Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia
Abstract
:1. Introduction
2. Methodology
2.1. The Study Area
2.2. Experimental Set Up and Management
2.3. Nodule Assessment and Agronomic Parameters
2.4. Biological Nitrogen Fixation (BNF)
3. Results
3.1. Dry Biomass and Grain Yield
3.2. Effects of N and P Fertilizers on Nodulation and BNF
3.3. Effect of Legumes on Soil N and Biological Nitrogen Fixation
4. Discussion
4.1. Agronomic Responses to Nutritional Amendments
4.2. Nodulation and Biological Nitrogen Fixation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laranjo, M.; Alexandre, A.; Oliveira, S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol. Res. 2014, 169, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Snapp, S.S.; Dimes, J.; Gwenambira, C.; Chikowo, R. Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi. Agric. Syst. 2016, 145, 139–149. [Google Scholar] [CrossRef]
- Lema, B.; Mesfin, S.; Kebede, F.; Abraha, Z.; Fitiwy, I.; Haileselassie, H. Evaluation of soil physical properties of long-used cultivated lands as a deriving indicator of soil degradation, north Ethiopia. Phys. Geogr. 2019, 40, 323–338. [Google Scholar] [CrossRef]
- Mesfin, S.; Taye, G.; Desta, Y.; Sibhatu, B.; Muruts, H.; Mohammedbrhan, M. Short-term effects of bench terraces on selected soil physical and chemical properties: Landscape improvement for hillside farming in semi-arid areas of northern Ethiopia. Environ. Earth Sci. 2018, 77, 399. [Google Scholar] [CrossRef]
- Mesfin, S.; Taye, G.; Hailemariam, M. Effects of integrated soil and water conservation measures on soil aggregate stability, soil organic matter and soil organic carbon stock of smallholder farmlands in semi-arid Northern Ethiopia. Carbon Manag. 2018, 9, 155–164. [Google Scholar] [CrossRef]
- Gebremedhin, H.; Gebresamual, G.; Abadi, N.; Hailemariam, M.; Teka, K.; Mesfin, S. Conversion of communal grazing land into arable land and its impacts on soil properties and vegetation cover. Arid. Land Res. Manag. 2017, 32, 236–252. [Google Scholar] [CrossRef]
- Tadesse, B.; Mesfin, S.; Tesfay, G.; Abay, F. Effect of integrated soil bunds on key soil properties and soil carbon stock in semi-arid areas of northern Ethiopia. S. Afr. J. Plant Soil 2016, 33, 1–6. [Google Scholar] [CrossRef]
- Tarekegn, M.A.; Kibret, K. Effects of Rhizobium, Nitrogen and Phosphorus Fertilizers on Growth, Nodulation, Yield and Yield Attributes of Soybean at Pawe Northwestern Ethiopia. World Sci. News 2017, 67, 201–218. [Google Scholar]
- Argaw, A. Organic and inorganic fertilizer application enhances the effect of Bradyrhizobium on nodulation and yield of peanut (Arachis hypogea L.) in nutrient depleted and sandy soils of Ethiopia. Int. J. Recycl. Org. Waste Agric. 2017, 6, 219–231. [Google Scholar] [CrossRef]
- Chalk, P.M.; Craswell, E. An overview of the role and significance of 15N methodologies in quantifying biological N2 fixation (BNF) and BNF dynamics in agro-ecosystems. Symbiosis 2017, 75, 1–16. [Google Scholar] [CrossRef]
- Aziz, A.; Ahiabor, B.; Opoku, A.; Abaidoo, R. Contributions of Rhizobium Inoculants and Phosphorus Fertilizer to Biological Nitrogen Fixation, Growth and Grain Yield of Three Soybean Varieties on a Fluvic Luvisol. Am. J. Exp. Agric. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Otieno, M.; Sidhu, C.S.; Woodcock, B.A.; Wilby, A.; Vogiatzakis, I.; Mauchline, A.; Gikungu, M.W.; Potts, S.A.; Woodcock, B. Local and landscape effects on bee functional guilds in pigeon pea crops in Kenya. J. Insect Conserv. 2015, 19, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Solomon, T.; Pant, L.M.; Angaw, T. Effects of Inoculation by Bradyrhizobium japonicum Strains on Nodulation, Nitrogen Fixation, and Yield of Soybean (Glycine max L. Merill) Varieties on Nitisols of Bako, Western Ethiopia. ISRN Agron. 2012, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Workalemahu, A. The Effect of Indigenous Root-Nodulating Bacteria on Nodulation and Growth of Faba bean L(Faba bean) in the Low-Input Agricultural Systems of Tigray Highlands, Northern Ethiopia. Momona Ethiop. J. Sci. 2009, 1, 30–43. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Singh, B.R. Wheat Responses in Semiarid Northern Ethiopia to N2 Fixation by Pisum Sativum Treated with Phosphorous Fertilizers and Inoculant. Nutr. Cycl. Agroecosyst. 2006, 75, 247–255. [Google Scholar] [CrossRef]
- Saturno, D.F.; Cerezini, P.; Da Silva, P.M.; De Oliveira, A.B.; De Oliveira, M.C.N.; Hungria, M.; Nogueira, M.A.; Moreira, P.D.S. Mineral Nitrogen Impairs the Biological Nitrogen Fixation in Soybean of Determinate and Indeterminate Growth Types. J. Plant Nutr. 2017, 3, 1690–1701. [Google Scholar] [CrossRef]
- Huda, S.M.S.; Sujauddin, M.; Shafinat, S.; Uddin, M.S. Effects of phosphorus and potassium addition on growth and nodulation of Dalbergia sissoo in the nursery. J. For. Res. 2007, 18, 279–282. [Google Scholar] [CrossRef]
- Lemma, B.; Kebede, F.; Mesfin, S.; Fitiwy, I.; Abraha, Z.; Norgrove, L. Quantifying annual soil and nutrient lost by rill erosion in continuously used semiarid farmlands, North Ethiopia. Environ. Earth Sci. 2017, 76, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Lema, B.; Kebede, F.; Mesfin, S.; Fitiwy, I.; Abraha, Z. Use of the revised universal soil loss equation (RUSLE) for soil and nutrient loss estimation in long-used rainfed agricultural lands, North Ethiopia. Phys. Geogr. 2016, 37, 276–290. [Google Scholar] [CrossRef]
- Yemane, A.; Skjelvag, A.O. Effects of fertilizer phosphorus on yield traits of Dekoko (Pisumsativum var. abyssinicum) under field conditions. J. Agron. Crop Sci. 2003, 189, 14–20. [Google Scholar] [CrossRef] [Green Version]
- CASCAPE (Capacity Building for Scaling up of Evidence-Based Best Practices in Ethiopia). Characterization of Agricultural Soils in CASCAPE intervention woredas in Tigray Region. Report, Ethiopia. 2015. Available online: https://edepot.wur.nl/481240 (accessed on 18 May 2020).
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremmer, J.; Mulvaney, C.S. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watandbe, F.S.; Dean, L.A. Estimation of available Phosphorus in soil by extraction with Sodium Bicarbonate. J. Chem. Inf. Model. 1954, 53, 1689–1699. [Google Scholar]
- Mariner, P.E.; Jin, M.; Jackson, R.E. An Algorithm for the Estimation of NAPL Saturation and Composition from Typical Soil Chemical Analyses. Groundw. Monit. Remediat. 1997, 17, 122–129. [Google Scholar] [CrossRef]
- Norman, A.; Peech, M. Hydrogen-Ion Activity. In Micrometeorology in Agricultural Systems; American Society of Agronomy: Madison, WI, USA, 1965; pp. 914–926. [Google Scholar]
- Daramy, M.A.; Sarkodie-addo, J. The effects of nitrogen and phosphorus fertilizer application on crude protein nutrient. Res. J. Agric. Biol. Sci. 2016, 11, 470–480. [Google Scholar]
- Shi, Z.; Li, D.; Jing, Q.; Cai, J.; Jiang, N.; Cao, W.; Dai, T. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice-wheat rotation. Field Crop. Res. 2012, 127, 241–247. [Google Scholar] [CrossRef]
- Unkovich, M.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, R.; Giller, K.; Alves, B.; Chalk, P. Measuring Plant Associated Nitrogen Fixation in Agricultural Systems; Australian Centre for International Agricultural Research: Canberra, Australia, 2008; pp. 25–30. [Google Scholar]
- Peoples, M.B.; Boddey, R.; Herridge, D. Quantification of Nitrogen Fixation. In Nitrogen Fixation at the Millennium; Elsevier BV: Amsterdam, The Netherlands, 2002; pp. 357–389. [Google Scholar]
- Tahir, M.; Ali, A.; Nadeem, M.A.; Hussain, A.; Khalid, F. Effect of Different Sowing Dates on Growth and Yield of Wheat (Triticum aestivum L.) Varieties in Woreda Jhang, Pakistan. Pak. J. Life Soc. Sci. 2009, 7, 66–69. [Google Scholar]
- Ronnera, E.; Frankea, A.C.; Vanlauwec, B.; Diandad, M.; Edehe, E.; Ukeme, B.; Balaf, A.; Heerwaardena, J.; van Giller, K.E. Understanding variability in soybean yield and response to P-fertilizerand rhizobium inoculants on farmers’ fields in northern Nigeria. Field. Crop. Res. 2016, 186, 133–145. [Google Scholar] [CrossRef]
- Faisal, E.A. Interactive effect of nitrogen fertilization and rhizobium inoculation on nodulation and yield of soybean (Glycine max (L.) Merrill.). Glob. J. Biol. Agric. Health Sci. 2013, 2, 169–173. [Google Scholar]
- Agha, S.K.; Oad, F.C.; Buriro, U.A. Yield and yield components of inoculated and un-inoculated soybean under varying Nitrogen levels. Asian J. Plant Sci. 2004, 3, 370–371. [Google Scholar]
- Jacob, U. Assessing the need for inoculation of soybean and cowpea at Tono in the Kassesna Nankana Woreda of the Upper East Region of Ghana. Ph.D. Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2013. [Google Scholar]
- Saito, A.; Tanabata, S.; Tanabata, T.; Tajima, S.; Ueno, M.; Ishikawa, S.; Ohtake, N.; Sueyoshi, K.; Ohyama, T. Effect of Nitrate on Nodule and Root Growth of Soybean (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2014, 15, 4464–4480. [Google Scholar] [CrossRef] [PubMed]
- Peoples, M.B.; Brockwell, J.; Herridge, D.; Rochester, I.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Jolene, E.M. Faba bean L Growth Response to Soil Temperature and Nitrogen. Master’s Thesis, Washington State University, Pullman, WA, USA, 2011. [Google Scholar]
- Sallaku, G.; Liko, J.; Rada, Z.; Balliu, A. The Effects of Legume Crops (Pea and Faba Bean) on Soil Nutrients Availability and Yield Parameters of Subsequent Cabbage Crops under Organic Production Conditions. J. Environ. Sci. Eng. 2016, 5, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, A.; Abaidoo, R.; Iwuafor, E.; Olufajo, O.; Sanginga, N. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. Agric. Ecosyst. Environ. 2009, 129, 325–331. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Kermah, M.; Franke, A.; Adjei-Nsiah, S.; Ahiabor, B.; Abaidoo, R.; Giller, K. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agric. Ecosyst. Environ. 2018, 261, 201–210. [Google Scholar] [CrossRef]
N and P Rates (kg ha−1) | Grain Yield (kg ha−1) | Increased Yield (kg ha−1) Over Nutrient Nil Plots | Price of Increased Yield in Birr (US$) | Biomass (kg ha−1) | Grain Yield (kg ha−1) | Increased Yield (kg ha−1) Over Nutrient Nil Plots | Price of Increased Yield in Birr (US$) | Biomass (kg ha−1) |
---|---|---|---|---|---|---|---|---|
Faba Bean | Field Pea | |||||||
0N or 0P | 1735 ± 223d | 0 | 0(0) | 4104 ± 345d | 1986 ± 203c | 0 | 0 (0) | 5280 ± 235c |
10N | 1773 ± 370d | 38 | 950 (29) | 4159 ± 432cd | 1993 ± 178c | 7 | 245 (8) | 5357 ± 657c |
20N | 2039 ± 237bc | 304 | 7600 (234) | 4925 ± 543b | 2208 ± 109b | 222 | 7770(239) | 5769 ± 219b |
46N | 2024 ± 169b | 289 | 7225 (222) | 4736 ± 765b | 2201 ± 245b | 215 | 7525 (232) | 5703 ± 290b |
10P | 1815 ± 201cd | 80 | 2000 (62) | 4382 ± 629c | 2004 ± 92c | 18 | 630 (19) | 5287 ± 225c |
20P | 2051 ± 452b | 316 | 7900 (243) | 4251 ± 321c | 2288 ± 334b | 302 | 10570 (325) | 5531 ± 269bc |
20N × 20P | 2531 ± 87a | 796 | 19900 (612) | 5209 ± 154a | 2493 ± 192a | 507 | 17745 (546) | 6411 ± 285a |
lsd | 211 | 271 | 201 | 343 | ||||
cv | 19.9 | 20.0 | 18.7 | 19.7 | ||||
p value | 0.01 | 0.03 | 0.03 | 0.01 | ||||
‘Dekeko’ | Lentil | |||||||
0N or 0P | 1286 ± 192c | 0 | 0 (0) | 2280 ± 435cd | 1561 ± 262a | 0 | 0 (0) | 3842 ± 350a |
10N | 1307 ± 314c | 21 | 1050 (32) | 2317 ± 676c | 1616 ± 155a | 55 | 1925 (59) | 3912 ± 450a |
20N | 1517 ± 109b | 231 | 11550 (355) | 2439 ± 245b | 1661 ± 250a | 100 | 3500 (108) | 4108 ± 289a |
46N | 1511 ± 229b | 225 | 11250 (346) | 2503 ± 385b | 1712 ± 271a | 151 | 5285 (163) | 4248 ± 520a |
10P | 1311 ± 306c | 25 | 1250 (38) | 2189 ± 289d | 1743 ± 317a | 182 | 6370 (196) | 3823 ± 251a |
20P | 1588 ± 288ab | 302 | 15100 (465) | 2231 ± 209cd | 1703 ± 215a | 142 | 4970 (153) | 3840 ± 371a |
20N × 20P | 1694 ± 307a | 408 | 20400 (628) | 2794 ± 412a | 1957 ± 354a | 196 | 6860 (211) | 3890 ± 602a |
lsd | 118 | 121 | 662 | 758 | ||||
cv | 18.8 | 17.7 | 18.0 | 15.8 | ||||
p value | 0.03 | 0.02 | 0.23 | 0.67 |
N Rates (kg ha−1) | P Rates (kg ha−1) | TNP | ENP (%) | NDWP (mg) | BNF (kg ha−1) | TNP | ENP (%) | NDWP (mg) | BNF (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|
Faba Bean | Field Pea | ||||||||
0 | 0 | 52 ± 5f | 60.0 | 118 ± 14g | 58 ± 12.9de | 5 ± 2g | 70 | 36 ± 11d | 19 ± 7c |
10 | 61 ± 1e | 68.6 | 218 ± 24e | 63 ± 15cd | 6 ± 2ef | 85 | 67 ± 27bc | 20 ± 7c | |
20 | 77 ± 18c | 76.3 | 245 ± 46d | 83 ± 22b | 7 ± 1d | 81 | 49 ± 16 cd | 32 ± 9ab | |
10 | 0 | 67 ± 5d | 60.8 | 225 ± 35e | 60 ± 21cd | 5 ± 1fg | 84 | 76 ± 29b | 20 ± 10c |
10 | 77 ± 6c | 65.8 | 317 ± 42c | 76 ± 19bc | 10 ± 2c | 88 | 109 ± 40a | 31 ± 12ab | |
20 | 90 ± 4b | 68.4 | 367 ± 62b | 88 ± 17ab | 11 ± 2b | 90 | 116 ± 15a | 32 ± 13ab | |
20 | 0 | 70 ± 4d | 69.0 | 251 ± 68d | 78 ± 28b | 7 ± 2de | 86 | 83 ± 27b | 29 ± 10ab |
10 | 75 ± 17c | 76.9 | 315 ± 83c | 90 ± 17ab | 10 ± 1c | 88 | 109 ± 17a | 29 ± 10abc | |
20 | 119 ± 11a | 80.8 | 619 ± 99a | 97 ± 15a | 14 ± 2a | 92 | 223 ± 17a | 38 ± 19a | |
46 | 0 | 34 ± 6h | 86.4 | 98 ± 9g | 38 ± 10f | 3 ± 1i | 72 | 31 ± 11d | 9 ± 2d |
10 | 38 ± 12gh | 84.6 | 154 ± 56f | 41 ± 16f | 4 ± 1h | 82 | 42 ± 17d | 7 ± 2d | |
20 | 39 ± 10gh | 75.2 | 161 ± 35f | 45 ± 20ef | 3 ± 1hi | 76 | 41 ± 9d | 11 ± 5cd | |
lsd | 5.2 | 25.0 | 17.7 | 0.96 | 15.5 | 8.5 | |||
cv% | 15.4 | 11.5 | 17.6 | 12.3 | 15.3 | 17.8 | |||
p-value | <0.001 | <0.001 | 0.02 | <0.001 | 0.04 | 0.75 | |||
‘Dekeko’ | Lentil | ||||||||
0 | 0 | 9 ± 2e | 63 | 66 ± 19f | 24 ± 4de | 3 ± 1gh | 64 | 6 ± 3gh | 9 ± 3bc |
10 | 9 ± 1e | 77 | 122 ± 48ed | 29 ± 6cde | 4 ± 1efg | 73 | 10 ± 2fg | 14 ± 5abc | |
20 | 13 ± 4cd | 76 | 105 ± 17e | 32 ± 7cd | 5 ± 1cde | 76 | 14 ± 4ef | 15 ± 3abc | |
10 | 0 | 12 ± 4d | 70 | 135 ± 38d | 27 ± 6cde | 5 ± 2def | 75 | 20 ± 5cd | 13 ± 7abc |
10 | 14 ± 3c | 79 | 150 ± 56d | 34 ± 10cd | 6 ± 1bcd | 78 | 17 ± 4de | 20 ± 6a | |
20 | 17 ± 4b | 85 | 231 ± 56b | 36 ± 9bc | 7 ± 1b | 83 | 28 ± 4b | 19 ± 8ab | |
20 | 0 | 14 ± 4c | 79 | 174 ± 56c | 36 ± 12b | 6 ± 1bc | 79 | 25 ± 5c | 9 ± 3bc |
10 | 18 ± 4b | 83 | 223 ± 48b | 44 ± 12ab | 9 ± 1a | 82 | 23 ± 5c | 13 ± 5abc | |
20 | 21 ± 5a | 88 | 256 ± 48a | 49 ± 18a | 8 ± 1a | 89 | 33 ± 2a | 14 ± 5abc | |
46 | 0 | 4 ± 1g | 63 | 39 ± 12g | 21 ± 8e | 2 ± 0h | 65 | 4 ± 1h | 5 ± 2c |
10 | 6 ± 1f | 68 | 104 ± 24e | 22 ± 5e | 4 ± 1fg | 70 | 12 ± 3f | 6 ± 1c | |
20 | 8 ± 2ef | 68 | 73 ± 12f | 27 ± 14cde | 4 ± 1efg | 75 | 10 ± 3fg | 7 ± 3c | |
lsd | 1.7 | 22.0 | 8.5 | 1.2 | 4.4 | 6.0 | |||
Cv% | 13.2 | 11.1 | 18.6 | 17.6 | 13.2 | 19.7 | |||
p-value | 0.004 | <0.001 | 0.01 | 0.04 | <0.001 | 0.82 |
Legumes and Wheat | Biomass N Accumulation | Ndfa (%) | BNF (kg ha−1) | Soil N After Harvest (kg ha−1) | TNP | ENP (%) | DWNP (mg) |
---|---|---|---|---|---|---|---|
Faba bean | 82 ± 24a | 60 ± 23a | 69 ± 27 a | 98 ± 31a | 64 ± 26a | 86 | 254 ± 147a |
Field pea | 44 ± 13c | 29 ± 17c | 23 ± 16 c | 82 ± 28b | 7 ± 4c | 86 | 74 ± 43c |
Dekeko | 55 ± 18b | 45 ± 19b | 32 ± 14 b | 87 ± 29b | 12 ± 6b | 75 | 142 ± 77b |
Lentil | 38 ± 11d | 20 ± 7d | 16 ± 9 d | 74 ± 23 c | 5 ± 2c | 80 | 13 ± 7d |
Wheat | 31 ± 9e | - | - | 61 ± 19d | - | - | |
lsd | 3.7 | 5.34 | 3.7 | 9.9 | 2.8 | 17.8 | |
cv | 15.9 | 17.3 | 12.3 | 13.4 | 12.2 | 11.0 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesfin, S.; Gebresamuel, G.; Haile, M.; Zenebe, A.; Desta, G. Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia. Sustainability 2020, 12, 6449. https://doi.org/10.3390/su12166449
Mesfin S, Gebresamuel G, Haile M, Zenebe A, Desta G. Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia. Sustainability. 2020; 12(16):6449. https://doi.org/10.3390/su12166449
Chicago/Turabian StyleMesfin, Shimbahri, Girmay Gebresamuel, Mitiku Haile, Amanuel Zenebe, and Girma Desta. 2020. "Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia" Sustainability 12, no. 16: 6449. https://doi.org/10.3390/su12166449
APA StyleMesfin, S., Gebresamuel, G., Haile, M., Zenebe, A., & Desta, G. (2020). Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia. Sustainability, 12(16), 6449. https://doi.org/10.3390/su12166449