Gender Gaps in the Use of Urban Space in Seoul: Analyzing Spatial Patterns of Temporary Populations Using Mobile Phone Data
Abstract
:1. Introduction
2. Literature Review
2.1. Gender and Urban Environment
2.1.1. Modern History of Gender Equality
2.1.2. Gender in the Urban Planning Field
2.2. Temporary Population
3. Data and Methods
3.1. Study Areas and Data Source
3.2. Description of Variables
3.2.1. Dependent Variables
3.2.2. Independent Variables
3.3. Methods
4. Results
4.1. Kernel Density Analysis
4.2. Spatial Autocorrelation
4.2.1. Moran’s I
4.2.2. Local Indicators of Spatial Association
4.3. Results of Spatial Regression Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variable | Total | Women’s | Men’s | SMW | ||||
---|---|---|---|---|---|---|---|---|
Coef. | t | Coef. | t | Coef. | t | Coef. | t | |
Constant | 295.84 *** | 10.11 | 158.41 *** | 9.82 | 136.41 *** | 10.17 | −21.62 *** | −4.46 |
Jongno-gu | 74.35 *** | 5.39 | 36.64 *** | 4.82 | 37.67 *** | 5.96 | 1.04 | 0.46 |
Jung-gu | 41.60 *** | 2.65 | 27.82 *** | 3.21 | 13.84 * | 1.92 | −14.00 *** | −5.37 |
Yeongdeungpo-gu | 34.10 *** | 2.83 | 20.18 *** | 3.04 | 13.99 ** | 2.53 | −6.22 *** | −3.11 |
Seocho-gu | −24.01 ** | −2.37 | −14.47 *** | −2.60 | −9.56 ** | −2.06 | 4.92 *** | 2.94 |
Songpa-gu | −111.29 *** | −9.92 | −64.57 *** | −10.45 | −46.69 *** | −9.07 | 17.87 *** | 9.60 |
Business density | −0.91 ** | −2.19 | −0.59 ** | −2.57 | −0.32 * | −1.69 | −67.7 *** | −23.53 |
Housing density | 0.02 | 1.08 | 0.01 | 0.91 | 0.01 | 1.21 | 0.27 *** | 3.85 |
Distance to detached house | 0.13 ** | 5.90 | 0.08 *** | 6.71 | 0.05 *** | 4.81 | 0.001 | 0.34 |
Distance to apartment | 47.45 *** | 31.45 | 28.05 *** | 33.75 | 19.42 *** | 28.07 | −0.03 *** | −8.99 |
Land price | −1.05 | −1.30 | −0.97 ** | −2.19 | −0.06 | −0.17 | −8.63 *** | −34.51 |
Population density | −5.55 *** | −5.11 | −2.34 ** | −3.90 | −3.18 *** | −6.39 | 11.32 *** | 18.13 |
Child dependency ratio | 333.42 *** | 19.22 | 200.55 *** | 20.99 | 132.82 *** | 16.69 | 0.91 *** | 6.76 |
Old-age dependency ratio | 7.54 ** | 2.00 | −1.89 | −0.91 | 9.42 *** | 5.46 | −0.86 *** | −4.77 |
Distance to department store | 0.15 ** | 2.23 | −0.02 | −0.45 | 0.17 *** | 5.37 | −3.07 *** | −6.03 |
Clothing retails | 5.08 *** | 4.60 | 3.76 *** | 6.17 | 1.34 *** | 2.63 | 0.19 *** | 16.36 |
Real estate brokerages | −16.45 *** | −7.98 | −8.26 *** | −7.28 | −8.18 *** | −8.65 | −2.43 *** | −13.24 |
Supermarkets | −2.83 *** | −4.56 | −1.86 *** | −5.44 | −0.97 *** | −3.40 | 0.08 | 0.24 |
Hair beauty shops | −4.29 | −1.19 | −5.20 *** | −2.61 | 0.96 | 0.58 | 0.89 *** | 8.66 |
Snack bars | 11.78 *** | 8.85 | 5.76 *** | 7.85 | 6.02 *** | 9.86 | 6.14 *** | 10.25 |
Bakeries | 5.50 *** | 4.27 | 3.18 *** | 4.49 | 2.33 *** | 3.95 | 0.26 | 1.20 |
Singing rooms | 12.55 *** | 5.19 | 7.23 *** | 5.43 | 5.35 *** | 4.83 | −0.85 *** | −4.00 |
Computer game rooms | 1.15 | 0.65 | 2.86 *** | 2.90 | −1.71 ** | −2.08 | −1.89 *** | −4.70 |
Billiard rooms | 7.08 ** | 2.31 | 5.08 *** | 3.00 | 2.02 | 1.43 | −4.56 *** | −15.39 |
Density of cultural facilities | −4.46 * | −1.87 | −6.01 *** | −4.59 | 1.56 | 1.43 | 7.57 *** | 19.20 |
Distance to park | 73.93 *** | 3.61 | 51.14 *** | 4.53 | 22.83 ** | 2.43 | −28.33 *** | −8.33 |
Distance to bus stop | −315.88 *** | −18.16 | −174.98 *** | −18.27 | −140.95 *** | −17.67 | 34.05 *** | 11.80 |
Distance to subway station | −63.05 *** | −11.63 | −36.69 *** | −12.29 | −26.33 *** | −10.59 | 10.36 *** | 11.52 |
R-squared | 0.13 | 0.14 | 0.12 | 0.18 | ||||
N | 49,368 | 49,368 | 49,368 | 49,368 | ||||
Log likelihood | −388,381 | −358,936 | −349,904 | −299,678 | ||||
AIC | 776,818 | 717,927 | 699,865 | 599,411 | ||||
SC | 777,065 | 718,174 | 700,111 | 599,658 | ||||
LM-Lag | 11,887.5 *** | 12,871.3 *** | 10,927.2 *** | 19,054.4 *** | ||||
LM-Error | 11,696.1 *** | 12,650.2 *** | 10,763.5 *** | 18,618.7 *** | ||||
Robust LM-Lag | 206.2 *** | 235.6 *** | 178.9 *** | 452.0 *** | ||||
Robust LM-Error | 14.7 *** | 14.5 *** | 15.2 *** | 16.3 *** |
Variable | Total | Women’s | Men’s | SMW | ||||
---|---|---|---|---|---|---|---|---|
Coef. | z | Coef. | z | Coef. | z | Coef. | z | |
Constant | 367.82 | 7.94 | 162.31 *** | 7.75 | 201.41 *** | 7.78 | −40.17 *** | −4.79 |
Jongno-gu | 77.41 *** | 3.38 | 37.71 *** | 3.65 | 39.78 *** | 3.10 | −3.52 | −0.83 |
Jung-gu | 59.13 *** | 2.25 | 20.33 * | 1.72 | 39.40 *** | 2.68 | −19.96 *** | −4.08 |
Yeongdeungpo-gu | 17.56 | 0.87 | 7.65 | 0.84 | 10.40 | 0.92 | −2.70 | −0.72 |
Seocho-gu | −12.59 | −0.74 | −5.04 | −0.66 | −7.57 | −0.79 | 2.58 | 0.81 |
Songpa-gu | −105.52 *** | −5.58 | −43.25 *** | −5.08 | −62.20 *** | −5.87 | 20.06 *** | 5.67 |
Business density | 305.43 *** | 11.03 | 123.5 *** | 9.87 | 181.49 *** | 11.74 | −55.93 *** | −11.15 |
Housing density | −0.16 | −0.34 | −0.05 | −0.25 | −0.10 | −0.39 | 0.03 | 0.44 |
Distance to detached house | 0.02 | 0.95 | 0.01 | 0.96 | 0.01 | 0.90 | −0.002 | −0.46 |
Distance to apartment | 0.13 *** | 3.64 | 0.05 *** | 3.08 | 0.08 *** | 4.01 | −0.03 *** | −4.49 |
Land price | 41.53 *** | 18.12 | 17.22 *** | 16.56 | 24.32 *** | 19.05 | −6.94 *** | −17.10 |
Population density | 9.9 | 1.63 | 9.81 *** | 3.58 | 0.14 | 0.04 | 8.93 *** | 8.09 |
Child dependency ratio | −1.54 | −1.18 | −0.25 | −0.42 | −1.20 | −1.63 | 0.93 *** | 3.89 |
Aged dependency ratio | −6.33 *** | −3.70 | −3.31 *** | −4.28 | −2.91 *** | −3.05 | −0.27 | −0.88 |
Distance to department store | −0.67 | −0.13 | −1.3 | −0.56 | 0.67 | 0.23 | −2.19 | −2.28 |
Clothing retails | 0.08 | 0.73 | 0.12 ** | 2.48 | −0.04 | −0.72 | 0.15 *** | 7.51 |
Real estate brokerages | 3.13 ** | 1.99 | 0.79 | 1.11 | 2.35 *** | 2.69 | −1.36 *** | −5.05 |
Supermarkets | −14.82 *** | −4.55 | −7.49 *** | −5.08 | −7.33 *** | −4.03 | −0.07 | −0.11 |
Hair beauty shops | −2.6 *** | −2.58 | −0.92 ** | −2.01 | −1.67 *** | −2.96 | 0.70 *** | 3.79 |
Snack bars | −5.36 | −0.94 | 0.36 | 0.14 | −5.52 ** | −1.74 | 5.63 *** | 5.51 |
Bakeries | 10.47 *** | 4.98 | 5.4 *** | 5.68 | 5.08 *** | 4.33 | 0.17 | 0.45 |
Singing rooms | 5.03 ** | 2.43 | 2.2 ** | 2.36 | 2.86 ** | 2.48 | −0.58 | −1.55 |
Computer game rooms | 8.99 ** | 2.35 | 3.94 ** | 2.28 | 5.19 ** | 2.43 | −1.25 | −1.81 |
Billiard rooms | 0.26 | 0.09 | −2.03 | −1.57 | 2.27 | 1.42 | −4.24 *** | −8.16 |
Density of cultural facilities | −5.89 * | −1.78 | −0.04 | −0.03 | −5.76 *** | −3.14 | 4.97 *** | 8.81 |
Distance to park | 72.77 ** | 2.16 | 24.01 | 1.58 | 48.58 *** | 2.58 | −22.97 *** | −3.70 |
Distance to bus stop | −297.1 *** | −10.60 | −131.67 *** | −10.41 | −165.63 *** | −10.57 | 35.21 *** | 6.88 |
Distance to subway station | −66.35 *** | −7.36 | −27.49 *** | −6.77 | −38.78 *** | −7.68 | 11.36 *** | 6.80 |
Lambda () | 0.49 *** | 99.25 | 0.48 *** | 94.60 | 0.51 *** | 103.94 | 0.59 *** | 133.34 |
R-squared | 0.32 | 0.30 | 0.34 | 0.45 | ||||
N | 49,368 | 49,368 | 49,368 | 49,368 | ||||
Log likelihood | −83,774 | −345,658 | −353,958 | −292,308 | ||||
AIC | 767,605 | 691,372 | 707,973 | 584,672 | ||||
SC | 767,851 | 691,619 | 708,219 | 584,919 |
References
- Inglehart, R.F.; Norris, P.; Welzel, C. Gender equality and democracy. Comp. Sociol. 2002, 1, 235–264. Available online: https://ssrn.com/abstract=2391796 (accessed on 1 June 2020). [CrossRef] [Green Version]
- Miotto, G.; Polo López, M.; Rom Rodríguez, J. Gender equality and UN sustainable development goals: Priorities and correlations in the top business schools’ communication and legitimation strategies. Sustainability 2019, 11, 302. [Google Scholar] [CrossRef] [Green Version]
- International Labor Office. ABC OF Women Workers’ Rights and Gender Equality, 2nd ed.; International Labor Office: Geneva, Switzerland, 2007; ISBN 978-9221196228. Available online: https://www.ilo.org/wcmsp5/groups/public/---dgreports/---gender/documents/publication/wcms_087314.pdf (accessed on 1 June 2020).
- World Economic Forum. The Global Gender Gap Report 2020; World Economic Forum: Geneva, Switzerland, 2020; ISBN 13 978-2-940631-03-2. Available online: http://www3.weforum.org/docs/WEF_GGGR_2020.pdf (accessed on 3 June 2020).
- Cook, C.C.; Andrew, C.; Bruin, M.; Garber, J.A. Gendering the City: Women, Boundaries, and Visions of Urban Life; Rowman & Littlefield: Lanham, ML, USA, 2000; ISBN 978-0847694518. [Google Scholar]
- Greed, C. Promise or progress: Women and planning. Built Environ. (1978-) 1996, 22, 9–21. Available online: https://www.jstor.org/stable/23287762 (accessed on 1 June 2020).
- Jaeckel, M.; Geldermalsen, M.V. Gender Sensitive Planning. In Proceedings of the Urbanism & Gender: A Necessary Vision for All, Barcelona, Spain, 27–29 April 2005; Available online: https://www.diba.cat/documents/540797/544667/seep-fitxers-urbanismgender-pdf.pdf (accessed on 29 June 2020).
- Hayden, D. What would a non-sexist city be like? Speculations on housing, urban design, and human work. J. Women Cult. Soc. 1980, 5, S170–S187. [Google Scholar] [CrossRef]
- Wekerle, G.R. A woman’s place is in the city. Antipode 1985, 17, 145–153. [Google Scholar] [CrossRef]
- Bondi, L. Gender, class, and urban space: Public and private space in contemporary urban landscapes. Urban Geogr. 1998, 19, 160–185. [Google Scholar] [CrossRef]
- Sandercock, L.; Forsyth, A. A gender agenda: New directions for planning theory. J. Am. Plan. Assoc. 1992, 58, 49–59. [Google Scholar] [CrossRef]
- Beebeejaun, Y. Gender, urban space, and the right to everyday life. J. Urban Aff. 2017, 39, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Buvinic, M.; Levine, R. Closing the gender data gap. Significance 2016, 13, 34–37. [Google Scholar] [CrossRef]
- Crane, R. Is there a quiet revolution in women’s travel? Revisiting the gender gap in commuting. J. Am. Plan. Assoc. 2007, 73, 298–316. [Google Scholar] [CrossRef] [Green Version]
- Crane, R.; Takahashi, L. Sex changes everything: The recent narrowing and widening of travel differences by gender. Public Work. Manag. Policy 2009, 13, 328–337. [Google Scholar] [CrossRef]
- Farré, L.; Jofre-Monseny, J.; Torrecillas, J. Commuting Time and the Gender Gap in Labor Market Participation; Institution for the Study of Labor (IZA): Bonn, Germany, 2020. [Google Scholar]
- Charles-Edwards, E. The Estimation of Temporary Populations in Australia. In Demography for Planning and Policy: Australian Case Studies; Springer: Cham, Switzerland, 2016; pp. 31–49. [Google Scholar]
- Panczak, R.; Charles-Edwards, E.; Corcoran, J. Estimating temporary populations: A systematic review of the empirical literature. Palgrave Commun. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Smith, S.K. Toward a methodology for estimating temporary residents. J. Am. Stat. Assoc. 1989, 84, 430–436. [Google Scholar] [CrossRef]
- IT Statistics of Korea. Available online: http://www.itstat.go.kr/home.it (accessed on 11 June 2020).
- Freedman, E. No Turning Back: The History of Feminism and the Future of Women; Ballantine Books: New York, NY, USA, 2007. [Google Scholar]
- Inter-Parliamentary Union. Participation of Women in Political Life; IPU: Geneva, Switzerland, 1999. [Google Scholar]
- Butler, J. Sex and Gender in Simone de Beauvoir’s Second Sex. Yale Fr. Stud. 1986, 72, 35–49. [Google Scholar] [CrossRef]
- Cott, N.F. No Small Courage: A History of Women in the United States; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Eisenstein, H. Contemporary Feminist Thought; Unwin Paperbacks: London, UK, 1984. [Google Scholar]
- Shorrocks, R. A feminist generation? Cohort change in gender-role attitudes and the second-wave feminist movement. Int. J. Public Opin. Res. 2018, 30, 125–145. [Google Scholar] [CrossRef]
- Fortin, N.M. Gender role attitudes and the labour-market outcomes of women across OECD countries. Oxf. Rev. Econ. Policy 2005, 21, 416–438. [Google Scholar] [CrossRef]
- Shin, K.-A. Eight questions about the changes of the female labor market in Korea. Issues Fem. 2016, 16, 321–359. (In Korean) [Google Scholar] [CrossRef]
- Jeong, S.-M. Changes and characteristics of women’s labor market since the Financial Crisis. Mon. Labor Rev. 2015, 5, 35–51. (In Korean) [Google Scholar]
- Terraza, H.O.; Orlando, M.B.; Lakovits, C.; Janik, V.L.; Kalashyan, A. Handbook for Gender-Inclusive Urban Planning and Design; World Bank: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Fainstein, S.S.; Servon, L.J. Gender and Planning: A Reader; Rutgers University Press: New Brunswick, NJ, USA, 2005. [Google Scholar]
- Moser, C. Gender Planning and Development: Theory, Practice and Training; Routledge: London, UK, 2012. [Google Scholar]
- Yoon, J.-R. Origins of the Korean Women’s Movement: An Examination of the Organization Chanyanghoe and the Establishment of Sunseong Women’s School. Women Hist. 2019, 33, 33–78. (In Korean) [Google Scholar] [CrossRef]
- Kim, Y. Reflection and Prospect for a Women Friendly City: From Spacial Politics to Spacial Welfare Case of Daegu Metropolitan City. Discourse Policy Soc. Sci. 2010, 3, 91–121. (In Korean) [Google Scholar]
- Yoo, Y.J. Changes in Women’s and Family Policy in Korea—Problems and Prospects. Women’s Fam. Life Stud. 2006, 10, 51–75. (In Korean) [Google Scholar]
- Cho, M.-H.; Kong, M.-H. Case Analyses of Women-Friendly Cities: Focused on Cases of Safe Environment, Activation of Local Communities, Improvement for Womens Health, and Convenient Facilities. J. Women Stud. 2014, 25, 19–47. (In Korean) [Google Scholar]
- Park, T.; Chun, H. The Concept and Urban Planning Components of Women-Friendly City Plan. Policy 2012, 10, 29–40. (In Korean) [Google Scholar]
- Ahn, S.-Y. Understanding the Relation between Gender and Space from a Gender Equality Perspective. J. Women’s Stud. 2011, 21, 7–37. (In Korean) [Google Scholar]
- Cho, S.; Moon, J.W.; Song, H. Gender Sensitivity in Research and Institution of Architectural Field. Kieae J. 2020, 20, 75–82. (In Korean) [Google Scholar] [CrossRef]
- Hwang, J.-T.; Jung, H. Bringing the Multiscalar Approach into Feminist Spatial Studies: On the Study of Womens Movement. J. Korean Geogr. Soc. 2015, 50, 123–139. (In Korean) [Google Scholar]
- Kim, J.H.; Kim, Y.C. Formation of the Cultural Discourses of ‘Modern Home’ in Women’s Magazines of the 1960’s through the 1970’s. Korean Women’s Assoc. Commun. Stud. 2008, 10, 109–155. (In Korean) [Google Scholar]
- Park, T.W.; Song, H.S.; Baek, S.J. Comparative Analysis on Gender’s Preference Factors of Exterior Space in Housing Complex. J. Korea Real Estate Anal. Assoc. 2013, 19, 137–152. (In Korean) [Google Scholar]
- Son, M.-G. The Gender Differences of Travel Behavior in the Seoul Metropolitan City: Analysis of Time Use Survey. Korea J. Popul. Stud. 2010, 33, 1–25. (In Korean) [Google Scholar]
- Park, T.; Chun, H.; Song, H.S. Planning components and priority of women-friendly housing complex. Korea Spat. Plan. Rev. 2013, 77, 17–34. (In Korean) [Google Scholar]
- Jo, K.-W.; Gim, T.-H.T. Gender differences in Residential decision by single-person households—With regard to safety needs and costs of Gwanak-Gu residents in their 20’s and 30’s-. J. Korea Plan. Assoc. 2019, 54, 5–16. (In Korean) [Google Scholar] [CrossRef]
- Shin, J.Y.; Lee, G.H.; Kim, J.Y. Analysis of the land use pattern by gender for the spatial structure of urban commercial areas -A case study of Shin-chon and Ewha Womans University commercial districts-. J. Korean Urban Geogr. Soc. 2014, 17, 79–100. (In Korean) [Google Scholar]
- Lee, G.; Shin, J.; Hong, Y.J. Exploring a Gendered Urban Space: Focusing on the Spatial Distribution of the Urban Building Use. J. Korean Cartogr. Assoc. 2013, 13, 57–73. (In Korean) [Google Scholar]
- Boeing, G. Estimating local daytime population density from census and payroll data. Reg. Stud. Reg. Sci. 2018, 5, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.; Greaves, S. Daytime population tracking for planning and pollution exposure assessment. Road Transp. Res. 2007, 16, 55–68. [Google Scholar]
- Fulton, P.N. Estimating the daytime population with the urban transportation planning package. Transp. Res. Rec. 1984, 981, 25–27. Available online: http://onlinepubs.trb.org/onlinepubs/trr/1984/981/981-006.pdf (accessed on 1 June 2020).
- Lau, K.H. A GIS-based stochastic approach to generating daytime population distributions for vehicle route planning. Trans. Gis. 2009, 13, 481–502. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, J.-S. Modelling daytime population distribution for emergency response and social vulnerability assessment. Geogr. J. Korea 2017, 51, 335–346. (In Korean) [Google Scholar]
- Graebert, M.; Wyckoff, M.; Bretz, L. Northwest Michigan Seasonal Population Analysis; Michigan State University Land Policy Institute: East Lansing, MI, USA, 2014. [Google Scholar]
- Happel, S.K.; Hogan, T.D. Counting snowbirds: The importance of and the problems with estimating seasonal populations. Popul. Res. Policy Rev. 2002, 21, 227–240. [Google Scholar] [CrossRef]
- Charles-Edwards, E.; Bell, M. Estimating the service population of a large metropolitan university campus. Appl. Spat. Anal. Policy 2013, 6, 209–228. [Google Scholar] [CrossRef]
- Hodur, N.M.; Bangsund, D.A. Service Population Estimates for City of Williston; NDSU Agribusiness and Applied Economics: Fargo, ND, USA, 2015. [Google Scholar]
- Lee, H.S.; Kim, J.Y.; Choo, S.H. Analyzing pedestrian characteristics using the Seoul floating population survey: Focusing on 5 urban communities in Seoul. J. Korean Soc. Transp. 2014, 32, 315–326. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Kang, S.; Kim, S.P.; Sohn, H.G. A spatial analysis of shelter capacity using floating population. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 1–10. (In Korean) [Google Scholar] [CrossRef]
- Park, J.; Park, J.; Choi, J. An Air Pollution Exposure on Floating Population using Air Pollution Dispersion Model. Geogr. J. Korea 2018, 52, 193–204. (In Korean) [Google Scholar]
- Yun, J.M.; Choi, D.J. Geographically Weighted Regression on the Characteristics of Land Use and Spatial Patterns of Floating Population in Seoul City. J. Korean Soc. Geospat. Inf. Syst. 2015, 23, 77–84. (In Korean) [Google Scholar]
- Lee, W.K.; Sohn, S.Y.; Heo, J. Utilizing mobile phone-based floating population data to measure the spatial accessibility to public transit. Appl. Geogr. 2018, 92, 123–130. [Google Scholar] [CrossRef]
- Bell, M.; Ward, G. Comparing temporary mobility with permanent migration. Tour. Geogr. 2000, 2, 87–107. [Google Scholar] [CrossRef]
- Nelson, A.C.; Nicholas, J.C. Estimating functional population for facility planning. J. Urban Plan. Dev. 1992, 118, 45–58. [Google Scholar] [CrossRef]
- Kobayashi, T.; Medina, R.M.; Cova, T.J. Visualizing diurnal population change in urban areas for emergency management. Prof. Geogr. 2011, 63, 113–130. [Google Scholar] [CrossRef]
- Lee, G.W.; Lee, Y.J.; Kim, Y.; Hong, S.-H.; Kim, S.; Kim, J.S.; Lee, J.T.; Shin, D.C.; Lim, Y. The study to estimate the floating population in Seoul, Korea. Environ. Health Toxicol. 2017, 32, e2017010. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, W.; Zhao, X.; Li, Y. Modeling the hourly distribution of population at a high spatiotemporal resolution using subway smart card data: A case study in the central area of Beijing. ISPRS Int. J. Geoinf. 2017, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Taubenböck, H.; Roth, A.; Dech, S. Linking structural urban characteristics derived from high resolution satellite data to population distribution. In Urban and Regional Data Management; Coors, V., Rumor, M., Fendel, E., Zlatanova, S., Eds.; Taylor & Francis: London, UK, 2007; pp. 35–45. [Google Scholar]
- Stathakis, D.; Baltas, P. Seasonal population estimates based on night-time lights. Comput. Environ. Urban Syst. 2018, 68, 133–141. [Google Scholar] [CrossRef]
- Kontokosta, C.E.; Johnson, N. Urban phenology: Toward a real-time census of the city using Wi-Fi data. Comput. Environ. Urban Syst. 2017, 64, 144–153. [Google Scholar] [CrossRef]
- Crols, T.; Malleson, N. Quantifying the ambient population using hourly population footfall data and an agent-based model of daily mobility. GeoInformatica 2019, 23, 201–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Peng, Z.; Wu, H.; Jiao, H.; Yu, Y. Exploring urban spatial feature with dasymetric mapping based on mobile phone data and LUR-2SFCAe method. Sustainability 2018, 10, 2432. [Google Scholar] [CrossRef] [Green Version]
- Terada, M.; Nagata, T.; Kobayashi, M. Population estimation technology for mobile spatial statistics. NTT DOCOMO Techn. J. 2013, 14, 10–15. Available online: https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol14_3/vol14_3_010en.pdf (accessed on 29 June 2020).
- Wu, H.; Liu, L.; Yu, Y.; Peng, Z. Evaluation and planning of urban green space distribution based on mobile phone data and two-step floating catchment area method. Sustainability 2018, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-M.; Jung, C.-M. The Effect of Time Period Pedestrian Volume on Store Location - Focused on the Suwon’s Retail Stores and Restaurants. J. Archit. Inst. Korea Planing Des. 2014, 30, 47–55. (In Korean) [Google Scholar] [CrossRef]
- Noh, E.; Lee, S.-K.; Lee, B. Analyzing influence factors of foodservice sales by rebuilding spatial data: Focusing on the conversion of aggregation units of heterogeneous spatial data. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2017, 35, 581–590. (In Korean) [Google Scholar]
- Kwak, H.-C.; Song, J.Y.; Eom, J.K.; Kim, K.T. A Study on Factors Influencing Floating Population using Mobile Phone Data in Urban Area. Korean Soc. Urban Railw. 2018, 6, 373–381. (In Korean) [Google Scholar] [CrossRef]
- Seoul Metropolitan Government. 2030 Seoul Master Plan. Available online: http://english.seoul.go.kr/policy-information/urban-planning/urban-planning/1-2030-seoul-basic-urban-plan/ (accessed on 12 June 2020).
- McDowell, L. Gender, Identity and Place: Understanding Feminist Geographies; Polity Press: Cambridge, UK, 1999. [Google Scholar]
- Gauvin, L.; Tizzoni, M.; Piaggesi, S.; Young, A.; Adler, N.; Verhulst, S.; Ferres, L.; Cattuto, C. Gender gaps in urban mobility. Humanit. Soc. Sci. Commun. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Korean Statistical Information Service. Labour Force Participation Rate (OECD). Available online: http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_2KAA301_OECD&vw_cd=MT_RTITLE&list_id=UTIT_OECD_UTIT_OECD_Q&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=A4 (accessed on 10 July 2020).
- Consumer Insight. Tracking Survey of Product Purchase Behavior and Change; Consumer Insight: Seoul, Korea, 2018; (In Korean). Available online: https://www.consumerinsight.co.kr/retail/report_list (accessed on 10 June 2020).
- Statistics Korea. Korean Standard Industrial Classification. Available online: https://kssc.kostat.go.kr:8443/ksscNew_web/kssc/common/CommonBoardList.do?gubun=1&strCategoryNameCode=001&strBbsId=ksicpd&categoryMenu=013 (accessed on 10 July 2020).
- Griffith, D.A. Spatial Autocorrelation. In International Encyclopedia of Human Geography; Thrift, N., Kitchin, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 308–316. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- The Metropolitan Seoul. Seoul Shown on Map 2013. Available online: http://data.si.re.kr/map-seoul-2013 (accessed on 17 June 2020).
- Garcia-Ramon, M.D.; Ortiz, A.; Prats, M. Urban planning, gender and the use of public space in a peripherial neighbourhood of Barcelona. Cities 2004, 21, 215–223. [Google Scholar] [CrossRef]
Gu | Num. of Points | Percent | Center | Num. of Points | Percent |
---|---|---|---|---|---|
Jongno-gu | 5,620 | 11.4 | Hanyang Doseong | 9,333 | 18.9 |
Jung-gu | 3,713 | 7.5 | Yeouido-Yeongdeungpo | 7,522 | 15.2 |
Yeongdeungpo-gu | 7,522 | 15.2 | Gangnam | 32,513 | 65.9 |
Gangnam-gu | 11,641 | 23.6 | |||
Seocho-gu | 10,131 | 20.5 | |||
Songpa-gu | 10,741 | 21.8 | |||
Total | 49,368 | 100.0 | Total | 49,368 | 100.0 |
Variable | Variable Description | Mean | S.D. |
---|---|---|---|
Dependent variables | |||
Total temporary population | Sum of daily temporary population of women and that of men | 425.40 | 677.63 |
Women’s temporary population | Daily temporary population of women | 188.06 | 308.20 |
Men’s temporary population | Daily temporary population of men | 237.32 | 375.90 |
SMW | Subtraction of men’s temporary population from women’s temporary population | −49.27 | 115.91 |
Local dummy variables | |||
Gangnam-gu | Reference group | 0.24 | - |
Jongno-gu | 1 if Jongno-gu, 0 otherwise | 0.11 | - |
Jung-gu | 1 if Jung-gu, 0 otherwise | 0.08 | - |
Yeongdeungpo-gu | 1 if Yeongdeungpo-gu, 0 otherwise | 0.15 | - |
Seocho-gu | 1 if Seocho-gu, 0 otherwise | 0.21 | - |
Songpa-gu | 1 if Songpa-gu, 0 otherwise | 0.22 | - |
Land use characteristics | |||
Business density | Number of businesses per hundred square meters by dong | 0.21 | 0.27 |
Housing density | Number of houses per thousand square meters by dong | 4.56 | 6.91 |
Distance to detached house | Distance from pCell point to the nearest detached house (m) | 196.36 | 258.65 |
Distance to apartment | Distance from pCell point to the nearest apartment (m) | 110.21 | 166.08 |
Land price | Average land price by dong (mil. KRW/m2) | 4.48 | 2.92 |
Demographic characteristics | |||
Population density | Population per hundred square meters by dong | 1.65 | 1.13 |
Child dependency ratio | (Number of people aged 0 to 14/number of people aged 15 to 64) × 100 by dong | 16.65 | 5.08 |
Old-age dependency ratio | (Number of people aged 65 and over/number of people aged 15 to 64) × 100 by dong | 14.75 | 4.34 |
Commercial services | |||
Distance to department store | Distance from pCell point to the nearest department store (km) | 2.36 | 1.56 |
Clothing retailers | Floor area of clothing retailers by dong (1000 m2) | 18.90 | 56.06 |
Real estate brokerages | Floor area of real estate brokerages by dong (1000 m2) | 3.44 | 3.19 |
Supermarkets | Floor area of supermarkets by dong (1000 m2) | 3.02 | 2.09 |
Hair beauty shops | Floor area of hair beauty shops by dong (1000 m2) | 3.72 | 5.54 |
Snack bars | Floor area of snack bars by dong (1000 m2) | 1.86 | 1.05 |
Bakeries | Floor area of bakeries by dong (1000 m2) | 3.29 | 2.97 |
Singing rooms | Floor area of singing rooms by dong (1000 m2) | 2.60 | 3.02 |
Computer game rooms | Floor area of computer game rooms by dong (1000 m2) | 1.38 | 1.49 |
Billiard rooms | Floor area of billiard rooms by dong (1000 m2) | 1.86 | 2.09 |
Public services | |||
Density of cultural facilities | Number of cultural facilities per hundred thousand square meters by dong | 0.29 | 1.29 |
Distance to park | Distance from pCell point to the nearest neighborhood park (km) | 0.17 | 0.16 |
Proximity to Public Transit | |||
Distance to bus stop | Distance from pCell point to the nearest bus stop (km) | 0.24 | 0.21 |
Distance to subway station | Distance from pCell point to the nearest subway station (km) | 0.74 | 0.77 |
Variable | Moran’s I | z | p-Value |
---|---|---|---|
Total temporary population | 0.44 | 144.26 | 0.000 |
Women’s temporary population | 0.41 | 136.70 | 0.000 |
Men’s temporary population | 0.46 | 151.32 | 0.000 |
SMW | 0.57 | 185.71 | 0.000 |
Variable | Total | Women’s | Men’s | SMW | ||||
---|---|---|---|---|---|---|---|---|
Coef. | z | Coef. | z | Coef. | z | Coef. | z | |
Constant | 143.29 *** | 5.56 | 67.85 *** | 5.68 | 73.75 *** | 5.24 | −8.51 ** | −2.15 |
Jongno-gu | 41.81 *** | 3.44 | 21.54 *** | 3.83 | 20.26 *** | 3.06 | 0.12 | 0.06 |
Jung-gu | 24.10 * | 1.74 | 8.47 | 1.32 | 15.52 ** | 2.06 | −6.36 *** | −2.99 |
Yeongdeungpo-gu | 19.25 * | 1.81 | 8.14 * | 1.65 | 11.18 * | 1.93 | −2.98 * | −1.82 |
Seocho-gu | −10.77 | −1.21 | −4.32 | −1.05 | −6.42 | −1.32 | 2.04 | 1.49 |
Songpa-gu | −58.03 *** | −5.87 | −25.14 *** | −5.49 | −32.60 *** | −6.05 | 7.43 *** | 4.88 |
Business density | 168.14 *** | 10.96 | 69.01 *** | 9.72 | 98.17 *** | 11.72 | −27.85 *** | −11.76 |
Housing density | −0.37 | −1.02 | −0.13 | −0.76 | −0.24 | −1.20 | 0.10 * | 1.75 |
Distance to detached house | 0.01 | 0.84 | 0.01 | 0.93 | 0.01 | 0.73 | 0.002 | 0.07 |
Distance to apartment | 0.07 *** | 3.59 | 0.03 *** | 3.03 | 0.04 *** | 3.97 | −0.01 *** | −4.53 |
Land price | 24.36 *** | 18.11 | 10.28 *** | 16.54 | 13.99 *** | 19.04 | −3.62 *** | −17.44 |
Population density | 3.99 | 1.21 | 4.99 *** | 3.25 | −0.83 | −0.46 | 4.63 *** | 9.04 |
Child dependency ratio | −0.40 | −0.56 | 0.04 | 0.12 | −0.40 | −1.03 | 0.37 *** | 3.40 |
Old-age dependency ratio | −2.88 *** | −3.01 | −1.68 *** | −3.78 | −1.18 ** | −2.26 | −0.33 ** | −2.24 |
Distance to department store | 4.02 * | 1.49 | 1.25 | 1.00 | 2.75 * | 1.86 | −1.30 *** | −3.13 |
Clothing retailers | 0.05 | 0.89 | 0.08 *** | 2.78 | −0.02 | −0.68 | 0.08 *** | 8.54 |
Real estate brokerages | 2.43 ** | 2.50 | 0.63 | 1.39 | 1.79 *** | 3.36 | −1.01 *** | −6.74 |
Supermarkets | −8.77 *** | −4.83 | −4.46 *** | −5.30 | −4.32 *** | −4.36 | 0.10 | 0.35 |
Hair beauty shops | −1.50 *** | −2.75 | −0.54 ** | −2.12 | −0.95 *** | −3.18 | 0.37 *** | 4.36 |
Snack bars | −1.40 | −0.44 | 0.88 | 0.60 | −2.14 | −1.23 | 2.52 *** | 5.14 |
Bakeries | 6.10 *** | 5.20 | 3.20 *** | 5.89 | 2.90 *** | 4.54 | 0.09 | 0.52 |
Singing rooms | 2.96 *** | 2.62 | 1.31 ** | 2.50 | 1.65 *** | 2.68 | −0.33 ** | −1.92 |
Computer game rooms | 6.40 *** | 3.01 | 2.82 *** | 2.86 | 3.61 *** | 3.11 | −0.81 *** | −2.46 |
Billiard rooms | 0.28 | 0.18 | −1.04 | −1.43 | 1.24 | 1.45 | −1.88 *** | −7.74 |
Density of cultural facilities | −2.70 | −1.29 | 0.67 | 0.69 | −3.26 *** | −2.85 | 3.28 *** | 10.16 |
Distance to park | 41.61 ** | 2.31 | 14.01 * | 1.68 | 27.22 *** | 2.77 | −11.48 *** | −4.13 |
Distance to bus stop | −161.13 *** | −10.48 | −74.23 *** | −10.43 | −86.52 *** | −10.32 | 13.83 *** | 5.86 |
Distance to subway station | −32.16 *** | −6.72 | −13.86 *** | −6.26 | −18.12 *** | −6.95 | 4.22 *** | 5.73 |
Rho ( | 0.50 *** | 100.09 | 0.48 *** | 95.36 | 0.51 *** | 104.87 | 0.59 *** | 134.16 |
R-squared | 0.33 | 0.30 | 0.35 | 0.45 | ||||
N | 49,368 | 49,368 | 49,368 | 49,368 | ||||
Log likelihood | −383,688 | −345,585 | −353,858 | −292,122 | ||||
AIC | 767,434 | 691,229 | 707,775 | 584,302 | ||||
SC | 767,690 | 691,484 | 708,030 | 584,558 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, A.; Lee, S.-K.; Kim, J. Gender Gaps in the Use of Urban Space in Seoul: Analyzing Spatial Patterns of Temporary Populations Using Mobile Phone Data. Sustainability 2020, 12, 6481. https://doi.org/10.3390/su12166481
Jo A, Lee S-K, Kim J. Gender Gaps in the Use of Urban Space in Seoul: Analyzing Spatial Patterns of Temporary Populations Using Mobile Phone Data. Sustainability. 2020; 12(16):6481. https://doi.org/10.3390/su12166481
Chicago/Turabian StyleJo, Areum, Sang-Kyeong Lee, and Jaecheol Kim. 2020. "Gender Gaps in the Use of Urban Space in Seoul: Analyzing Spatial Patterns of Temporary Populations Using Mobile Phone Data" Sustainability 12, no. 16: 6481. https://doi.org/10.3390/su12166481
APA StyleJo, A., Lee, S. -K., & Kim, J. (2020). Gender Gaps in the Use of Urban Space in Seoul: Analyzing Spatial Patterns of Temporary Populations Using Mobile Phone Data. Sustainability, 12(16), 6481. https://doi.org/10.3390/su12166481