]
- Eastwood, A.; Brooker, R.; Irvine, R.J.; Artz, R.R.E.; Norton, L.R.; Bullock, J.M.; Ross, L.; Fielding, D.; Ramsay, S.; Roberts, J.; et al. Does nature conservation enhance ecosystem services delivery? Ecosyst. Serv. 2016, 17, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Butchart, S.H.M.; Scharlemann, J.P.W.; Evans, M.I.; Quader, S.; Arico, S.; Arinaitwe, J.; Balman, M.; Bennun, L.A.; Bertzky, B.; Besancon, C.; et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 2012, 7, e32529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldhuis, M.P.; Ritchie, M.E.; Ogutu, J.O.; Morrison, T.A.; Beale, C.M.; Estes, A.B.; Mwakilema, W.; Ojwang, G.O.; Parr, C.L.; Probert, J.; et al. Cross-boundary human impacts compromise the serengeti-mara ecosystem. Science 2019, 363, 1424–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, J.; Zhou, Z. Exploring expedient protected area for ecosystem services: Decision-making method with a new algorithm. Sustainability 2019, 11, 5599. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Martinlopez, B.; Lopez, E.; Plieninger, T.; Alcarazsegura, D.; Vaughn, C.C.; Cabello, J. Do protected areas networks ensure the supply of ecosystem services? Spatial patterns of two nature reserve systems in Semi-arid Spain. Appl. Geogr. 2015, 60, 1–9. [Google Scholar] [CrossRef]
- Mukul, S.A.; Sohel, M.S.I.; Herbohn, J.; Inostroza, L.; König, H. Integrating ecosystem services supply potential from future land-use scenarios in protected area management: A bangladesh case study. Ecosyst. Serv. 2017, 26, 355–364. [Google Scholar] [CrossRef]
- Johnson, C.N.; Balmford, A.; Brook, B.W.; Buettel, J.C.; Galetti, M.; Lei, G.; Wilmshurst, J.M. Biodiversity losses and conservation responses in the Anthropocene. Science 2017, 356, 270–274. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zheng, H.; Xu, W.H.; Zhang, L.; Ouyang, Z.Y. Temporal changes in multiple ecosystem services and their bundles responding to urbanization and ecological restoration in the Beijing-Tianjin-Hebei metropolitan area. Sustainability 2019, 11, 2079. [Google Scholar] [CrossRef] [Green Version]
- Guerra, C.A.; Rosa, I.M.D.; Pereira, H.M. Change versus stability: Are protected areas particularly pressured by global land cover change? Landsc. Ecol. 2019, 34, 2779–2790. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Liu, G. China Ecological Zoning Study; Science Press: Beijing, China, 2013; pp. 46–53. [Google Scholar]
- China Nature Reserve Specimen Sharing Platform. Available online: http://www.papc.cn/ (accessed on 24 March 2019).
- KBA Partnership. World Database of Key Biodiversity Areas. Available online: http://www.keybiodiversityareas.org/home (accessed on 19 November 2018).
- MEP (Ministry of Environmental Protection); CAS (Chinese Academy of Science). National Ecological Function Zoning (Revised); CAS: Beijing, China, 2015.
- Liu, J.; Ma, S.; Gao, J.; Zou, C.; Wang, J.; Liu, Z.; Wang, L. Delimiting the ecological conservation redline at regional scale: A case study of Beijing-Tianjin-Hebei region. China Environ. Sci. 2018, 38, 2652–2657. [Google Scholar]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Zhitao, X.; Pengfei, C.; Shijian, Z. Change of ecological service in Beijing-Tianjin-Hebei region in recent 10 years. Bull. Soil Water Conserv. 2018, 38, 220–226. [Google Scholar]
- Hattam, C.; Atkins, J.P.; Beaumont, N.; Börger, T.; Böhnke-Henrichs, A.; Burdon, D.; De Groot, R.; Hoefnagel, E.; Nunes, P.A.; Piwowarczyk, J. Marine ecosystem services: Linking indicators to their classification. Ecol. Indic. 2015, 49, 61–75. [Google Scholar] [CrossRef]
- van Oudenhoven, A.; Petz, K.; Alkemade, R.; Hein, L.; de Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Link, J.S.; Yemane, D.; Shannon, L.J.; Coll, M.; Shin, Y.; Hill, L.; Borges, M.D.F. Relating marine ecosystem indicators to fishing and environmental drivers: An elucidation of contrasting responses. ICES J. Mar. Sci. 2010, 67, 787–795. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: San Diego, CA, USA, 1971. [Google Scholar]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T. InVEST Version 3.3.2 User’s Guide; Federal Highway Administration: Washington, DC, USA, 2016.
- Zhang, K.; Peng, W.; Yang, H. Soil erodibility and its estimation for agricultural soil in China. Acta Pedol. Sin. 2007, 44, 7–13. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Rrosion Losses-A Guide to Conservation Planning; Department of Agriculture: Washington, DC, USA, 1978.
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Xu, X. China Spatial Data Set Terrestrial Ecosystem Services Value in China; Resource and Scientific Data Center of CAS: Beijing, China, 2018; Volume 2019. [Google Scholar]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [Green Version]
- Doak, D.F.; Bakker, V.J.; Goldstein, B.E.; Hale, B. What is the future of conservation. Trends Ecol. Evol. 2014, 2, 77–81. [Google Scholar] [CrossRef]
- Lafortezza, R.; Chen, J. The provision of ecosystem services in response to global change: Evidences and applications. Environ. Res. 2016, 147, 576–579. [Google Scholar] [CrossRef]
- Rodriguez, N.; Armenteras, D.; Retana, J. Effectiveness of protected areas in the Colombian Andes: Deforestation, fire and land-use changes. Reg. Environ. Chang. 2013, 13, 423–435. [Google Scholar] [CrossRef]
- Vackar, D.; Harmackova, Z.V.; Kankova, H.; Stupkova, K. Human transformation of ecosystems: Comparing protected and unprotected areas with natural baselines. Ecol. Indic. 2016, 66, 321–328. [Google Scholar] [CrossRef]
- Garnett, S.T.; Burgess, N.D.; Fa, J.E.; Fernandez-Llamazares, A.; Molnar, Z.; Robinson, C.J.; Watson, J.E.M.; Zander, K.K.; Austin, B.; Brondizio, E.S.; et al. A spatial overview of the global importance of indigenous lands for conservation. Nat. Sustain. 2018, 1, 369–374. [Google Scholar] [CrossRef]
- He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Wintle, B.A.; Kujala, H.; Whitehead, A.; Cameron, A.; Veloz, S.; Kukkala, A.; Moilanen, A.; Gordon, A.; Lentini, P.E.; Cadenhead, N.C.R.; et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 909–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z. Evolving landscape-urbanization relationships in contemporary China. Landsc. Urban Plan. 2018, 171, 30–41. [Google Scholar] [CrossRef]
- Southon, G.E.; Jorgensen, A.; Dunnett, N.; Hoyle, H.; Evans, K.L. Biodiverse perennial meadows have aesthetic value and increase residents’ perceptions of site quality in urban green-space. Landsc. Urban Plan. 2017, 158, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Warren, P.H.; Moggridge, H.L.; Maltby, L. Spatial variation in the impact of dragonflies and debris on recreational ecosystem services in a floodplain wetland. Ecosyst. Serv. 2015, 15, 113–121. [Google Scholar] [CrossRef] [Green Version]
- MEP (Ministry of Environmental Protection); NDRC (National Development and Reform Commission). Manual of Ecological Eed Line Zoning. 2017. Available online: http://www.mee.gov.cn/gkml/hbb/bgt/201707/W020170728397753220005.pdf (accessed on 10 January 2019).
- Mengist, W.; Soromessa, T.; Feyisa, G.L. A global view of regulatory ecosystem services: Existed knowledge, trends, and research gaps. Ecol. Process. 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Hadly, E.A.; Gonzalez, P.; Head, J.; Polly, P.D.; Lawing, A.M.; Eronen, J.T.; Ackerly, D.D.; Alex, K.; Biber, E.; et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 2017, 355, eaah4787. [Google Scholar] [CrossRef]
- Lanzas, M.; Hermoso, V.; De-Miguel, S.; Bota, G.; Brotons, L. Designing a network of green infrastructure to enhance the conservation value of protected areas and maintain ecosystem services. Sci. Total Environ. 2019, 651, 541–550. [Google Scholar] [CrossRef]
- WWF (World Wildlife Foundation). Living Planet Report 2016: Risk and Resilience in a New Era; WWF International: Gland, Switzerland, 2016. [Google Scholar]
- Garcia-Llorente, M.; Harrison, P.A.; Berry, P.; Palomo, I.; Gomez-Baggethun, E.; Iniesta-Arandia, I.; Montes, C.; Garcia Del Amo, D.; Martin-Lopez, B. What can conservation strategies learn from the ecosystem services approach? Insights from Ecosystem assessments in two Spanish protected areas. Biodivers. Conserv. 2018, 27, 1575–1597. [Google Scholar] [CrossRef] [Green Version]
Categories | No | Size (km2) | Total (km2) | Portion (%) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Min | Max | STD | |||||
Governance | National | 23 | 93 | 3 | 506 | 129 | 3625 | 1.68 |
Provincial | 42 | 74 | 1 | 507 | 123 | 5768 | 2.67 | |
Local | 19 | 31 | 1 | 140 | 41 | 1020 | 0.47 | |
Dominant Cover | Forest | 44 | 75 | 4 | 507 | 130 | 5896 | 2.73 |
Grassland | 4 | 205 | 145 | 322 | 67 | 859 | 0.40 | |
Water | 13 | 52 | 1 | 348 | 101 | 2671 | 1.24 | |
Others | 23 | 40 | 10 | 344 | 95 | 987 | 0.46 | |
Administrative Authority | Beijing | 28 | 34 | 1 | 236 | 65 | 1864 | 0.86 |
Tianjin | 45 | 47 | 6 | 344 | 123 | 1233 | 0.57 | |
Hebei | 11 | 104 | 4 | 507 | 128 | 7316 | 3.39 | |
Overall | 84 | 65 | 1 | 507 | 119 | 10,413 | 4.83 |
Cr | Wr | Sr | Wp | Se | De | Hf | |
---|---|---|---|---|---|---|---|
×103 RMB (%) | m3 (%) | t (%) | t (%) | (%) | (%) | (%) | |
Governance level | |||||||
National | 2.0 (2.75) | 751 (1.84) | 104 (2.85) | 0.22 (2.38) | 3.4 (2.43) | 3.8 (2.09) | 14.0 (1.28) |
Provincial | 1.8 (4.05) | 686 (2.68) | 92 (4.02) | 0.19 (3.26) | 3.7 (4.14) | 4.9 (4.22) | 13.8 (2.01) |
Local | 1.7 (0.65) | 753 (0.52) | 114 (0.88) | 0.13 (0.39) | 3.3 (0.65) | 3.8 (0.56) | 16.0 (0.41) |
PA Type | |||||||
Forest | 2.4 (5.35) | 773 (3.09) | 144 (6.43) | 0.22 (3.96) | 4.1 (4.75) | 4.2 (3.71) | 12.3 (1.83) |
Non-forest | 1.2 (2.09) | 639 (1.96) | 37 (1.32) | 0.15 (2.07) | 2.8 (2.47) | 4.6 (3.16) | 16.4 (1.87) |
Overall | |||||||
PAs | 1.9 (7.44) | 715 (5.04) | 98 (7.75) | 0.19 (6.04) | 3.6 (7.22) | 4.4 (6.88) | 14.1 (3.70) |
BTH | 1.2 (100) | 686 (100) | 61 (100) | 0.15 (100) | 2.4 (100) | 4.4 (100) | 18.4 (100) |
COs measure | Adjusted R2 | Term | F | p-Value | Partial Eta Squared |
---|---|---|---|---|---|
Climate regulation (Cr) | 0.243 | E | 24.01 | 0.000 | 0.235 |
G | 2.560 | 0.084 | 0.062 | ||
E*G | 0.304 | 0.738 | 0.008 | ||
Water retention (Wr) | 0.204 | E | 19.94 | 0.000 | 0.204 |
G | 0.573 | 0.566 | 0.014 | ||
E*G | 0.245 | 0.783 | 0.006 | ||
Soil retention (Sr) | 0.338 | E | 38.53 | 0.000 | 0.331 |
G | 1.684 | 0.192 | 0.041 | ||
E*G | 0.219 | 0.749 | 0.007 | ||
Wind prevention (Wp) | 0.130 | E | 9.675 | 0.002 | 0.110 |
G | 3.483 | 0.035 | 0.082 | ||
E*G | 0.633 | 0.534 | 0.016 | ||
Soil erosion (Se) | 0.241 | E | 21.31 | 0.000 | 0.215 |
G | 2.705 | 0.073 | 0.065 | ||
E*G | 2.101 | 0.129 | 0.051 | ||
Desertification (De) | 0.112 | E | 0.260 | 0.614 | 0.003 |
G | 4.727 | 0.012 | 0.108 | ||
E*G | 3.109 | 0.050 | 0.074 | ||
Human footprint (Hf) | 0.330 | E | 36.38 | 0.000 | 0.318 |
G | 6.454 | 0.003 | 0.142 | ||
E*G | 0.765 | 0.469 | 0.019 |
COs Measure | Pairs | MD | p-Value |
---|---|---|---|
Climate regulation (Cr) | F-NF (E) | 654 | 0.000 |
Water retention (Wr) | F-NF (E) | 103 | 0.000 |
Soil retention (Sr) | F-NF (E) | 62 | 0.000 |
Wind prevention (Wp) | F-NF (E) | 0.052 | 0.002 |
N-L (G) | 0.057 | 0.041 | |
Soil erosion (Se) | F-NF (E) | 0.788 | 0.000 |
Desertification (De) | P-L (G) | 0.736 | 0.015 |
Human footprint (Hf) | F-NF (E) | −5.243 | 0.000 |
P-L(G) | −5.229 | 0.019 | |
N-L(G) | −5.810 | 0.002 |
Cr | Wr | Sr | Wp | Se | De | Hi | |
Cr | 1 | ||||||
Wr | I: 0.636 ** II: −0.016 III: 0.154 ** | 1 | |||||
Sr | I: 0.779 ** II: 0.896 ** III: 0.640 ** | I: 0.716 ** II: 0.145 III: 0.375 ** | 1 | ||||
Wp | I: 0.460 ** II: 0.650 ** III: 0.415 ** | I: 0.233 * II: −0.198 ** III: −0.083 ** | I: 0.379 ** II: 0.502 ** III: 0.334 ** | 1 | |||
Se | I: 0.731 ** II: 0.780 ** III: 0.607 ** | I: 0.365 ** II: −0.335 ** III: 0.048 ** | I: 0.783 ** II: 0.802 ** III: 0.739 ** | I: 0.524 ** II: 0.419 ** III: 0.396 ** | 1 | ||
De | I: 0.024 II: 0.531 ** III: 0.410 ** | I: −0.315 ** II: −0.609 ** III: −0.227 ** | I: 0.076 II: 0.525 ** III: 0.436 ** | I: 0.249 * II: 0.392 ** III: 0.319 ** | I: 0.532 ** II: 0.902 ** III: 0.813 ** | 1 | |
Hi | I: −0.637 ** II: −0.565 ** III: −0.420 ** | I: −0.336 ** II: −0.156 * III: 0.061 * | I: −0.538 ** II: −0.443 ** III: −0.400 ** | I: −0.418 ** II: −0.440 ** III: −0.319 ** | I: −0.577 ** II: −0.164 * III: −0.320 ** | I: −0.194 II: 0.017 III: −0.162 ** | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Chen, J.; Wang, Z. Disproportioned Performances of Protected Areas in the Beijing-Tianjin-Hebei Region. Sustainability 2020, 12, 6404. https://doi.org/10.3390/su12166404
Wen H, Chen J, Wang Z. Disproportioned Performances of Protected Areas in the Beijing-Tianjin-Hebei Region. Sustainability. 2020; 12(16):6404. https://doi.org/10.3390/su12166404
Chicago/Turabian StyleWen, Hui, Jiquan Chen, and Zhifang Wang. 2020. "Disproportioned Performances of Protected Areas in the Beijing-Tianjin-Hebei Region" Sustainability 12, no. 16: 6404. https://doi.org/10.3390/su12166404
APA StyleWen, H., Chen, J., & Wang, Z. (2020). Disproportioned Performances of Protected Areas in the Beijing-Tianjin-Hebei Region. Sustainability, 12(16), 6404. https://doi.org/10.3390/su12166404