Rapid Extraction of Regional-scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. MOD13Q1
2.2.2. HJ-1A/B
2.2.3. Meteorological Data
2.2.4. Cultivated Land Range Data
2.3. Methods
2.3.1. Data Preprocessing
2.3.2. Phenological Remote Sensing Zoning Method
2.3.3. Construction of Three Disaster Monitoring Models
2.3.4. Determination of Threshold Value
2.3.5. Disaster Extraction
2.3.6. Accuracy Verification
3. Results
3.1. Phenological Division of Cultivated Land
3.2. Precision Analysis
3.3. Consistency Analysis of the Applicability and Extraction Scope of Different Models
3.4. Analysis of Spatiotemporal Patterns of Disasters in the Study Area
3.4.1. Spatial and Temporal Pattern Analysis of 2017 Disasters in Heilongjiang Province
3.4.2. Spatial and Temporal Disaster Pattern Analysis of Different Phases in The Study Area from 2010 to 2019
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Model. | Year | DOY 177 | DOY 193 | DOY 209 | DOY 225 | DOY 241 | DOY 257 |
---|---|---|---|---|---|---|---|
2010 | 0.25 | 0.03 | 0.04 | 0.07 | 0.39 | 0.35 | |
2011 | 0.22 | 0.03 | 0.02 | 0.03 | 0.11 | 0.23 | |
2012 | 0.16 | 0.02 | 0.01 | 0.02 | 0.04 | 0.04 | |
2013 | 0.03 | 0.13 | 0.06 | 0.06 | 0.10 | 0.20 | |
RNDVI_TM(i) | 2014 | 0.03 | 0.03 | 0.03 | 0.05 | 0.18 | 0.11 |
2015 | 0.12 | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | |
2016 | 0.05 | 0.06 | 0.03 | 0.02 | 0.08 | 0.10 | |
2017 | 0.11 | 0.06 | 0.03 | 0.03 | 0.08 | 0.15 | |
2018 | 0.08 | 0.02 | 0.02 | 0.02 | 0.08 | 0.23 | |
2019 | 0.07 | 0.03 | 0.02 | 0.08 | 0.10 | 0.09 | |
2010 | 0.49 | 0.06 | 0.04 | 0.06 | 0.34 | 0.54 | |
2011 | 0.35 | 0.06 | 0.04 | 0.07 | 0.18 | 0.51 | |
2012 | 0.29 | 0.05 | 0.03 | 0.06 | 0.15 | 0.30 | |
2013 | 0.11 | 0.13 | 0.06 | 0.08 | 0.14 | 0.40 | |
RNDVI_AM(i)(j) | 2014 | 0.10 | 0.04 | 0.05 | 0.09 | 0.21 | 0.25 |
2015 | 0.15 | 0.07 | 0.05 | 0.05 | 0.13 | 0.20 | |
2016 | 0.22 | 0.07 | 0.05 | 0.08 | 0.12 | 0.23 | |
2017 | 0.13 | 0.07 | 0.04 | 0.04 | 0.10 | 0.19 | |
2018 | 0.13 | 0.06 | 0.05 | 0.05 | 0.13 | 0.35 | |
2019 | 0.10 | 0.05 | 0.04 | 0.11 | 0.10 | 0.12 | |
2010 | 0.36 | 0.04 | 0.04 | 0.07 | 0.31 | 0.60 | |
2011 | 0.33 | 0.05 | 0.03 | 0.06 | 0.17 | 0.53 | |
2012 | 0.26 | 0.05 | 0.03 | 0.04 | 0.07 | 0.20 | |
2013 | 0.07 | 0.10 | 0.05 | 0.07 | 0.13 | 0.44 | |
RNDVI_ZM(i)(j) | 2014 | 0.05 | 0.03 | 0.04 | 0.09 | 0.25 | 0.29 |
2015 | 0.13 | 0.23 | 0.03 | 0.03 | 0.06 | 0.10 | |
2016 | 0.19 | 0.06 | 0.04 | 0.07 | 0.07 | 0.16 | |
2017 | 0.11 | 0.07 | 0.04 | 0.04 | 0.12 | 0.17 | |
2018 | 0.08 | 0.03 | 0.04 | 0.05 | 0.12 | 0.32 | |
2019 | 0.08 | 0.04 | 0.03 | 0.11 | 0.09 | 0.14 |
References
- Campbell, B.M.; Vermeulen, S.J.; Aggarwal, P.K.; Corner-Dolloff, C.; Girvetz, E.; Loboguerrero, A.M.; Ramirez-Villegas, J.; Rosenstock, T.; Sebastian, L.; Thornton, P. Reducing risks to food security from climate change. Glob. Food Secur. 2016, 11, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Du, X.; Wu, B. Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. Int. J. Digit. Earth 2013, 6, 203–218. [Google Scholar] [CrossRef]
- Garonna, I.; de Jong, R.; Schaepman, M.E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Chang. Biol. 2016, 22, 1456–1468. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Hao, X.; Qu, J.J. Monitoring extreme agricultural drought over the Horn of Africa (HOA) using remote sensing measurements. Remote Sens. 2019, 11, 902. [Google Scholar] [CrossRef] [Green Version]
- Hazaymeh, K.; Hassan, Q.K. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. J. Arid. Land 2017, 9, 319–330. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Introducing a new remote sensing-based model for forecasting forest fire danger conditions at a four-day scale. Remote Sens. 2019, 11, 2101. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, E.H.; Hassan, Q.K. Development of a new daily-scale forest fire danger forecasting system using remote sensing data. Remote Sens. 2015, 7, 2431–2448. [Google Scholar] [CrossRef] [Green Version]
- Fox, D.; Carrega, P.; Ren, Y.; Caillouet, P.; Bouillon, C.; Robert, S. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990–2013). Sci. Total Environ. 2018, 621, 120–129. [Google Scholar] [CrossRef]
- Di, S.; Guo, L.; Lin, L. Rapid estimation of flood crop loss by using DVDI. In Proceedings of the 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–4. [Google Scholar]
- Olsson, P.-O.; Lindström, J.; Eklundh, L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI. Remote Sens. Environ. 2016, 181, 42–53. [Google Scholar] [CrossRef]
- Dutta, D.; Kundu, A.; Patel, N.; Saha, S.; Siddiqui, A.R. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Bayarjargal, Y.; Karnieli, A.; Bayasgalan, M.; Khudulmur, S.; Gandush, C.; Tucker, C. A comparative study of NOAA–AVHRR derived drought indices using change vector analysis. Remote Sens. Environ. 2006, 105, 9–22. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S.J.A.; Meteorology, F. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Sholihah, R.I.; Trisasongko, B.H.; Shiddiq, D.; La Ode, S.I.; Kusdaryanto, S.; Panuju, D.R. Identification of agricultural drought extent based on vegetation health indices of Landsat data: Case of Subang and Karawang, Indonesia. Procedia Environ. Sci. 2016, 33, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Patel, N.; Anapashsha, R.; Kumar, S.; Saha, S.; Dadhwal, V.K. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int. J. Remote Sens. 2009, 30, 23–39. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, W.; Chang, N.-B. Geoinformation. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 495–503. [Google Scholar] [CrossRef]
- García-Tejero, I.; Hernández, A.; Padilla-Díaz, C.; Diaz-Espejo, A.; Fernández, J. Assessing plant water status in a hedgerow olive orchard from thermography at plant level. Agric. Water Manag. 2017, 188, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Dahlgren, R.; Vanderbilt, V.; Daughtry, C.J.A. Estimates of Leaf Relative Water Content from Optical Polarization Measurements. SAO/NASA Astrophys. Data Syst. 2017, 2017, A21B-2160. [Google Scholar]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-temporal variation of drought in China from 1982 to 2010 based on a modified temperature vegetation drought index (mTVDI). Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Liu, S.; Tian, J.; Wang, S.; Wang, D.; Chi, T.; Zhang, Y. Crop Drought Area Extraction Based on Remote Sensing Time Series Spatial-Temporal Fusion Vegetation Index. In Proceedings of the IGARSS IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6271–6274. [Google Scholar]
- Feng, M.; Guo, X.; Wang, C.; Yang, W.; Shi, C.; Ding, G.; Zhang, X.; Xiao, L.; Zhang, M.; Song, X. Monitoring and evaluation in freeze stress of winter wheat (Triticum aestivum L.) through canopy hyperspectrum reflectance and multiple statistical analysis. Ecol. Indic. 2018, 84, 290–297. [Google Scholar] [CrossRef]
- Wang, H.-f.; Huo, Z.-g.; Zhou, G.-s.; Liao, Q.-h.; Feng, H.-k.; Wu, L. Biochemistry. Estimating leaf SPAD values of freeze-damaged winter wheat using continuous wavelet analysis. Plant Physiol. Biochem. 2016, 98, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Song, P.; Li, Y.; Zhang, K.; Zhang, H.; Liu, L.; Huang, J. Monitoring Locusta migratoria manilensis damage using ground level hyperspectral data. In Proceedings of the 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–5. [Google Scholar]
- Rahman, M.S.; Di, L. A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment. Agriculture 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Di, L.; Yu, E.; Shrestha, R.; Lin, L. DVDI: A new remotely sensed index for measuring vegetation damage caused by natural disasters. In Proceedings of the IGARSS IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9067–9069. [Google Scholar]
- Klisch, A.; Atzberger, C. Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sens. 2016, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Gessner, U.; Hochschild, V. Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: Rainfall anomalies and vegetation condition in the context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar] [CrossRef] [Green Version]
- Nagy, A.; Fehér, J.; Tamás, J. Wheat and maize yield forecasting for the Tisza river catchment using MODIS NDVI time series and reported crop statistics. Comput. Electron. Agric. 2018, 151, 41–49. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Ceccato, P.; Vancutsem, C.; Cressman, K.; Vanbogaert, E.; Defourny, P. Development and application of multi-temporal colorimetric transformation to monitor vegetation in the desert locust habitat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 318–326. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, D.; Luo, J.; Huang, S.; Dong, Y.; Huang, W. Detection and mapping of hail damage to corn using domestic remotely sensed data in China. Aust. J. Crop Sci. 2012, 6, 101. [Google Scholar]
- Zhou, J.; Pavek, M.J.; Shelton, S.C.; Holden, Z.J.; Sankaran, S. Aerial multispectral imaging for crop hail damage assessment in potato. Comput. Electron. Agric. 2016, 127, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liang, Q.; Liang, Z.; Liu, Y.; Xie, S.J.A.; Meteorology, F. Remote-sensing disturbance detection index to identify spatio-temporal varying flood impact on crop production. Agric. For. Meteorol. 2019, 269, 180–191. [Google Scholar] [CrossRef]
- Löw, F.; Waldner, F.; Latchininsky, A.; Biradar, C.; Bolkart, M.; Colditz, R.R. Timely monitoring of Asian Migratory locust habitats in the Amudarya delta, Uzbekistan using time series of satellite remote sensing vegetation index. J. Environ. Manag. 2016, 183, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Allevato, E.; Saulino, L.; Cesarano, G.; Chirico, G.B.; D’Urso, G.; Bolognesi, S.F.; Rita, A.; Rossi, S.; Saracino, A.; Bonanomi, G. Canopy damage by spring frost in European beech along the Apennines: Effect of latitude, altitude and aspect. Remote Sens. Environ. 2019, 225, 431–440. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, W.; Zhang, L.; Li, D. MODIS-NDVI-based crop growth monitoring in China agriculture remote sensing monitoring system. In Proceedings of the Second IITA International Conference on Geoscience and Remote Sensing, Qingdao, China, 28–31 August 2010; pp. 287–290. [Google Scholar]
- Li, C.; Li, H.; Li, J.; Lei, Y.; Li, C.; Manevski, K.; Shen, Y. Using NDVI percentiles to monitor real-time crop growth. Comput. Electron. Agric. 2019, 162, 357–363. [Google Scholar] [CrossRef]
- Faisal, B.; Rahman, H.; Sharifee, N.H.; Sultana, N.; Islam, M.I.; Habib, S.J.A. Integrated Application of Remote Sensing and GIS in Crop Information System—A Case Study on Aman Rice Production Forecasting Using MODIS-NDVI in Bangladesh. AgriEngineering 2020, 2, 17. [Google Scholar] [CrossRef]
- Labant, S.; Bindzarova Gergelova, M.; Kuzevicova, Z.; Kuzevic, S.; Fedorko, G.; Molnar, V. Utilization of Geodetic Methods Results in Small Open-Pit Mine Conditions: A Case Study from Slovakia. Minerals 2020, 10, 489. [Google Scholar] [CrossRef]
- Chakraborty, S.; Weindorf, D.C.; Deb, S.; Li, B.; Paul, S.; Choudhury, A.; Ray, D.P. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 2017, 289, 72–81. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X. Estimating soil zinc concentrations using reflectance spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 126–133. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2019. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote. Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore III, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, L.; LIU, H.-j.; Qiang, F.; GUAN, H.-x.; Qiang, Y.; ZHANG, X.-l.; KONG, F.-c. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments. J. Integr. Agric. 2020, 19, 1885–1896. [Google Scholar]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Large scale crop classification using Google earth engine platform. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3696–3699. [Google Scholar]
- Beaton, A.; Whaley, R.; Corston, K.; Kenny, F. Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of operational flood monitoring in Northern Ontario. Remote Sens. Environ. 2019, 224, 352–364. [Google Scholar] [CrossRef]
- Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the google earth engine for drought assessment using global soil moisture data. Remote Sens. 2018, 10, 1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-C.; Shieh, M.-C.; Ke, M.-S.; Wang, K.-H. Flood prevention and emergency response system powered by google earth engine. Remote Sens. 2018, 10, 1283. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Moneir, A.A.A.; Jena, R. Sand dune risk assessment in Sabha region, Libya using Landsat 8, MODIS, and Google Earth Engine images. Geomat. Nat. Hazards Risk 2018, 9, 1280–1305. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Wu, C.; Di, L. Exploring the Spatial Characteristics of Typhoon-Induced Vegetation Damages in the Southeast Coastal Area of China from 2000 to 2018. Remote Sens. 2020, 12, 1692. [Google Scholar] [CrossRef]
- Fu, Q.; Zhou, Z.; Li, T.; Liu, D.; Hou, R.; Cui, S.; Yan, P. Spatiotemporal characteristics of droughts and floods in northeastern China and their impacts on agriculture. Stoch. Environ. Res. Risk Assess. 2018, 32, 2913–2931. [Google Scholar] [CrossRef]
- Zhenxiang, X.; Zhaorui, Y.; Qiang, F.; Heng, L.; Xinglong, G.; Jingyan, W. Characteristics and risk assessment of agricultural meteorological disasters based on 30 years’ disaster data from Heilongjiang Province of China. Int. J. Agric. Biol. Eng. 2017, 10, 144–154. [Google Scholar] [CrossRef]
- Huanjun, L.; Yan, Y.; Xinle, Z.; Zhengchao, Q.; Nan, W.; Wei, Y. Remote Sensing Extraction of crop planting structure oriented to agricultural regionalization. Chin. J. Agric. Resour. Reg. Plan 2017, 38, 43–54. [Google Scholar]
- Administration, C.M. Yearbook of Meteorological Disasters in China; China Environmental Science Press: Beijing, China, 2004. [Google Scholar]
- Wang, H.; Vicente-Serrano, S.M.; Tao, F.; Zhang, X.; Wang, P.; Zhang, C.; Chen, Y.; Zhu, D.; El Kenawy, A. Monitoring winter wheat drought threat in Northern China using multiple climate-based drought indices and soil moisture during 2000–2013. Agric. For. Meteorol. 2016, 228, 1–12. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.-x.; Tao, Y.; Huang, X.-z.; Gu, X.-f. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Rahman, M.; Di, L.; Yu, E.; Lin, L.; Zhang, C.; Tang, J. Rapid flood progress monitoring in cropland with NASA SMAP. Remote Sens. 2019, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. Int. J. Digit. Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- ZHOU, Q.-B.; YU, Q.-Y.; Jia, L.; WU, W.-B.; TANG, H.-J. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. J. Integr. Agric. 2017, 16, 242–251. [Google Scholar] [CrossRef]
Dataset | Nominal Resolution | Temporal Granularity | Temporal Coverage |
---|---|---|---|
MOD13Q1 HJ-1A/B CCD | 250 m 30 m | 16 day 4 day | 2010.6–2019.9 2010.6–2019.9 |
Band | Bits 0-1: VI Quality (MODLAND QA Bits) |
---|---|
SummaryQA Bitmask | 0: Good data, use with confidence 1: Marginal data, useful but look at detailed QA for more information 2: Pixel covered with snow/ice 3: Pixel is cloudy |
Name | Definition Interpretation |
---|---|
NDVIStart | Start of crop growth period |
NDVIEnd | End of crop growth period |
NDVIAmp | Amplitude |
NDVIBase | Average of NDVI at start and end |
NDVILength | Length of crop growth period |
NDVISmall | Integral of the average NDVI for the entire period |
NDVIMax | NDVI maximum |
NDVILeft | Slope between the 20% and 80% amplitude points on the left side of the rising curve |
NDVIRight | Slope between the 20% and 80% amplitude on the right side of the descending curve |
NDVIMid | Midpoint of the entire period |
NDVILarge | NDVI integral for the entire period |
Crop Species | Crop Phenology | (10 Days/Month) | ||||
---|---|---|---|---|---|---|
Rice | Sowing and seedling raising Mid-April–mid-May | Transplanting and rejuvenation Late May–early June | Tillering Mid-June–mid-July | Booting and tasseling Late July–mid-August | Milk Late August–early September | Mature Mid-September–late September |
Corn | Seed and emergence Late April–early May | Seedling Mid-May–mid-June | Jointing Late June–mid-July | Emasculation Late July–early August | Milk Mid-August–early September | Mature Mid-September–late September |
Soybean | Seed and emergence Early May–late May | Third Leaf Early June–late June | Parabranching Late June | Flowering Early July–mid July | Podding Mid-August–early September | Mature Mid-September–late September |
Model | Definition Interpretation | Proportion of HJ-1A/B Monitoring Results for the Insured Land (%) | Threshold | Proportion of MODIS Monitoring Results for the Insured Land (%) | Error (%) |
---|---|---|---|---|---|
RNDVI_TM(i) | 20170803Youyi hailstorm | 1.31 | −0.15 | 1.39 | 0.08 |
20180703Tonghe flood | 2.27 | −0.16 | 2.36 | 0.09 | |
20160813Longjiang drought | 0.47 | −0.14 | 0.57 | 0.10 | |
20170802Fuyuan flood | 0.17 | −0.08 | 0.30 | 0.13 | |
20180703Zhaodong flood | 13.14 | −0.11 | 12.71 | 0.44 | |
20120702Maqiaohe hailstorm | 84.82 | −0.14 | 85.50 | 0.68 | |
20160702Hailun hailstorm | 4.60 | −0.15 | 3.88 | 0.73 | |
20160829Gannan drought | 1.47 | −0.16 | 0.66 | 0.82 | |
2018080Luobei wind hazard | 2.47 | −0.16 | 0.25 | 2.22 | |
20170901Beian wind hazard | 16.63 | −0.10 | 35.04 | 18.41 | |
RNDVI_AM(i)(j) | 20170803Youyi hailstorm | 6.87 | −0.10 | 10.96 | 4.09 |
20180703Tonghe flood | 2.27 | −0.14 | 3.21 | 0.94 | |
20160813Longjiang drought | 21.68 | −0.14 | 25.74 | 4.06 | |
20170802Fuyuan flood | 0.87 | −0.17 | 0.77 | 0.10 | |
20180703Zhaodong flood | 23.19 | −0.14 | 19.32 | 3.88 | |
20120702Maqiaohe hailstorm | 84.82 | −0.17 | 89.06 | 4.24 | |
20160702Hailun hailstorm | 54.57 | −0.18 | 30.62 | 23.95 | |
20160829Gannan drought | 1.47 | −0.15 | 2.43 | 0.95 | |
2018080Luobei wind hazard | 2.47 | −0.15 | 0.63 | 1.84 | |
RNDVI_ZM(i)(j) | 20170803Youyi hailstorm | 38.41 | −0.13 | 51.15 | 12.73 |
20180703Tonghe flood | 6.87 | −0.15 | 8.22 | 1.35 | |
20160813Longjiang drought | 2.27 | −0.14 | 1.79 | 0.48 | |
20170802Fuyuan flood | 41.16 | −0.14 | 63.13 | 21.98 | |
20180703Zhaodong flood | 0.87 | −0.13 | 0.97 | 0.10 | |
20120702Maqiaohe hailstorm | 13.14 | −0.11 | 17.28 | 4.14 | |
20160702Hailun hailstorm | 84.82 | −0.16 | 91.64 | 6.82 | |
20160829Gannan drought | 36.25 | −0.16 | 36.43 | 0.18 | |
2018080Luobei wind hazard | 3.01 | −0.16 | 3.74 | 0.73 | |
20170901Beian wind hazard | 2.47 | −0.18 | 0.47 | 1.99 |
Model | DOY | Threshold | Average Error (%) |
---|---|---|---|
RNDVI_TM(i) | 177 | −0.13 | 2.90 |
193 | −0.16 | 7.78 | |
209 | −0.15 | 6.29 | |
225 | −0.15 | 4.22 | |
241 | −0.13 | 4.58 | |
257 | −0.14 | 2.83 | |
RNDVI_AM(i)(j) | 177 | −0.15 | 5.89 |
193 | −0.15 | 3.70 | |
209 | −0.15 | 7.51 | |
225 | −0.13 | 4.99 | |
241 | −0.13 | 5.11 | |
257 | −0.13 | 7.08 | |
RNDVI_ZM(i)(j) | 177 | −0.16 | 5.27 |
193 | −0.16 | 4.32 | |
209 | −0.15 | 7.44 | |
225 | −0.13 | 5.31 | |
241 | −0.15 | 3.16 | |
257 | −0.13 | 4.06 |
Model. | Definition Interpretation | Proportion of HJ-1A/B Monitoring Results for the Insured Land (%) | Threshold | Proportion of MODIS Monitoring Results for the Insured Land (%) | Error (%) |
---|---|---|---|---|---|
RNDVI_TM(i) | 20180801Tongjiang flood | 7.08 | −0.15 | 8.44 | 1.36 |
20180803Tonghe wind hazard | 3.41 | −0.15 | 3.61 | 0.20 | |
20180803Suiling wind hazard | 2.62 | −0.15 | 1.79 | 0.83 | |
20160829Nehe drought | 5.60 | −0.13 | 0.86 | 4.73 | |
20120914Hulan Insect | 20.36 | −0.14 | 20.90 | 0.54 | |
20120829Wuchang Insect | 8.79 | −0.13 | 0.14 | 8.65 | |
2017090Nenjiang flood | 12.35 | −0.14 | 16.77 | 4.42 | |
20180901Zhaodong hailstorm | 51.82 | −0.14 | 58.66 | 6.84 | |
20180901Hailun hailstorm | 52.13 | −0.14 | 69.87 | 17.74 | |
20190907Nehe flood | 22.34 | −0.14 | 28.85 | 6.51 | |
RNDVI_AM(i)(j) | 20180801Tongjiang flood | 4.10 | −0.13 | 4.28 | 0.18 |
20180803Tonghe wind hazard | 8.55 | −0.13 | 10.98 | 2.43 | |
20180803Suiling wind hazard | 2.62 | −0.13 | 3.22 | 0.60 | |
20160829Nehe drought | 1.92 | −0.13 | 1.06 | 0.86 | |
20120914Hulan Insect | 20.36 | −0.13 | 4.64 | 15.72 | |
20120829Wuchang Insect | 8.79 | −0.13 | 0.69 | 8.11 | |
20170901Nenjiang flood | 6.94 | −0.13 | 13.73 | 6.79 | |
20180901Zhaodong hailstorm | 67.07 | −0.13 | 70.06 | 2.98 | |
20180901Hailun hailstorm | 80.72 | −0.13 | 92.93 | 12.21 | |
20190907Nehe flood | 50.25 | −0.13 | 48.16 | 2.09 | |
RNDVI_ZM(i)(j) | 20180801Tongjiang flood | 4.10 | −0.13 | 4.73 | 0.63 |
20180803Tonghe wind hazard | 8.55 | −0.13 | 10.98 | 2.43 | |
20180803Suiling wind hazard | 2.62 | −0.13 | 3.22 | 0.60 | |
20160829Nehe drought | 1.92 | −0.13 | 1.18 | 0.74 | |
20120914Hulan Insect | 20.36 | −0.13 | 1.80 | 18.55 | |
20120829Wuchang Insect | 8.79 | −0.13 | 12.41 | 3.62 | |
20170901Nenjiang flood | 6.94 | −0.13 | 8.53 | 1.58 | |
20180901Zhaodong hailstorm | 67.07 | −0.13 | 62.44 | 4.63 | |
20180901Hailun hailstorm | 80.72 | −0.13 | 91.63 | 10.90 | |
20190907Nehe flood | 50.25 | −0.13 | 42.80 | 7.45 |
RNDVI_TM(i) | RNDVI_AM(i)(j) | RNDVI_ZM(i)(j) | |
---|---|---|---|
Hailstorm | 3.16 | 2.93 | 3.52 |
Pest plague | 6.70 | 11.91 | 12.33 |
Wind hazard | 1.61 | 2.28 | 1.77 |
Drought | 4.91 | 1.68 | 5.39 |
Flood | 2.48 | 2.85 | 2.94 |
DOY. | RNDVI_TM(i) | RNDVI_AM(i)(j) | RNDVI_ZM(i)(j) |
---|---|---|---|
177 | 11.29 | 13.17 | 11.83 |
193 | 6.04 | 7.22 | 6.78 |
209 | 3.03 | 4.41 | 4.06 |
225 | 3.17 | 4.38 | 3.97 |
241 | 7.96 | 10.30 | 11.58 |
257 | 15.43 | 18.59 | 16.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, H.; Luo, C.; Yang, H.; Meng, X.; Ju, Y.; Guo, D. Rapid Extraction of Regional-scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine. Sustainability 2020, 12, 6497. https://doi.org/10.3390/su12166497
Liu Z, Liu H, Luo C, Yang H, Meng X, Ju Y, Guo D. Rapid Extraction of Regional-scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine. Sustainability. 2020; 12(16):6497. https://doi.org/10.3390/su12166497
Chicago/Turabian StyleLiu, Zhengrong, Huanjun Liu, Chong Luo, Haoxuan Yang, Xiangtian Meng, Yongchol Ju, and Dong Guo. 2020. "Rapid Extraction of Regional-scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine" Sustainability 12, no. 16: 6497. https://doi.org/10.3390/su12166497
APA StyleLiu, Z., Liu, H., Luo, C., Yang, H., Meng, X., Ju, Y., & Guo, D. (2020). Rapid Extraction of Regional-scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine. Sustainability, 12(16), 6497. https://doi.org/10.3390/su12166497