Changing Agricultural Systems and Food Diets to Prevent and Mitigate Global Health Shocks
Abstract
:1. Introduction
2. Reducing the Likelihood of Global Health Shocks by Changing Farming Systems
2.1. Negative Impacts of Farming Systems
2.2. Climate and Environment in the CAP
2.3. Towards More Ambitious and More Efficient Climatic and Environmental Measures
3. Reducing the Impacts of Global Health Shocks by Changing Diets and Food Consumption Practices
3.1. Public Policy Instruments for Healthier Food Diets
3.2. Public Policy Instruments for More Environmentally Friendly and Healthier Food Diets
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lerner, H.; Berg, C. The concept of health in One Health and some practical implications for research and education: What is One Health? Infect. Ecol. Epidemiol. 2015, 5, 25300. [Google Scholar] [CrossRef] [PubMed]
- Waltner-Toews, D.; Wilcox, B.A.; Aguirre, A.A.; Daszak, P.; Horwitz, P.; Martens, P.; Parkes, M.; Patz, J.A. EcoHealth: A Transdisciplinary Imperative for a Sustainable Future. EcoHealth 2004, 1, 3–5. [Google Scholar] [CrossRef]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; Dias, B.F.D.S.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Lerner, H.; Berg, C. A comparison of three holistic approaches to heath: One Health, EcoHealth and Planetary Health. Front. Vet. Sci. 2017, 4, 163. [Google Scholar] [CrossRef] [PubMed]
- The World Organisation for Animal Health (O.I.E.). One Health. 2020. Available online: https://www.oie.int/en/for-the-media/onehealth/ (accessed on 25 June 2020).
- Bonilla-Aldana, D.; Dhama, K.; Rodriguez-Morales, A.J. Revisiting the One Health Approach in the Context of COVID-19: A Look into the Ecology of this Emerging Disease. Adv. Anim. Vet. Sci. 2020, 8, 234–237. [Google Scholar] [CrossRef] [Green Version]
- El Zowalaty, M.E.; Järhult, J.D. From SARS to COVID-19: A previously SARS-related coronavirus (SARS-CoV-2) of pandemic potential infecting humans – Call for a One Health approach. One Health 2020, 9, 100124. [Google Scholar] [CrossRef]
- Di Marco, M.; Baker, M.L.; Daszak, P.; Ferrier, S. Opinion: Sustainable development must account for pandemic risk. Proc. Natl. Acad. Sci. USA 2020, 117, 3888–3892. [Google Scholar] [CrossRef] [Green Version]
- European Commission (E.C.). The European Green Deal; COM(2019) 640 final: Brussels, Belgium, 2019; p. 24. [Google Scholar]
- French Foundation for Research on Biodiversity (F.R.B.). Covid-19 and Biodiversity: Towards a New Form of Cohabitation between Humans and all Non-Human Life Forms; FRB and its Scientific Council: Paris, France, 2020.
- United Nations Environment Programme (U.N.E.P.). UNEP Frontiers 2016 Report: Emerging Issues of Environmental Concern; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Watt, N.; Amman, M.; Arnell, N.; Costello, A. The 2018 Report of the Lancet Countdown on Health and Climate Change: Shaping the Health of Nations for Centuries to Come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef]
- Billeter, R.; Liira, J.; Bailey, D.; Bugter, R.; Arens, P.; Augenstein, I.; Aviron, S.; Baudry, J.; Bukacek, R.; Burel, F.; et al. Indicators for biodiversity in agricultural landscapes: a pan-European study. J. Appl. Ecol. 2007, 45, 141–150. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Moreira, F.; Sirami, C.; Schindler, S.; Müller, R.; Bontzorlos, V.; Clough, D.; Bezák, P.; Bonn, A.; et al. A greener path for the EU Common Agricultural Policy: It’s time for sustainable, environmental performance. Science 2019, 365, 449–451. [Google Scholar] [CrossRef]
- Sirami, C.; Gross, N.; Baillod, A.B.; Fahrig, L. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl. Acad. Sci. USA 2019, 116, 16442–16447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inger, R.; Gregory, R.; Duffy, J.P.; Stott, I.; Vorisek, P.; Gaston, K.J. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 2014, 18, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; de Kroon, H. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, A. European Red list of Bees. IUCN Red List of Threatened Species–Regional Assessment; European Union: Luxembourg, 2014. [Google Scholar]
- Intergovernmental Panel on Climate Change (I.P.C.C.). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SRCCL). 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/Fullreport-1.pdf (accessed on 25 June 2020).
- The Official Journal of the European Union (O.J.E.U.). Regulation (EU) 2018/842 of the European Parliament and the Council of the 30 May 2018 on binding annual greenhouse gas emission reductions by Members States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013. Off. J. Eur. Union 2018, L156/26. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018R0842 (accessed on 25 June 2020).
- European Environment Agency (E.E.A.). The European Environment–State and Outlook 2020: Knowledge for Transition to Sustainable Europe; European Union: Luxembourg, 2019. [Google Scholar]
- EU Communication (E.C.). Stepping up EU Action to Protect and Restore the World’s Forests; COM (2019) 352 Final; EU Communication: Brussels, Belgium, 2019. [Google Scholar]
- Wezel, A.; Casagran, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Dupraz, P.; Guyomard, H. Environment and Climate in the Common Agricultural Policy. EuroChoices 2019, 18, 18–24. [Google Scholar] [CrossRef] [Green Version]
- European Court of Auditors (E.C.A.). Biodiversity on Farmland: CAP Contribution has Not Halted the Decline; Special Report of the European Court of Auditors; Publications Office of the European Union: Luxembourg, 2020; Volume 13, p. 58. [Google Scholar]
- European Court of Auditors (E.C.A.). Greening: A More Complex Income Support Scheme, Not yet Environmentally Effective; Special Report of the European Court of Auditors; Publications Office of the European Union: Luxembourg, 2017; Volume 21, p. 63. [Google Scholar]
- Navarro, A.; Lopez-Bao, J.C. Towards a greener Common Agricultural Policy. Nat. Ecol. Evol. 2018, 2, 1830–1833. [Google Scholar] [CrossRef]
- Cullen, P.; Dupraz, P.; Moran, J.; Murphy, P.; O’Flaherty, R.; O’Donoghue, C.; O’Shea, R.; Ryan, M. Agri-Environment Scheme Design: Past Lessons and Future Suggestions. EuroChoices 2018, 17, 26–30. [Google Scholar] [CrossRef]
- European Commission (E.C.). Future of the Common Agricultural Policy. Website of the European Union. 2018. Available online: https://ideas.repec.org/a/gam/jsusta/v8y2016i4p378-d68368.html (accessed on 25 June 2020).
- Oates, W.E. Fiscal Federalism; Edward Elgar Publishing: Cheltenham, UK, 2001; Number 14708. [Google Scholar]
- European Commission (E.C.). EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives; COM(2020) 380 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission (E.C.). A Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; COM(2020) 381 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Chang. Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef]
- Kruse, M.; Stein-Bachinger, K.; Gottwald, F.; Schmidt, E.; Heinken, T. Influence of grassland management on the biodiversity of plants and butterflies on organic suckler cow farms. Tuexenia 2016, 36, 97–119. [Google Scholar]
- Loubes, F.; Brasiles, V.; Sarthou, J.P. Couverture végétale permanente. 2016. Available online: https://dicoagroecologie.fr/encyclopedie/couverture-vegetale-permanente/ (accessed on 25 June 2020).
- Pe’er, G.; Zinngrebe, Y.; Hauck, J.; Schindler, S.; Dittrich, A.; Zingg, S.; Tscharntke, T.; Oppermann, R.; Sutcliffe, L.M.E.; Sirami, C.; et al. Adding some green to the greening: Improving the EU’s Ecological Focus Areas for biodiversity and farmers. Conserv. Lett. 2017, 10, 517–530. [Google Scholar] [CrossRef]
- Migliorelli, M.; Dessertine, P. Time for new financing instruments? A market-oriented framework to finance environmentally-friendly practices in EU agriculture. J. Sustain. Financ. Investig. 2018, 8, 1–25. [Google Scholar] [CrossRef]
- Czyżewski, B.; Matuszczak, A.; Kryszak, Ł.; Czyżewski, A. Efficiency of the EU Environmental Policy in Struggling with Fine Particulate Matter (PM2.5): How Agriculture Makes a Difference. Sustainability 2019, 11, 4984. [Google Scholar]
- European Commission (E.C.). Commission Staff Working Document–Impact Assessment; SWD(2018) 301 Final; European Commission: Brussels, Belgium, 2018; p. 52. [Google Scholar]
- Böcker, T.; Finger, R. European Pesticide Tax Schemes in Comparison: An Analysis of Experiences and Developments. Sustainability 2016, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.; et al. Clinical Characteristics of Coronavirus Disease in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef]
- Panchal, S.; Brown, L. Cholesterol versus inflammation as cause of chronic diseases. Nutrients 2019, 11, 2332. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Obesity Prevalence on Body Mass Index (BMI). 2020. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 25 June 2020).
- Pineda, E.; Sanchez-Romero, L.M.; Brown, M.; Jaccard, A.; Jewell, J.; Galea, G.; Webber, L.; Breda, J. Forecasting Future Trends in Obesity across Europe: The Value of Improving Surveillance. Obes. Facts 2018, 11, 360–371. [Google Scholar] [CrossRef]
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capacci, S.; Mazzocchi, M. Five-a-day, a price to pay: An evaluation of the UK program impact accounting for market forces. J. Health Econ. 2011, 30, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Murimi, M.; Moyeda-Carabaza, A.F.; Nguyen, B.; Saha, S.; Amin, R.; Njike, V. Factors that contribute to effective nutrition education interventions in children: A systematic review. Nutr. Rev. 2018, 76, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.G.; Wills, J.M. A review of European research on consumer response to nutrition information on food labels. J. Public Health 2007, 15, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, S.; Afshin, A.; Shulkin, M.; Mozaffarian, D. A meta-analysis of food labeling effects on consumer diet behaviors and industry practices. Am. J. Prev. Med. 2019, 56, 300–314. [Google Scholar] [CrossRef]
- Muller, L.; Lacroix, A.; Ruffieux, B. Environmental Labelling and Consumption Changes: A Food Choice Experiment. Env. Resour. Econ. 2019, 73, 871–897. [Google Scholar] [CrossRef]
- Brambila-Macias, J.; Shankar, B.; Capacci, S.; Mazzochi, M.; Perez-Cueto, F.J.A.; Verbeke, W.; Traill, W.B. Policy interventions to promote healthy eating: A review of what works, what does not, and what is promising. Food Nutr. Bull. 2011, 32, 365–375. [Google Scholar] [CrossRef]
- Réquillart, V.; Soler, G. Is the reduction of chronic diseases related to food consumption in the hands of the food industry? Eur. Rev. Agric. Econ. 2014, 41, 375–403. [Google Scholar] [CrossRef]
- Allcott, H.; Lockwood, B.B.; Taubinsky, D. Should we tax sugar-sweetened beverages? An overview of theory and evidence. J. Econ. Perspect. 2019, 33, 202–227. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.D.; Smed, S. The Danish tax on saturated fat: Short run effects on consumption, substitution patterns and consumer prices of fats. Food Pol. 2013, 42, 18–31. [Google Scholar] [CrossRef]
- Griffith, R.; von Hinke, S.; Smith, S. Getting a healthy start: The effectiveness of targeted benefits for improving dietary choices. J. Health Econ. 2018, 58, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Wiebe, K.D.; Godfray, C.J.; Rayner, M.; Scarborough, P. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Chang. 2016, 7, 69–74. [Google Scholar] [CrossRef]
- Vieux, F.; Soler, L.G.; Touazi, D.; Darmon, N. High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am. J. Clin. Nutr. 2013, 97, 569–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieux, F.; Perignon, M.; Gazan, R.; Darmon, N. Dietary changes needed to improve diet sustainability: Are they similar across Europe? Eur. J. Clin. Nutr. 2018, 72, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; Declerck, F.; Wood, A.; et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic farming in life cycle assessment. Nat. Sustain. 2020, 3, 419–420. [Google Scholar] [CrossRef]
- Castiglione, C.; Mazzocchi, M. Ten years of five-a-day policy in the UK: Nutritional outcomes and environmental effects. Ecol. Econ. 2019, 157, 185–194. [Google Scholar] [CrossRef]
- Irz, X.; Leroy, P.; Requillart, V.; Soler, L.G. Welfare and sustainability effects of dietary recommendations. Ecol. Econ. 2016, 130, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Doro, E.; Réquillart, V. Sustainable diets: Are nutritional objectives and low-carbon-emission objectives compatible? Rev. Agric. Food Environ. Stud. 2020. [Google Scholar] [CrossRef]
- Briggs, A.D.M.; Kehlbacher, A.; Tiffin, R.; Garnett, T.; Rayner, M.; Scarborough, P. Assessing the impact on chronic disease of incorporating the societal cost of greenhouse gases into the price of food: an econometric and comparative risk assessment modelling study. BMJ Open 2013, 3, e003543. [Google Scholar] [CrossRef] [Green Version]
- Edjabou, L.D.; Smed, S. The effect of using consumption taxes on foods to promote climate friendly diets the case of Denmark. Food Pol. 2013, 39, 84–96. [Google Scholar] [CrossRef]
- Helm, D. The Environmental Impacts of the Coronavirus. Env. Resour. Econ. 2020, 76, 21–38. [Google Scholar] [CrossRef] [PubMed]
Country | Prevalence of Obesity in 2014 1 (%) | Prevalence of Obesity by 2025 2 (%) |
---|---|---|
Estonia | 19.7 | 34 |
Finland | 17.8 | 20 |
France | 14.7 | 24 |
Germany | 16.4 | 19 |
Greece | 16.0 | 40 |
Ireland | 18.2 | 43 |
Italy | 10.5 | 13 |
Lithuania | 16.6 | 24 |
Netherland | 12.9 | 14 |
Sweden | 13.4 | 17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Détang-Dessendre, C.; Guyomard, H.; Réquillart, V.; Soler, L.-G. Changing Agricultural Systems and Food Diets to Prevent and Mitigate Global Health Shocks. Sustainability 2020, 12, 6462. https://doi.org/10.3390/su12166462
Détang-Dessendre C, Guyomard H, Réquillart V, Soler L-G. Changing Agricultural Systems and Food Diets to Prevent and Mitigate Global Health Shocks. Sustainability. 2020; 12(16):6462. https://doi.org/10.3390/su12166462
Chicago/Turabian StyleDétang-Dessendre, Cécile, Hervé Guyomard, Vincent Réquillart, and Louis-Georges Soler. 2020. "Changing Agricultural Systems and Food Diets to Prevent and Mitigate Global Health Shocks" Sustainability 12, no. 16: 6462. https://doi.org/10.3390/su12166462
APA StyleDétang-Dessendre, C., Guyomard, H., Réquillart, V., & Soler, L. -G. (2020). Changing Agricultural Systems and Food Diets to Prevent and Mitigate Global Health Shocks. Sustainability, 12(16), 6462. https://doi.org/10.3390/su12166462