A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings
Abstract
:1. Introduction
2. Material and Methods
3. An Overview of Balcony Research
- Open balcony (OB): An open system to the outside—projected balconies, loggias, mashrabiya (balconies protected by carved wood lattice structure, associated with Islamic culture) [25,26,27,28], balconies with shading systems (brise-soleil, blinds, curtains) [13,16,29], and green balconies (with vegetation) [20,30];
- Eliminated balcony (EB): An open system to the indoor space—former balconies that have been eliminated and integrated inside the indoor living area [39].
4. Balcony Spaces
4.1. Open Balcony
4.1.1. Overhang Effect
4.1.2. Airflow Pattern Transformation
4.1.3. Acoustic Shielding Effect
4.2. Glazed Balconies
4.2.1. Greenhouse Effect
4.2.2. Facade Tightness
4.2.3. Acoustic Insulation
4.2.4. Light Barrier
4.3. Eliminated Balconies
4.3.1. Loss of Buffer Space Effect
4.3.2. Moisture and Condensation
4.3.3. Loss of Acoustic Insulation
5. Summary of Balcony Impacts
6. Assessment Methods of Balcony Impacts
IEQ Factors | Parameters | Assessment Methods | Balcony Type | Location, Season | Ref. | |
---|---|---|---|---|---|---|
Thermal comfort | Air temperature | Ta | In-situ monitoring | OB | Malaysaia, cooling s. | [6,110] |
OB/GB | Libano, cooling s. | [29] | ||||
OB/GB | Tampere, both s. | [34] | ||||
GB | Isparta, heating s. | [37] | ||||
GB/EB | Seoul, heating s. | [43] | ||||
GB | Portugal, both s. | [96] | ||||
Mean radiant temperature | Tr | In-situ monitoring | GB/EB | Seoul, heating s. | [43] | |
GB | Muncie, heating s. | [88] | ||||
GB | Portugal, both s. | [96] | ||||
Relative Humidity | RH | In-situ monitoring | OB | Malaysaia, cooling s. | [6,110] | |
GB | Isparta, heating s. | [34] | ||||
GB | Isparta, heating s. | [37] | ||||
GB/EB | Seoul, heating s. | [43] | ||||
GB | Muncie, heating s. | [88] | ||||
GB | Portugal, both s. | [96] | ||||
Airflow pattern and velocity | In-situ monitoring | OB | Brisbane, cooling s. | [3] | ||
GB/EB | Seoul, heating s. | [43] | ||||
GB | Portugal, both s. | [96] | ||||
Simulation: CFD | OB | Brisbane, cooling s. | [3] | |||
OB | - | [59] | ||||
Energy consumption | Simulation: EnergyPlus | OB | Hong Kong, both s. | [45] | ||
OB | Barcelona, both s. | [50] | ||||
GB | Tabriz, heating s. | [90] | ||||
GB | Poland, cooling s. | [98] | ||||
EDSL TAS | OB/GB | Libano, cooling s. | [29] | |||
IES VE | OB | Bangkok, cooling s. | [65] | |||
TRNSYS | GB/EB | Seoul, both s | [43] | |||
GB | Italy, heating s. | [93] | ||||
Clim2000 s | GB | Lyon, - | [94] | |||
IDA-ICE 4.6.1 | GB | Tampere, both s. | [41] | |||
IAQ | Airflow pattern and velocity | In-situ monitoring: tracer gas technique | OB/GB | Korea, both s. | [100] | |
Simulation: CFD | OB | Malaysia, cooling s. | [64] | |||
OB | - | [66,67,68,111] | ||||
Visual comfort | Illuminace level | E | In-situ monitoring | OB | Malaysia, cooling s. | [6] |
Simulation: Radiance | EB | Korea, - | [39] | |||
Daysim into Energy | - | Abu Dabi, - | [25] | |||
Illuminace distribution | Ed | In-situ monitoring | - | Korea, - | [101] | |
Acoustic comfort | Sound pressure levels | SPL | In-situ monitoring | OB | Malaysia, cooling s. | [6] |
GB | Korea, - | [11] | ||||
OB | Korea, - | [78] | ||||
OB | Turin., - | [83] | ||||
OB | - | [86,112] | ||||
Measurements: by scale models | OB | Korea, - | [78] | |||
Simulation: COMSOL | OB | - | [80] | |||
Pyramid Tracing model | OB | [74,77] | ||||
RAY- NOISE | OB | Korea, - | [78] | |||
Pachyderm | OB | Turin., - | [83] | |||
Reverberation time | T20 | In-situ monitoring | OB | Korea, - | [78] |
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kotulla, T.; Denstadli, J.M.; Oust, A.; Beusker, E. What does it take to make the compact city liveable for wider groups? Identifying key neighbourhood and dwelling features. Sustainability 2019, 11, 3480. [Google Scholar] [CrossRef] [Green Version]
- Kerr, S.M.; Klocker, N.; Gibson, C. From backyards to balconies: Cultural norms and parents′ experiences of home in higher-density housing. Hous. Stud. 2020. [Google Scholar] [CrossRef]
- Omrani, S.; Garcia-Hansen, V.; Capra, B.R.; Drogemuller, R. On the effect of provision of balconies on natural ventilation and thermal comfort in high-rise residential buildings. Build. Environ. 2017, 123, 504–516. [Google Scholar] [CrossRef]
- Kennedy, R.; Buys, L.; Miller, E. Residents′ experiences of privacy and comfort in multi-storey apartment dwellings in subtropical Brisbane. Sustainability 2015, 7, 7741–7761. [Google Scholar] [CrossRef] [Green Version]
- Chau, K.W.; Wong, S.K.; Yiu, C.Y. The value of the provision of a balcony in apartments in Hong Kong. Prop. Manag. 2004, 22, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Dahlan, N.D.; Jones, P.J.; Alexander, D.K.; Salleh, E.; Alias, J. Evidence base prioritisation of indoor comfort perceptions in Malaysian typical multi-storey hostels. Build. Environ. 2009, 44, 2158–2165. [Google Scholar] [CrossRef]
- Wågø, S.; Hauge, B.; Støa, E. Between indoor and outdoor: Norwegian perceptions of well-being in energy-efficient housing. J. Arch. Plan. Res. 2016, 33, 329–346. [Google Scholar]
- Drout, F.; Anne, L.; Vassal, J.-P. Plus: Large-Scale Housing Developments. An Exceptional Case; Editorial Gustavo Gili: Barcelona, Spain, 2004; ISBN 978-84-252-2163-7. [Google Scholar]
- Rivkin, A. Espaciar: El horizonte post-mediático de la obra de Lacaton & Vassal. In Horizonte Post-Mediático: Lacaton y Vassal, 1993–2015; El Croquis Editorial: Madrid, Spain, 2015; pp. 33–47. ISBN 978-84-88386-84-7. [Google Scholar]
- Chun, C.; Kwok, A.; Tamura, A. Thermal comfort in transitional spaces—Basic concepts: Literature review and trial measurement. Build. Environ. 2004, 39, 1187–1192. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, H.-G. Field measurements of façade sound insulation in residential buildings with balcony windows. Build. Environ. 2007, 42, 1026–1035. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.; Leigh, S.B. Double window system with ventilation slits to prevent window surface condensation in residential buildings. Energy Build. 2011, 43, 3120–3130. [Google Scholar] [CrossRef]
- Requena-Ruiz, I. Bioclimatism in the Architecture of Le Corbusier: The millowners association building. Inf. La Constr. 2012, 64, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Raji, B.; Tenpierik, M.J.; van den Dobbelsteen, A. Early-stage design considerations for the energy-efficiency of high-rise office buildings. Sustainability 2017, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Fathy, H. Natural Energy and Vernacular Architecture; University of Chicago Press: Chicago, IL, USA, 1986; ISBN 0-226-23917-9. [Google Scholar]
- Pastor, C.E. The integration of light: LeCorbusier. Ega Rev. Expr. Graf. Arquit. 2018, 23, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Wall, M. Climate and Energy Use in Glazed Spaces. Ph.D. Thesis, Lund University, Lund, Sweden, 1996. [Google Scholar]
- Hilliaho, K.; Kovalainen, V.; Huuhka, S.; Lahdensivu, J. Glazed spaces: A simplified calculation method for the evaluation of energy savings and interior temperatures. Energy Build. 2016, 125, 27–44. [Google Scholar] [CrossRef]
- Wilson, M.P.; Jorgensen, O.B.; Johannesen, G. Daylighting, energy and glazed balconies: A study of a refurbishment project in Engelsby, near Flensberg, Germany. Light. Res. Technol. 2000, 32, 127–132. [Google Scholar] [CrossRef]
- Raji, B.; Tenpierik, M.J.; van den Dobbelsteen, A. The impact of greening systems on building energy performance: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Heinzerling, D.; Schiavon, S.; Webster, T.; Arens, E. Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Build. Environ. 2013, 70, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Montazami, A.; Gaterell, M.; Nicol, F. A comprehensive review of environmental design in UK schools: History, conflicts and solutions. Renew. Sustain. Energy Rev. 2015, 46, 249–264. [Google Scholar] [CrossRef]
- Sakhare, V.V.; Ralegaonkar, R.V. Indoor environmental quality: Review of parameters and assessment models. Archit. Sci. Rev. 2014, 57, 147–154. [Google Scholar] [CrossRef]
- Srinivasan, R.; Moe, K. The Hierarchy of Energy in Architecture: Emergy Analysis; Routledge: London, UK, 2015; ISBN 978-1-138-80352-7. [Google Scholar]
- Giovannini, L.; Lo Verso, V.R.M.; Karamata, B.; Andersen, M. Lighting and energy performance of an adaptive shading and daylighting system for arid climates. In Proceedings of the 6th International Building Physics Conference (IBPC), Torino, Italy, 14–17 June 2015; pp. 370–375. [Google Scholar]
- Almerbati, N.; Headley, D.; Ford, P.; Taki, A. From manual to hybrid, parametric Mashrabiya: Digital workflow for the re-envisioning and conservation of eastern architectural screens and the engagement of digital tectonics. Int. J. Architecton. Spat. Environ. Des. 2016, 10, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Kansara, T. Transitional zone design in the desert environment of Abu Dhabi: Vernacular vs. modern. Sustain. Cities Soc. 2016, 23, 59–67. [Google Scholar] [CrossRef]
- Mossé, A. Gossamer timescapes: A design-led investigation into electro-active and light responsive textiles for the home. Smart Mater. Struct 2018, 27. [Google Scholar] [CrossRef]
- Saleh, P.H. Thermal performance of glazed balconies within heavy weight/thermal mass buildings in Beirut, Lebanon′s hot climate. Energy Build. 2015, 108, 291–303. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Voss, K. Solar energy in building renovation—results and experience of international demonstration buildings. Energy Build. 2000, 32, 291–302. [Google Scholar] [CrossRef]
- Fernandes, J.; Pimenta, C.; Mateus, R.; Silva, S.M.; Braganca, L. Contribution of Portuguese Vernacular Building Strategies to Indoor Thermal Comfort and Occupants′ Perception. Buildings 2015, 5, 1242–1264. [Google Scholar] [CrossRef] [Green Version]
- Grudzinska, M. Glazed balconies as passive greenhouse systems—Potential of their use in Poland. Build. Serv. Eng. Res. Technol. 2016, 37, 555–572. [Google Scholar] [CrossRef]
- Hilliaho, K.; Kolio, A.; Pakkala, T.; Landensivu, J.; Vinha, J. Effects of added glazing on Balcony indoor temperatures: Field measurements. Energy Build. 2016, 128, 458–472. [Google Scholar] [CrossRef]
- Mihalakakou, G. On the use of sunspace for space heating/cooling in Europe. Renew. Energy 2002, 26, 415–429. [Google Scholar] [CrossRef]
- Mottard, J.-M.; Fissore, A. Thermal simulation of an attached sunspace and its experimental validation. Sol. Energy 2007, 81, 305–315. [Google Scholar] [CrossRef]
- Dikmen, N. Performance analysis of the external wall thermal insulation systems applied in residences. J. Therm. Sci. Technol. 2011, 31, 67–76. [Google Scholar]
- Oliveti, G.; Arcuri, N.; De Simone, M.; Bruno, R. Solar heat gains and operative temperature in attached sunspaces. Renew. Energy 2012, 39, 241–249. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.T. Healthy-daylighting design for the living environment in apartments in Korea. Build. Environ. 2010, 45, 287–294. [Google Scholar] [CrossRef]
- Touma, A.A.; Ouahrani, D. The selection of brise soleil shading optical properties for energy conservation and glare removal: A case study in Qatar. J. Build. Eng. 2018, 20, 510–519. [Google Scholar] [CrossRef]
- Hilliaho, K.; Mäkitalo, E.; Lahdensivu, J. Energy saving potential of glazed space: Sensitivity analysis. Energy Build. 2015, 99, 87–97. [Google Scholar] [CrossRef]
- Privitera, P.; Diodato, M.; García Sáez, S. Solar radiation influence on pre-modern openings features: La Coruña and Valletta. In Vernacular Architecture: Towards a Sustainable Future; CRC Press/Balkema: Leiden, The Netherlands, 2014; pp. 637–642. ISBN 9781315736907. [Google Scholar]
- Song, D.; Choi, Y.-J. Effect of building regulation on energy consumption in residential buildings in Korea. Renew. Sustain. Energy Rev. 2012, 16, 1074–1081. [Google Scholar] [CrossRef]
- Hastings, S.R. Breaking the “heating barrier”: Learning from the first houses without conventional heating. Energy Build. 2004, 36, 373–380. [Google Scholar] [CrossRef]
- Chan, A.L.S.; Chow, T.T. Investigation on energy performance and energy payback period of application of balcony for residential apartment in Hong Kong. Energy Build. 2010, 42, 2400–2405. [Google Scholar] [CrossRef]
- Raeissi, S.; Taheri, M. Optimum overhang dimensions for energy saving. Build. Environ. 1998, 33, 293–302. [Google Scholar] [CrossRef]
- Yu, J.; Yang, C.; Tian, L. Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy Build. 2008, 40, 1536–1546. [Google Scholar] [CrossRef]
- Xue, P.; Mak, C.M.; Cheung, H.D.; Chao, J. Post-occupancy evaluation of sunshades and balconies′ effects on luminous comfort through a questionnaire survey. Build. Serv. Eng. Res. Technol. 2016, 37, 51–65. [Google Scholar] [CrossRef]
- Jamaludin, A.A.; Mahmood, N.Z.; Ilham, Z. Performance of electricity usage at residential college buildings in the University of Malaya campus. Energy Sustain. Dev. 2017, 40, 85–102. [Google Scholar] [CrossRef]
- Foged, I.W. Thermal responsive performances of a Spanish balcony-based vernacular envelope. Buildings 2019, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Alhawari, A.; Mukhopadhyaya, P. Thermal bridges in building envelopes–An overview of impacts and solutions. Int. Rev. Appl. Sci. Eng. 2018, 9, 31–40. [Google Scholar] [CrossRef]
- Ge, H.; Baba, F. Effect of dynamic modeling of thermal bridges on the energy performance of residential buildings with high thermal mass for cold climates. Sustain. Cities Soc. 2017, 34, 250–263. [Google Scholar] [CrossRef]
- Ge, H.; McClung, V.R.; Zhang, S. Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study. Energy Build. 2013, 60, 163–173. [Google Scholar] [CrossRef]
- Baba, F.; Ge, H. Dynamic effect of balcony thermal bridges on the energy performance of a high-rise residential building in Canada. Energy Build. 2016, 116, 78–88. [Google Scholar] [CrossRef]
- Wang, Y.; Fukuda, H. The influence of insulation styles on the building energy consumption and indoor thermal comfort of multi-family residences. Sustainability 2019, 11, 266. [Google Scholar] [CrossRef] [Green Version]
- Chand, I.; Bhargava, P.K.; Krishak, N.L.V. Effect of balconies on ventilation inducing aeromotive force on low-rise buildings. Build. Environ. 1998, 33, 385–396. [Google Scholar] [CrossRef]
- Prianto, E.; Depecker, P. Characteristic of airflow as the effect of balcony, opening design and internal division on indoor velocity: A case study of traditional dwelling in urban living quarter in tropical humid region. Energy Build. 2002, 34, 401–409. [Google Scholar] [CrossRef]
- Prianto, E.; Depecker, P. Optimization of architectural design elements in tropical humid region with thermal comfort approach. Energy Build. 2003, 35, 273–280. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M.; Niu, J.L.; Li, Z.R. Effect of balconies on thermal comfort in wind-induced, naturally ventilated low-rise buildings. Build. Serv. Eng. Res. Technol. 2011, 32, 277–292. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M.; Niu, J.L.; Li, Z.R. The assessment of the performance of balconies using computational fluid dynamics. Build. Serv. Eng. Res. Technol. 2011, 32, 229–243. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Prasad, D.; King, S.; Hirota, K. The impact of balconies on wind induced ventilation of single-sided naturally ventilated multi-storey apartment. In Proceedings of the PLEA2009. 26th Conference on Passive and Low Energy Architecture, Quebec City, QC, Canada, 22–24 June 2009. [Google Scholar]
- Kahsay, M.T.; Bitsuamlak, G.T.; Tariku, F. CFD simulation of external CHTC on a high-rise building with and without façade appurtenances. Build. Environ. 2019, 165. [Google Scholar] [CrossRef]
- Izadyar, N.; Miller, W.; Rismanchi, B.; Garcia-Hansen, V. Impacts of façade openings′ geometry on natural ventilation and occupants′ perception: A review. Build. Environ. 2020, 170. [Google Scholar] [CrossRef]
- Mozaffari Ghadikolaei, F.; Ossen, D.R.; Mohamed, M.F. Effects of wing wall at the balcony on the natural ventilation performance in medium-rise residential buildings. J. Build. Eng. 2020, 31. [Google Scholar] [CrossRef]
- Bhikhoo, N.; Hashemi, A.; Cruickshank, H. Improving thermal comfort of low-income housing in Thailand through passive design strategies. Sustainability 2017, 9, 1440. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.J.; Mak, C.M.; Niu, J.L. Effect of balconies and upper-lower vents on ventilation and indoor air quality in a wind-induced, naturally ventilated building. Build. Serv. Eng. Res. Technol. 2014, 35, 393–407. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M.; Niu, J.L. Numerical investigation of wind-induced airflow and interunit dispersion characteristics in multistory residential buildings. Indoor Air 2013, 23, 417–429. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M. A study of interunit dispersion around multistory buildings with single-sided ventilation under different wind directions. Atmos. Environ. 2014, 88, 1–13. [Google Scholar] [CrossRef]
- Jin, R.; Hang, J.; Liu, S.; Wei, J.; Liu, Y.; Xie, J.; Sandberg, M. Numerical investigation of wind-driven natural ventilation performance in a multi-storey hospital by coupling indoor and outdoor airflow. Indoor Built Environ. 2016, 25, 1226–1247. [Google Scholar] [CrossRef]
- Sha, H.; Qi, D. A Review of High-Rise Ventilation for Energy Efficiency and Safety. Sustain. Cities Soc. 2020, 54. [Google Scholar] [CrossRef]
- Irwin, P.A. Wind engineering challenges of the new generation of super-tall buildings. J. Wind Eng. Ind. Aerodyn. 2009, 97, 328–334. [Google Scholar] [CrossRef]
- Montazeri, H.; Blocken, B.; Janssen, W.D.; van Hooff, T. CFD evaluation of new second-skin facade concept for wind comfort on building balconies: Case study for the Park Tower in Antwerp. Build. Environ. 2013, 68, 179–192. [Google Scholar] [CrossRef]
- Kropp, W.; Berillon, J. A theoretical model to investigate the acoustic performance of building facades in the low and middle frequency range. Acustica 1998, 84, 681–688. [Google Scholar]
- El Dien, H.H.; Woloszyn, P. Balcony form—An approach to reduce sound pressure level into the building façade. Wit Trans. Built Environ. 2003, 69, 349–358. [Google Scholar]
- El-Dien, H.H. Acoustic performance of high rise building façades due to its balconies form. Acta Acust. 2003, 89. [Google Scholar] [CrossRef]
- Li, K.M.; Lui, W.K.; Lau, K.K.; Chan, K.S. A simple formula for evaluating the acoustic effect of balconies in protecting dwellings against road traffic noise. Appl. Acoust. 2003, 64, 633–653. [Google Scholar] [CrossRef]
- El Dien, H.H.; Woloszyn, P. Prediction of the sound field into high-rise building facades due to its balcony ceiling form. Appl. Acoust. 2004, 65, 431–440. [Google Scholar] [CrossRef]
- Lee, P.J.; Kim, Y.H.; Jeon, J.Y.; Song, K.D. Effects of apartment building façade and balcony design on the reduction of exterior noise. Build. Envrion. 2007, 42, 3517–3528. [Google Scholar] [CrossRef] [Green Version]
- Naish, D.A.; Tan, A.C.C.; Demirbilek, F.N. Simulating the effect of acoustic treatment types for residential balconies with road traffic noise. Appl. Acoust. 2014, 79, 131–140. [Google Scholar] [CrossRef]
- Wang, X.; Mao, D.; Yu, W.; Jiang, Z. Acoustic performance of balconies having inhomogeneous ceiling surfaces on a roadside building facade. Build. Environ. 2015, 93, 1–8. [Google Scholar] [CrossRef]
- May, D.N. Freeway noise and high-rise balconies. J. Acoust. Soc. Am. 1979, 65, 699–704. [Google Scholar] [CrossRef]
- Hothersall, D.C.; Horoshenkov, K.V.; Mercy, S.E. Numerical modelling of the sound field near a tall building with balconies near a road. J. Sound Vib. 1996, 198, 507–515. [Google Scholar] [CrossRef]
- Badino, E.; Manca, R.; Shtrepi, L.; Calleri, C.; Astolfi, A. Effect of façade shape and acoustic cladding on reduction of leisure noise levels in a street canyon. Build. Environ. 2019, 157, 242–256. [Google Scholar] [CrossRef]
- Barbaro, S.; Caracausi, R.; Rapin, J.M. Control of acoustical quality of indoor spaces: Thorough analysis of the influence of façade typologies. Build. Acoust. 2001, 8, 161–177. [Google Scholar] [CrossRef]
- Ishizuka, T.; Fujiwara, K. Traffic noise reduction at balconies on a high-rise building facade. J. Acoust. Soc. Am. 2012, 131, 2110–2117. [Google Scholar] [CrossRef]
- Ishizuka, T.; Fujiwara, K. Full-scale tests of reflective noise-reducing devices for balconies on high-rise buildings. J. Acoust. Soc. Am. 2013, 134, EL185–EL190. [Google Scholar] [CrossRef]
- Naish, D.A.; Tan, A.C.C.; Demirbilek, F.N. Estimating health related costs and savings from balcony acoustic design for road traffic noise. Appl. Acoust. 2012, 73, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Fernández-González, A. Analysis of the thermal performance and comfort conditions produced by five different passive solar heating strategies in the United States midwest. Sol. Energy 2007, 81, 581–593. [Google Scholar] [CrossRef]
- Hilliaho, K.; Lahdensivu, J.; Vinha, J. Glazed space thermal simulation with IDA-ICE 4.61 software—Suitability analysis with case study. Energy Build. 2015, 89, 132–141. [Google Scholar] [CrossRef]
- Babaee, F.; Fayaz, R.; Sarshar, M. The optimum design of sunspaces in apartment blocks in cold climate. Archit. Sci. Rev. 2016, 59, 239–253. [Google Scholar] [CrossRef]
- Bataineh, K.M.; Fayez, N. Analysis of thermal performance of building attached sunspace. Energy Build. 2011, 43, 1863–1868. [Google Scholar] [CrossRef]
- Suárez, M.J.; Gutiérrez, A.J.; Pistono, J.; Blanco, E. CFD analysis of heat collection in a glazed gallery. Energy Build. 2011, 43, 108–116. [Google Scholar] [CrossRef]
- Asdrubali, F.; Cotana, F.; Messineo, A. On the evaluation of solar greenhouse efficiency in building simulation during the heating period. Energies 2012, 5, 1864–1880. [Google Scholar] [CrossRef] [Green Version]
- Roux, J.J.; Teodosiu, C.; Covalet, D.; Chareille, R. Validation of a glazed space simulation model using full-scale experimental data. Energy Build. 2004, 36, 557–565. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Meng, Q.; Zhao, L.; Wang, F. Field study on indoor thermal environment in an atrium in tropical climates. Build. Environ. 2009, 44, 431–436. [Google Scholar] [CrossRef]
- Fernandes, J.; Malheiro, R.; De Fátima Castro, M.; Gervásio, H.; Silva, S.M.; Mateus, R. Thermal performance and comfort condition analysis in a vernacular building with a glazed balcony. Energies 2020, 13, 624. [Google Scholar] [CrossRef] [Green Version]
- Aelenei, D.; De Azevedo Leal, H.; Aelenei, L. The use of attached-sunspaces in retrofitting design: The case of residential buildings in Portugal. Energy Procedia 2014, 48, 1436–1441. [Google Scholar] [CrossRef] [Green Version]
- Nowak-Dzieszko, K.; Rojewska-Warchał, M. Influence of the Balcony Glazing Construction on Thermal Comfort of Apartments in Retrofitted Large Panel Buildings. Procedia Eng. 2015, 108, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Berezin, D.V. Exterior Space Retrofitting Planning with Possible Effect on Building Thermal Characteristics. In Proceedings of the IOP Conference Series Materials Science and Engineering, Irkutsk, Russia, 21–22 September 2017. [Google Scholar]
- Hong, G.; Kim, B.S. Field measurements of infiltration rate in high rise residential buildings using the constant concentration method. Build. Environ. 2016, 97, 48–54. [Google Scholar] [CrossRef]
- Shin, H.Y.; Kim, G.; Kim, J.T. Effect of Occupants′ Behaviour of Daylight Controls on Residential Visual Environment. Indoor Built Environ. 2013, 22, 191–202. [Google Scholar] [CrossRef]
- Yoon, Y.B.; Seo, B.; Koh, B.B.; Cho, S. Performance analysis of a double-skin façade system installed at different floor levels of high-rise apartment building. J. Build. Eng. 2019, 26. [Google Scholar] [CrossRef]
- Choi, J.; Chun, C.; Sun, Y.; Choi, Y.; Kwon, S.; Bornehag, C.G.; Sundell, J. Associations between building characteristics and children′s allergic symptoms—A cross-sectional study on child’s health and home in Seoul, South Korea. Build. Environ. 2014, 75, 176–181. [Google Scholar] [CrossRef]
- Park, H.K.; Song, G.G.; Kim, Y.; Kim, S.W. Airborne sound insulation against outdoor noise in balcony remodeled apartment. In Proceedings of the 17th International Congress on Sound and Vibration, Cairo, Egypt, 18–22 July 2010; pp. 775–779. [Google Scholar]
- Barclay, M.; Kang, J.; Sharples, S. Combining noise mapping and ventilation performance for non-domestic buildings in an urban area. Build. Environ. 2012, 52, 68–76. [Google Scholar] [CrossRef]
- Cui, S.; Perret-Gentil, M.; Gourdon, E.; Barthelmé, A.-F.; Mankibi, M.E.; Wurtz, E.; Stabat, P.; Marchio, D. A global modelling approach of natural ventilation with acoustic and daylighting constraints. Int. J. Vent. 2016, 15, 233–252. [Google Scholar] [CrossRef]
- Baba, F.; Ge, H. Effect of climate change on the energy performance and thermal comfort of high-rise residential buildings in cold climates. In Proceedings of the CESBP, Praha, Czech, 2–5 September 2019. [Google Scholar]
- Lai, J.H.K.; Yik, F.W.H. Perception of importance and performance of the indoor environmental quality of high-rise residential buildings. Build. Environ. 2009, 44, 352–360. [Google Scholar] [CrossRef]
- Altomonte, S.; Rutherford, P.; Wilson, R. Indoor Environmental Quality: Lighting and Acoustics. Encycl. Sustain. Technol. 2017, 221–229. [Google Scholar] [CrossRef]
- Dahlan, N.D.; Jones, P.J.; Alexander, D.K.; Salleh, E.; Dixon, D. Field measurement and subjects′ votes assessment on thermal comfort in high-rise hostels in Malaysia. Indoor Built Environ. 2008, 17, 334–345. [Google Scholar] [CrossRef]
- Zheng, X.; Montazeri, H.; Blocken, B. CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES. Build. Environ. 2020, 173. [Google Scholar] [CrossRef]
- Cabrera, D.; Yadav, M.; Holmes, J.; Fong, O.; Caldwell, H. Incidental acoustic retroreflection from building façades: Three instances in Berkeley, Sydney and Hong Kong. Build. Environ. 2020, 172. [Google Scholar] [CrossRef]
IEQ Factors | Open Balcony Impacts | Glazed Balcony Impacts | Eliminated Balcony Impacts | |
---|---|---|---|---|
Thermal comfort | + | overhang effect—provides solar shading airflow pattern transformation—increases the natural ventilation acoustic shielding effect—reduces background noise with doors open, enabling an increase of natural ventilation | greenhouseeffect—increase in solar gains with a positive effect in heating season conditions | - |
- | - | greenhouseeffect—can lead to excessive heat gains and create overheating problems in cooling season conditions | loss of buffer space effect—increases the heat loss and excessive penetration of direct sunlight | |
Air quality | + | airflow pattern transformation—increases the air flow rate acoustic shielding effect—reduces background noise with doors open, enabling an increase of natural ventilation | greenhouseeffect—improves the thermal insulation and facilitate the evaporation of moisture | - |
- | increase facade tightness—decreases the air infiltration rate and the natural ventilation | condensation and moisture—the typical poor insulation of the balcony space can cause mold and indoor dampness problems loss of acoustic insulation—decreases doors openings, provoking a reduction of natural ventilation | ||
Visual comfort | + | overhang effect—blocks the undesirable penetration of sunlight, reducing uncomfortable glare | - | - |
- | light barrier—decreases the daylight in the contiguous living spaces | loss of buffer space effect—provokes excessive penetration of direct sunlight | ||
Acoustic comfort | + | acoustic shielding effect—acts as a protection device against outdoor noise | acoustic protection—acts as an acoustic barrier against outdoor noise | - |
- | - | - | loss ofacoustic insulation—causes indoor acoustic problems |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, C.; Ramos, N.M.M.; Flores-Colen, I. A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings. Sustainability 2020, 12, 6453. https://doi.org/10.3390/su12166453
Ribeiro C, Ramos NMM, Flores-Colen I. A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings. Sustainability. 2020; 12(16):6453. https://doi.org/10.3390/su12166453
Chicago/Turabian StyleRibeiro, Catarina, Nuno M. M. Ramos, and Inês Flores-Colen. 2020. "A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings" Sustainability 12, no. 16: 6453. https://doi.org/10.3390/su12166453
APA StyleRibeiro, C., Ramos, N. M. M., & Flores-Colen, I. (2020). A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings. Sustainability, 12(16), 6453. https://doi.org/10.3390/su12166453