Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Isolation and Culturing of Bacteria and Fungi
2.3. DNA Extraction, Polymerase Chain Reaction (PCR) and Sequencing of Bacteria and Fungi
2.4. Sequence Alignment and Phylogenetic Analyses of Bacteria and Fungi
3. Results
3.1. Characteristics of the Microbial Strains
3.2. Phylogenetic Analyses of Bacteria
3.3. Phylogenetic Analyses of Fungi
3.4. Distribution Patterns of the Bacteria and Fungi in Four Glaciers’ Cryoconite of Greenland and Himalaya
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wharton, R.A.; McKay, C.P.; Simmons, G.M.; Parker, B.C. Cryoconite holes on glaciers. Bioscience 1985, 35, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N. Optical characteristics of cryoconite (surface dust) on glaciers: The relationship between light absorbency and the property of organic matter contained in the cryoconite. Ann. Glaciol. 2002, 34, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.M.; Sharma, J.; Gawas-Sakhalkar, P.; Upadhyay, A.K.; Naik, S.; Pedneker, S.; Ravindra, R. Atmospheric deposition studies of heavy metals in arctic by comparative analysis of lichens and cryoconite. Environ. Monit. Assess. 2013, 185, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Kohshima, S.; Seko, K. Structure, Formation, and Darkening Process of Albedo-Reducing Material (Cryoconite) on a Himalayan Glacier: A Granular Algal Mat Growing on the Glacier. Arct. Antarct. Alp. Res. 2001, 33, 115–122. [Google Scholar] [CrossRef]
- Margesin, R.; Zacke, G.; Schinner, F. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct. Antarct. Alp. Res. 2002, 34, 88–93. [Google Scholar] [CrossRef]
- Anesio, A.M.; Hodson, A.J.; Fritz, A.; Psenner, R.; Sattler, B. High microbial activity on glaciers: Importance to the global carbon cycle. Glob. Chang. Biol. 2009, 15, 955–960. [Google Scholar] [CrossRef]
- Xu, Y.; Simpson, A.J.; Eyles, N.; Simpson, M.J. Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains. Org. Geochem. 2010, 41, 177–186. [Google Scholar] [CrossRef]
- Langford, H.; Hodson, A.; Banwart, S.; Bøggild, C. The microstructure and biogeochemistry of Arctic cryoconite granules. Ann. Glaciol. 2010, 51, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Gerdel, R.W.; Drouet, F. The cryoconite of the Thule Area, Greenland. Trans. Am. Microsc. Soc. 1960, 79, 256–272. [Google Scholar] [CrossRef]
- Takeuchi, N.; Nishiyama, H.; Li, Z. Structure and formation process of cryoconite granules on Ürümqi glacier No.1, Tien Shan, China. Ann. Glaciol. 2010, 51, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.M.; Kumar, A.; Sharma, P.; Mulik, R.U.; Upadhyay, A.K.; Ravindra, R. Elemental variations in glacier cryoconites of Indian Himalaya and Spitsbergen. Arctic. Geosci. Front. 2017, 8, 1339–1347. [Google Scholar] [CrossRef]
- Kohshima, S.; Seko, K.; Yoshimura, Y. Biotic acceleration of glacier melting in Yala Glacier, Langtang region, Nepal Himalaya. In Snow and Glacier Hydrology, Proceedings of the Kathumandu Symposium, Kathumandu, Nepal, 16–21 November 1992; IAHS Press: Wallingford, UK, 1993; Volume 218, pp. 309–316. [Google Scholar]
- Wientjes, I.G.M.; Vande Wal, R.S.W.; Reichart, G.J.; Sluijs, A.; Oerlemans, J. Dust from the dark region in the western ablation zone of the Greenland icesheet. Cryosphere 2011, 5, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Anesio, A.M.; Laybourn-Parry, J. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 2011, 27, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Edwards, A.; Hubbard, A. Biocryomorphology: Integrating Microbial Processes with Ice Surface Hydrology, Topography, and Roughness. Front. Earth Sci. 2015, 3, 78. [Google Scholar] [CrossRef] [Green Version]
- Musilova, M.; Tranter, M.; Bamber, J.L.; Takeuchi, N.; Anesio, A.M. Experimental evidence that microbial activity lowers the albedo of glaciers. Geochem. Persp. Let. 2016, 2, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Nagatsuka, N.; Takeuchi, N.; Nakano, T.; Kokado, E.; Li, Z. Sr, Nd, and Pb stable isotopes of surface dust on Urumqi glacier No.1 in western China. Ann. Glaciol. 2010, 51, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Stibal, M.; Šabacká, M.; Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 2012, 5, 771–774. [Google Scholar] [CrossRef]
- Stibal, M.; Telling, J.; Cook, J.; Mak, K.M.; Hodson, A.; Anesio, A.M. Environmental controls on microbial abundance and activity on the Greenland ice sheet: A multivariate analysis approach. Microb.Ecol. 2012, 63, 74–84. [Google Scholar] [CrossRef]
- Cameron, K.A.; Stibal, M.; Chrismas, N.; Box, J.; Jacobsen, C.S. Nitrate addition has minimal short-term impacts on Greenland ice sheet supraglacial prokaryotes. Environ. Microbiol. Rep. 2017, 9, 144–150. [Google Scholar] [CrossRef]
- Anesio, A.M.; Lutz, S.; Chrismas, N.A.M.; Benning, L.G. The microbiome of glaciers and ice sheets. Npj Biofilms Microbiomes 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Tranter, M.; Fountain, A.G.; Fritsen, C.H.; Lyons, W.B.; Priscu, J.C.; Statham, P.J.; Welch, K.A. Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol. Process. 2004, 18, 379–387. [Google Scholar] [CrossRef]
- Hodson, A.; Anesio, A.M.; Tranter, M.; Fountain, A.; Osborn, M.; Priscu, J.; Laybourn-Parry, J.; Sattler, B. Glacial ecosystems. Ecol. Monogr. 2008, 78, 41–67. [Google Scholar] [CrossRef]
- Mueller, D.R.; Vincent, W.F.; Pollard, W.H.; Fritsen, C.H. Glacial cryoconite ecosystems: A bipolar comparison of algal communities and habitats. Nova Hedwig. 2001, 123, 173–197. [Google Scholar]
- Hodson, A.; Anesio, A.M.; Ng, F.; Watson, R.; Quirk, J.; Irvine-Fynn, T.; Dye, A.; Clark, C.; McCloy, P.; Kohler, J.; et al. A glacier respires: Quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J. Geophys. Res. 2007, 112, G04S36. [Google Scholar] [CrossRef] [Green Version]
- Leslie, A. The Arctic Voyages of Adolf Erik Nordenskjöld: 1858–1879; MacMillan and Co.: London, UK, 1879. [Google Scholar]
- Stibal, M.; Šabacká, M.; Kaštovská, K. Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb. Ecol. 2006, 52, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Kastovska, K.; Elster, J.; Stibal, M.; Santruckova, H. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (HighArctic). Microbial. Ecol. 2005, 50, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Anesio, A.M.; Mindl, B.; Laybourn-Parry, J.; Hodson, A.J.; Sattler, B. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J. Geophys. Res. 2007, 112, G04S31. [Google Scholar] [CrossRef]
- Säwström, C.; Mumford, P.; Marshall, W.; Hodson, A.; Laybourn-parry, J. The microbial communities and primary productivity of cryoconite holes in Arctic glacier (Svalbard 79 °N). Polar Biol. 2002, 25, 591–596. [Google Scholar] [CrossRef]
- Yallop, M.L.; Anesio, A.M. Benthic diatom flora in supraglacial habitats: A generic-level comparison. Ann. Glaciol. 2010, 51, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.; Anesio, A.M.; Rassner, S.M.; Sattler, B.; Hubbard, B.; Perkins, W.T.; Young, M.; Griffith, G.W. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J. 2011, 5, 150–160. [Google Scholar] [CrossRef]
- Edwards, A.; Rassner, S.M.E.; Anesio, A.M.; Worgan, H.J.; Irvine-Fynn, T.D.L.; Williams, H.W.; Sattler, B.; Griffith, G.W. Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers. Polar Res. 2013, 32, 19468. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.M.; Dhakephalkar, P. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 2013, 18, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, S.M. Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol. 2011, 35, 575–583. [Google Scholar] [CrossRef]
- Edwards, A.; Douglas, B.; Anesio, A.M.; Rassner, S. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecol. 2013, 6, 168–176. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.M.; Tsuji, M.; Prasad, G.S.; Hoshino, T. Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology 2014, 68, 122–128. [Google Scholar] [CrossRef]
- Singh, P.; Tsuji, M.; Roy, U. Characterization of yeast and filamentous fungi from Brøggerbreen glaciers of Svalbard, Arctic. Polar Rec. 2016, 52, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Gajda, R.T. Cryoconite phenomena on the Greenland ice cap in the Thule Area. Can. Geogr. 1958, 3, 35–44. [Google Scholar] [CrossRef]
- Gribbon, P.W.F. Cryoconite holes on Sermikavasak, West Greenland. J. Glaciol. 1979, 22, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Hodson, A.; Cameron, K.; Bøggild, C.; Irvine-Fynn, T.; Langford, H.; Pearce, D.; Banwart, S. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an arctic valley glacier: Longyearbreen, Svalbard. J. Glaciol. 2010, 56, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Fettweis, X.; Tedesco, M.; Vanden Broeke, M.; Ettema, J. Melting trends over the Greenland ice sheet (1958–2009) from space borne microwave data and regional climate models. Cryosphere 2011, 5, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.A.; Hodson, A.J.; Osborn, A.M. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biol. 2012, 35, 1375–1393. [Google Scholar] [CrossRef]
- Cameron, K.A.; Hodson, A.J.; Osborn, A.M. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol. Ecol. 2012, 82, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.; Stibal, M.; Zarsky, J.; Gözdereliler, E.; Schoostag, M.; Jacobsen, C.S. Supraglacial bacterial community structures vary across the Greenland icesheet. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef] [PubMed]
- Stibal, M.; Schostag, M.; Cameron, K.A.; Hansen, L.H.; Chandler, D.M.; Wadham, J.L.; Jacobsen, C.S. Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland icesheet. Environ. Microbiol. Rep. 2015, 7, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Telling, J.; Stibal, M.; Anesio, A.M.; Tranter, M.; Nias, I.; Cook, J.; Bellas, C.; Lis, G.; Wadham, J.L.; Sole, A.; et al. Microbial nitrogen cycling on the Greenland Ice Sheet. Biogeosciences 2012, 9, 2431–2442. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.; Mur, L.A.; Girdwood, S.E.; Anesio, A.M.; Stibal, M.; Rassner, S.M.E.; Hell, K.; Pachebat, J.A.; Post, B.; Bussell, J.S.; et al. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol. Ecol. 2014, 89, 222–237. [Google Scholar] [CrossRef]
- Musilova, M.; Tranter, M.; Bennett, S.A.; Wadham, J.; Anesio, A.M. Stable microbial community composition on the Greenland ice sheet. Front. Microbiol. 2015, 6, 193. [Google Scholar] [CrossRef]
- Uetake, J.; Tanaka, S.; Segawa, T.; Takeuchi, N.; Nagatuska, N.; Motoyama, H.; Aoki, T. Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef]
- Uetake, J.; Nagatuska, N.; Onuma, Y.; Takeuchi, N.; Motoyama, H. Bacterial community changes with cryoconite granule size and their susceptibility to exogenous nutrients on 10 glaciers in northwestern Greenland. FEMS Microbiol. Ecol. 2019, 95. [Google Scholar] [CrossRef]
- Yallop, M.L.; Anesio, A.M.; Perkins, R.G.; Cook, J.; Telling, J.; Fagan, D.; MacFarlane, J.; Stibal, M.; Barker, G.; Bellas, C.; et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland icesheet. ISME J. 2012, 6, 2302–2313. [Google Scholar] [CrossRef] [Green Version]
- Stibal, M.; Box, J.E.; Cameron, K.A.; Langen, P.L.; Yallop, M.L.; Mottram, R.H.; Khan, A.L.; Molotch, N.P.; Chrismas, N.A.M.; Quaglia, F.C.; et al. Algae drive enhanced darkening of bare ice on the Greenland ices heet. Geophys. Res. Lett. 2017, 44, 11463–11471. [Google Scholar] [CrossRef]
- Williamson, C.J.; Anesio, A.M.; Cook, J.; Tedstone, A.; Poniecka, E.; Holland, A.; Fagan, D.; Tranter, M.; Yallop, M.L. Ice algal bloom development on the surface of the Greenland Ice Sheet. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef] [PubMed]
- Nicholes, M.J.; Williamson, C.J.; Tranter, M.; Holland, A.; Poniecka, E.; Yallop, M.L.; Anesio, A. Bacterial Dynamics in Supraglacial Habitats of the Greenland Ice Sheet. Front. Microbiol. 2019, 10, 1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perini, L.; Gostinčar, C.; Anesio, A.M.; Williamson, C.; Tranter, M.; Gunde-Cimerman, N. Darkening of the Greenland Ice Sheet: Fungal Abundance and Diversity Are Associated with Algal Bloom. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Christner, B.C.; Kvitko, B.H.; Reeve, J.N. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 2003, 7, 177–183. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, S.-Y.; Jung, J.; Kim, E.H.; Cho, K.H.; Schinner, F.; Margesin, R.; Hong, S.G.; Lee, H.K. Cultured bacterial diversity and Human impact on Alpine glacier Cryoconite. J. Microbiol. 2011, 49, 355–362. [Google Scholar] [CrossRef]
- Takeuchi, N.; Kohshima, S.; Yoshimura, Y.; Seko, K.; Fujita, K. Characteristics of cryoconite holes on a Himalayan glacier, Yala glacier, Central Nepal. Bull. Glaciol. Res. 2000, 17, 51–59. [Google Scholar]
- King, A.J.; Karki, D.; Nagy, L.; Racoviteanu, A.; Schmidt, S.K. Microbial biomass and activity in high elevation (>5100m) soils from the Annapurna and Sagarmatha regions of the Nepalese Himalayas. Himal. J. Sci. 2010, 6, 11–18. [Google Scholar]
- Liu, Y.; Yao, T.; Jiao, N.; Tian, L.; Hu, A.; Yu, W.; Li, S. Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier. Extremophiles 2011, 15, 411–421. [Google Scholar] [CrossRef]
- Azzoni, R.S.; Tagliaferri, I.; Franzetti, A.; Mayer, C.; Lambrecht, A.; Compostella, C. Bacterial diversity in snow from mid-latitude mountain are as: Alps, Eastern Anatolia, Karakoram and Himalaya. Ann. Glaciol. 2018, 59, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, N.P.; Liu, Y.; Liu, K.; Zhang, F.; Adhikari, S.; Chen, Y.; Liu, X. Bacterial community composition and diversity in Koshi River, the largest river of Nepal. Ecol. Indic. 2019, 104, 501–511. [Google Scholar] [CrossRef]
- Takeuchi, N.; Fujita, K.; Nakazawa, F.; Matoba, S.; Nakawo, M.; Rana, B. A snow algal community on the surface and in ice core of Rikha-Samba Glacier in Western Nepali Himalayas. Bull. Glaciol. Res. 2009, 27, 25–35. [Google Scholar]
- Schmidt, S.; Lynchi, R.; King, A.; Karki, D.; Robeson, M.S.; Nagy, L.; Williams, M.W.; Mitter, M.S.; Freeman, K.R. Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctic. Proc. Roy. Soc. B Biol. Sci. 2011, 278, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Kammerlander, B.; Breiner, H.-W.; Filker, S.; Sommaruga, R.; Sonntag, B.; Stoeck, T. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol. Ecol. 2015, 91, fiv010. [Google Scholar] [CrossRef] [Green Version]
- Dhakar, K.; Pandey, A. Microbial Ecology from the Himalayan Cryosphere Perspective. Microorganisms 2020, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: NewYork, NY, USA, 1989. [Google Scholar]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united data base of 16SrRNA and whole genome assemblies. Int. J. Syst. Evolut. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) soft ware version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor –joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7 Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.L.; Tay, S.T.L.; Maszenan, A.M.; Tay, J.H. Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol. Ecol. 2006, 57, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Abyzov, S.; Mitskevich, I.; Poglazova, M. Microflora of the deep glacier horizons of Central Antarctica. Microbiology 1998, 67, 66–73. [Google Scholar]
- Bakermans, C.; Tsapin, A.I.; Souza-Egipsy, V.; Gilichinsky, D.A.; Nealson, K.H. Reproduction and metabolism at−10°C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 2003, 5, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Groudieva, T.; Kambourova, M.; Yusef, H.; Royter, M.; Grote, R.; Trinks, H.; Antranikian, G. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 2004, 8, 475–488. [Google Scholar] [CrossRef]
- Steven, B.; Briggs, G.; McKay, C.P.; Pollard, W.H.; Greer, C.W.; Whyte, L.G. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 2007, 59, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Harding, T.; Jungblut, A.D.; Lovejoy, C.; Vincent, W.F. Microbes in high Arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 2011, 77, 3234–3243. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Zhang, Q.; Qian, Y.; Ji, Z.; Li, C.; Cong, Z.; Zhang, Y.; Guo, J.; Du, W.; Huang, J.; et al. Linking Atmospheric Pollution to Cryospheric Change in the Third Pole Region: Current Progresses and Future Prospects. Natl. Sci. Rev. 2019, 6, 796–809. [Google Scholar] [CrossRef]
- Available online: http://www.ebi.ac.uk/Tools/psa/emboss_matcher/nucleotide.html (accessed on 10 May 2020).
Glacier Name | GPS (Latitude Longitude) and Elevation | Strain | Sequence Deposition no. | Total Sequence Length after Alignment | No. of Base Changes | 16S rRNA Gene Sequences Similarity (%) |
Yala glacier, Nepal | 28°24′53″ N 85°36′48″ E Elevation: 5207 m | YNC-1 YNC-9 | MK248070 MF977331 | 1414 1405 | 5 24 | Bacillus aryabhattai B8W22(T) (EF114313), 98.29–99.86% |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-4 | MF977326 | 1491 | 3 | Bacillus simplex NBRC 15720(T) (NR_042136),99.80% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-34 | MK248082 | 1303 | 3 | Brevundimonas vesicularis NBRC 12165(T), (NR_113586), 99.77% | |
28°24′53″ N 85°36′48″ E Elevation: 5207 m | YNC-32 | MK248080 | 1306 | 1 | Cryobacterium luteum Hh 15 (HQ845193), 99.92% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-3 YNC-5 YNC-7 YNC-11 YNC-25 YNC-26 YNC-27 YNC-28 | MF977325 MF977327 MF977329 MF977333 MK248075 MK248076 MF977342 MK248077 | 1345 1403 1404 1411 1198 1327 1403 1402 | 18 27 23 35 29 16 23 22 | Cryobacterium psychrotolerans 0549 (DQ515963), 97.58–98.66% | |
28°24′53″ N 85°36′48″ E Elevation:5207 m | YNC-10 YNC-18 YNC-21 YNC-22 YNC-23 YNC-29 YNC-30 YNC-35 YNC-38 | MF977332 MF977336 MF977338 MF977339 MF977340 MK248078 MF977343 MF977344 MF977345 | 1409 1409 1401 1407 1404 1401 1410 1409 1406 | 33 36 19 27 24 20 38 36 26 | Cryobacterium psychrotolerans 0549 (DQ515963), 97.30–98.79% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-14 YNC-20 | MF977335 MF977337 | 1457 1456 | 9 7 | Dermacoccus nishinomiyaensis DSM 20448(T) (X87757), 99.38–99.52% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-8 | MF977330 | 1478 | 60 | Glaciihabitans tibetensis MP203(T) (KC256953), 95.94% | |
28°24′53″ N 85°36′48″ E Elevation: 5207 m | YNC-15 YNC-24 YNC-3 YNC-33 | MK248071 MK248074 MK248079 MK248081 | 843 832 832 797 | 11 11 11 25 | Leifsonia kafniensis KFC-22(T) (AM889135), 96.86–98.70% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-19 | MK248073 | 843 | 11 | ||
28°24′53″ N 85°36′48″ E Elevation: 5207 m | YNC-16 | MK248072 | 1169 | 13 | Paracoccus limosus (HQ336256), 98.89% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-2 YNC-6 | MF977324 MF977328 | 1481 1473 | 16 15 | Polaromonas glacialis Cr4-12(T) (HM583568), 99.45–99.98% | |
28°24′53″ N 85°36′48″ E Elevation: 5207 m | YNC-36 | MK248083 | 1403 | 8 | Sporosarcina globispora DSM 4(T), (X68415), 99.43% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-12 | MF977334 | 1500 | 6 | Staphylococcus saprophyticus subsp.saprophyticus ATCC 15305(T) (NR_074999) 99.60% | |
28°24′27″ N 85°36′36″ E Elevation: 5189 m | YNC-37 | MK248084 | 1394 | 26 | Variovorax ginsengisoli Gsoil 3165(T), (AB245358), 98.13% | |
Thule glacier, Greenland | 76°24′17″ N 69°43′18″ W Elevation: 536 m | TGC-2 TGC-5 TGC-7 TGC-8 TGC-9 TGC-10 | MF977346 MK248088 MK248090 MK248091 MK248092 MF977347 | 1263 1328 1328 1326 1300 1402 | 10 20 20 18 22 23 | Cryobacterium psychrotolerans 0549 (DQ515963), 98.36–99.21–% |
76°24′17″ N 69°43′18″ W Elevation: 536 m | TGC-4 | MK248087 | 1454 | 6 | Dermacoccus nishinomiyaensis DSM 20448(T) (X87757), 99.59% | |
76°24′17″ N 69°43′18″ W Elevation: 536 m | TGC-1 | MK248085 | 1309 | 7 | Enhydrobacter aerosaccus LMG 21877(T) (AJ550856), 99.47% | |
76°24′17″ N 69°43′18″ W Elevation: 536 m | TGC-3 TGC-6 | MK248086 MK248089 | 1393 1386 | 44 42 | Glaciihabitans tibetensis MP203(T), (KC256953), 96.70–96.84% | |
Isunnguata Greenland | 76°11′05″ N 51°58′41″ W Elevation: 581 m | RGC-6 RGC-7 RGC-8 RGC-11 RGC-12 RGC-13 | MF977348 MK248097 MK248098 MK246105 MK246106 MK246107 | 1407 1402 1392 1401 1401 1401 | 33 22 20 20 21 21 | Cryobacterium psychrotolerans 0549(DQ515963), 97.65–99.05% |
76°10′35″ N 51°57′59″ W Elevation: 575 m | RGC-10 | MK246104 | 1338 | 14 | Cryobacterium psychrotolerans 0549 (DQ515963), 98.95% | |
76°11′05″ N 51°58′41″ W Elevation: 581 m | RGC-5 | MK248096 | 1353 | 5 | Dermacoccus nishinomiyaensis DSM 20448(T), (X87757), 99.63% | |
76°10′35″ N 51°57′59″ W Elevation: 575 m | RGC-2 RGC-3 RGC-4 RGC-9 | MK248093 MK248094 MK248095 MK246103 | 1006 1345 1361 1454 | 25 26 27 37 | Subtercola frigoramans K265(T) (AF224723), 97.46–98.07% | |
Qaanaaq glacier, Greenland | 77°30′12″ N 70°51′15″ W Elevation: 668 m | QGC-12 | MK246119 | 1480 | 0 | Bacillus cereus ATCC 14579(T), (NR_114582), 100.00% |
77°30′12″ N 70°51′15″ W Elevation: 668 m | QGC-6 QGC-7 QGC-8 QGC-9 | MK246113 MK246114 MK246115 MK246116 | 1259 1401 1401 1402 | 15 20 20 23 | Cryobacterium psychrotolerans 0549 (DQ515963) 98.36–98.81% | |
77°29′27″ N 70°44′57″ W Elevation: 247 m | QGC-10 QGC-13 | MK246117 MK246120 | 1363 1401 | 15 20 | Cryobacterium psychrotolerans 0549(DQ515963), 98.57–98.90% | |
77°30′12″ N 70°51′15″ W Elevation: 668 m | QGC-15 QGC-16 | MK246122 MK246123 | 1328 1488 | 42 49 | Glaciihabitans tibetensis MP203(T), (KC256953), 96.71–96.84% | |
77°29′27″ N 70°44′57″ W Elevation: 247 m | QGC-1 QGC-2 QGC-3 QGC-4 QGC-11 QGC-14 | MK246108 MK246109 MK246110 MK246111 MK246118 MK246121 | 1393 1450 1453 1446 1454 1406 | 26 16 18 19 19 17 | Subtercola frigoramans K265(T), (AF224723), 98.13–98.90% | |
77°30′12″ N 70°51′15″ W Elevation: 668 m | QGC-5 QGC-17 | MK246112 MK246124 | 1444 1453 | 17 17 | Subtercola frigoramans K265(T)(AF224723), 98.82–98.83% |
Identity Based on ITS and D1/D2 Gene | Sampling Region | Sampling Location (Latitude Longitude) | Strain | Accession Number | Total Sequence Length after Alignment | No. of Base Changes | ITS region and D1/D2 Sequences Similarity (%) |
Filobasidiales | |||||||
Goffeauzyma gilvescens | Yala glacier, Nepal Himalaya | 28°24′27″ N, 85°36′36″ E Elevation: 5189 m | J-20 | KY782275 | 531 | 0 | 100% with the D1/D2 region of Goffeauzyma gilvescens CBS 7525T(AF181547) |
Thule glacier, Greenland | 76°24′17″ N 69°43′18″ W Elevation: 536 m | J-25 | KY782276 | 530 | 0 | 100% with the D1/D2 region of Goffeauzyma gilvescens CBS 7525T (AF181547) | |
Naganishia vaughanmartiniae | Qaanaaq glacier, Greenland | 77°29′27″ N 70°44′57″ W Elevation: 247 m | J-50 | KY782277 | 364 | 1 | 99.73% with the D1/D2 region of Naganishia vaughanmartiniae CBS13,731 (KY108619) |
Piskurozyma fildesensis | Isunnguata Sermia glacier, Greenland | 76°10′35″ N 51°57′59″ W Elevation: 575 m | J-40 J-237 |
KY782278
KY782279 | 579 587 | 0 | 100% with the D1/D2 region of Piskurozyma fildesensis CBS12705 (KC894160) |
Kriegeriales | |||||||
Rhodotorula svalbardensis | Isunnguata Sermia, Greenland | 76°11′05″ N 51°58′41″ W Elevation: 581 m | J-131 J-174 J-216 | KY782281 KY782282 KY782284 | 1180 1165 1169 | 11 9 72 | 93.84–99.07% with ITS region and D1/D2 domain of Rhodotorula svalbardensis MLB-I (JF805370) |
Qaanaaq glacier, Greenland | 77°30′12″ N 70°51′15″ W Elevation: 668 m | J-181 J-112 | KY782283 KY782280 | 1175 1166 | 10 21 | 99.15–98.20% with ITS Region and D1/D2 domain of Rhodotorula svalbardensis MLB-I (JF805370) | |
Cystofilobasidiales | |||||||
Mrakia robertii | Yala glacier, Himalaya | 28°24′27″ N 85°36′36″ E Elevation: 5189 m | J-65 J-66 J-120 J-121 J-221 |
KY782285 KY782286 KY782297 KY782298 KY782307 | 596 587 587 589 588 | 1 1 1 1 1 | 99.83% with the D1/D2 region of Mrakia robertii CBS8912T (AY038811) |
Mrakia robertii | Yala glacier, Himalaya | 28°24′53″ N 85°36′48″ E Elevation: 5207 m | J-67 J-113 J-117 J-225 |
KY782287 KY782295 KY782296 KY782308 | 587 595 594 589 | 3 1 1 1 | 99.49–99.83% with the D1/D2 region of Mrakia robertii CBS8912T (AY038811) |
Mrakia robertii | Isunnguata Sermia glacier, Greenland | 76°10′35″ N 51°57′59″ W Elevation: 575 m | J-82 J-86 J-92 J-127 J-229 J-31 J-34 J-36 J-39 J-89 J-93v J-94 J-130 J-205 J-209 |
KY782288 KY782289 KY782290 KY782299 KY782309 KY782310 KY782311 KY782312 KY782313 KY782314 KY782315 KY782316 KY782317 KY782318 KY782319 | 589 576 595 589 587 588 595 596 588 595 593 596 596 594 592 | 4 4 1 1 1 2 2 2 2 3 3 3 3 2 3 | 99.31–99.83% with the D1/D2 region of Mrakia robertii CBS8912T(AY038811) |
Mrakia robertii | Qaanaaq glacier, Greenland | 77°29′27″ N 70°44′57″ W Elevation: 247 m | J-102 J-103 J-104 J-105 J-133 J-134 J-135 J-136 J-138 J-139 J-214 |
KY782291 KY782292 KY782293 KY782294 KY782300 KY782301 KY782302 KY782303 KY782304 KY782305 KY782306 | 590 596 594 596 596 596 596 589 596 592 589 | 1 2 1 1 1 2 2 1 1 1 2 | 99.66–99.83% with the D1/D2 region of Mrakia robertii CBS8912T (AY038811) |
Identity Based on ITSand D1/D2 Gene | Glacier Name | GPS (Latitude Longitude) and Elevation | Strain | Sequence Deposition No. | Total Sequence Length after Alignment | No. of Base Changes | Sequences Similarity (%) with Database |
Dothideomycetes | Yala, Nepali Himalaya | 28°24′53″ N 85°36′48″ E Elevation: 5207 m | J-72 | MF043961 | 1067 | 2 | 99.81% with ITS region and D1/D2 domain of Dothideomycetes sp. G2-4-2 (LC514932) |
Helotiales (Phialophora sp.) | Yala, Nepali Himalaya | 28°24′27″ N 85°36′36″ E Elevation: 5189 m | J-147 J-149 | MF043964 MF043965 | 1089 1096 | 18 18 | 98.17–98.36% with ITS region and D1/D2 domain of Phialophora sp. MLB-Phi(JN113039) |
28°24′53″ N, 85°36′48″ E Elevation: 5207 m | J-150 | MF043966 | 1092 | 20 | |||
Helotiales (Phialophora sp.) | Thule, Greenland | 76°24′17″ N 69°43′18″ W Elevation: 536 m | J-161 J-162 J-165 J-166 J-167 J-168 J-171 | MF043967 MF043968 MF043969 MF043970 MF043971 MF043972 MF043973 | 1095 1098 1088 1092 1097 1097 1086 | 15 19 18 18 18 19 19 | 98.25–98.63% with ITS region and D1/D2 domain of Phialophora sp. MLB-Phi(JN113039) |
Leotiales (Articulospora sp.) | Isunnguata Sermia, Greenland | 76°10′35″ N 51°57′59″ W Elevation: 575 m | J-37 J-41 | MF043957 MF043958 | 1066 1066 | 30 30 | 98.19% with ITS region and D1/D2 domain of Articulospora tetracladia EF18 (LC131000) |
Helotiales (Phialophora sp.) | Isunnguata Sermia, Greenland | 76°11′05″ N 51°58′41″ W Elevation: 581 m | J-175 | MF043974 | 1106 | 19 | 98.29% with ITS region and D1/D2 domain of Phialophora sp. MLB-Phi(JN113039) |
Dothideomycetes | Qaanaaq, Greenland | 77°29′27″ N 70°44′57″ W Elevation: 247 m | J-49 | MF043960 | 1072 | 0 | 99.81–100% with ITS region and D1/D2 domain of Dothideomycetes sp. G2-4-2 (LC514932) |
77°30′12″ N 70°51′15″ W Elevation: 668 m | J-140 | MF043963 | 1071 | 2 | |||
Helotiales (Alatospora acuminata) | Qaanaaq, Greenland | 77°30′12″ N 70°51′15″ W Elevation: 668 m | J-182 | MF043976 | 1093 | 73 | 93.32% with ITS region and D1/D2 domain of Alatospora acuminate DSM105,546 (MK353088) |
Thelebolales (Thelebolus microspores) | Qaanaaq, Greenland | 77°29′27″ N 70°44′57″ W Elevation: 247 m | J-48 | MF043959 | 481 | 4 | 99.17% with ITS region of Thelebolus microspores CBS137501(AY957552) |
77°30′12″ N 70°51′15″ W Elevation: 668 m | J-245 | MF043977 | 481 | 4 | 99.17% with ITS region of Thelebolus microspores CBS137501(AY957552) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Tsuji, M.; Singh, S.M.; Takeuchi, N. Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic. Sustainability 2020, 12, 6477. https://doi.org/10.3390/su12166477
Singh P, Tsuji M, Singh SM, Takeuchi N. Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic. Sustainability. 2020; 12(16):6477. https://doi.org/10.3390/su12166477
Chicago/Turabian StyleSingh, Purnima, Masaharu Tsuji, Shiv Mohan Singh, and Nozomu Takeuchi. 2020. "Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic" Sustainability 12, no. 16: 6477. https://doi.org/10.3390/su12166477
APA StyleSingh, P., Tsuji, M., Singh, S. M., & Takeuchi, N. (2020). Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic. Sustainability, 12(16), 6477. https://doi.org/10.3390/su12166477