The Effects of Morus alba L. Fortification on the Quality, Functional Properties and Sensory Attributes of Bread Stored under Refrigerated Conditions
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Extraction
3.2. Bread Recipe and Baking Process
3.3. Qualitative and Quantitative Analysis of Phenolic Acids and Flavonoids
3.4. Antioxidant Activity in Model Systems with DPPH and ABTS
3.5. Chelating and Reducing Properties
3.6. Bread Microbiological Quality Evaluation
3.7. Sensory Evaluation
3.8. Statistical Analysis
4. Results
4.1. Polyphenols Content
4.2. Antioxidant Activity of Bread
4.3. Microbiological Quality
4.4. Sensory Quality
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rohela, G.K.; Muttanna, P.S.; Kumar, R.; Chowdhury, S.R. Mulberry (Morus spp.): An ideal plant for sustainable development. Trees For. People 2020, 2, 100011. [Google Scholar] [CrossRef]
- Jian, Q.; Ningjia, H.; Yong, W.; Zhonghuai, X. Ecological Issues of Mulberry and Sustainable Development. J. Resour. Ecol. 2012, 3, 330–339. [Google Scholar] [CrossRef]
- Piechocka, J.; Szulc, P.; Dziedziński, M.; Kobus-Cisowska, J.; Szczepaniak, O.; Szymanowska-Powałowska, D. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Cienc. Rural 2020, 50. [Google Scholar] [CrossRef] [Green Version]
- Kobus-Cisowska, J.; Gramza-Michalowska, A.; Kmiecik, D.; Flaczyk, E.; Korczak, J. Mulberry fruit as an antioxidant component in muesli. Agric. Sci. 2013, 04, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Salcedo, E.M.; Sendra, E.; Carbonell-Barrachina, Á.A.; Martínez, J.J.; Hernández, F. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries. Food Chem. 2016, 190, 566–571. [Google Scholar] [CrossRef]
- Radojković, M.; Zeković, Z.; Mašković, P.; Vidović, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J. Supercrit. Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Raman, S.T.; Ganeshan, A.K.P.; Chen, C.; Jin, C.; Li, S.H.; Chen, H.J.; Gui, Z. In vitro and in vivo antioxidant activity of flavonoid extracted from mulberry fruit (Morus alba L.). Pharmacogn. Mag. 2016, 12, 128–133. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.J.; Bucheli, P.; Zhang, P.F.; Wei, D.Z.; Lu, Y.H. Phytochemical profiles of different mulberry (Morus sp.) species from China. J. Agric. Food Chem. 2009, 57, 9133–9140. [Google Scholar] [CrossRef]
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.D.G. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. J. Funct. Foods 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Samappito, S. Phenolic composition and antioxidant activity of white mulberry (Morus albaL.) fruits. Int. J. Food Sci. Technol. 2013, 48, 934–940. [Google Scholar] [CrossRef]
- Przeor, M.; Flaczyk, E.; Beszterda, M.; Szymandera-Buszka, K.; Piechocka, J.; Kmiecik, D.; Szczepaniak, O.; Kobus-Cisowska, J.; Jarzębski, M.; Tylewicz, U. Air-drying temperature changes the content of the phenolic acids and flavonols in white mulberry (Morus alba l.) leaves. Cienc. Rural 2019, 49. [Google Scholar] [CrossRef]
- Ban, C.; Yoon, S.; Han, J.; Kim, S.O.; Han, J.S.; Lim, S.; Choi, Y.J. Effects of freezing rate and terminal freezing temperature on frozen croissant dough quality. LWT Food Sci. Technol. 2016, 73, 219–225. [Google Scholar] [CrossRef]
- Ayati, S.-V.; Hamdami, N.; Le-Bail, A. Frozen Sangak dough and bread properties: Impact of pre-fermentation and freezing rate. Int. J. Food Prop. 2017, 20, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Liu, X.; Wang, H.; Zhang, H. Effect of ultrasound-assisted freezing on the textural characteristics of dough and the structural characterization of wheat gluten. J. Food Sci. Technol. 2019, 56, 3380–3390. [Google Scholar] [CrossRef]
- Mashayekh, M.; Mahmoodi, M.R.; Entezari, M.H. Effect of fortification of defatted soy flour on sensory and rheological properties of wheat bread. Int. J. Food Sci. Technol. 2008, 43, 1693–1698. [Google Scholar] [CrossRef]
- Dziki, D.; Rózyło, R.; Gawlik-Dziki, U.; Świeca, M. Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 2014, 40, 48–61. [Google Scholar] [CrossRef]
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Fabroni, S.; Fallico, B.; Rapisarda, P.; Arena, E. Wholegrain durum wheat bread fortified with citrus fibers: Evaluation of quality parameters during long storage. Front. Nutr. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.L.G.; Mársico, E.T.; Soares Junior, M.S.; Caliari, M.; Conte-Junior, C.A. Physicochemical stability of bread fortified with tilapia-waste flour. CyTA J. Food 2019, 17, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Ezhilarasi, P.N.; Indrani, D.; Jena, B.S.; Anandharamakrishnan, C. Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality. J. Sci. Food Agric. 2014, 94, 1116–1123. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Peng, X.; Ma, J.; Cheng, K.W.; Jiang, Y.; Chen, F.; Wang, M. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 2010, 119, 49–53. [Google Scholar] [CrossRef]
- Mikulec, A.; Kowalski, S.; Makarewicz, M.; Skoczylas, Ł.; Tabaszewska, M. Cistus extract as a valuable component for enriching wheat bread. LWT 2020, 118, 108713. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Szczepaniak, O.; Kmiecik, D.; Przeor, M.; Gramza-Michałowska, A.; Cielecka-Piontek, J.; Smuga-Kogut, M.; Szulc, P. Composition and in vitro effects of cultivars of humulus lupulus L. Hops on cholinesterase activity and microbial growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [Green Version]
- Kobus-Cisowska, J.; Szulc, P.; Szczepaniak, O.; Dziedziński, M.; Szymanowska, D.; Szymandera-Buszka, K.; Goryńska-Goldmann, E.; Gazdecki, M.; Telichowska, A.; Ligaj, M. Variability of Hordeum vulgare L. cultivars in yield, antioxidant potential, and cholinesterase inhibitory activity. Sustainability 2020, 12, 1938. [Google Scholar] [CrossRef] [Green Version]
- Dibanda, R.F.; Akdowa, E.P.; Tongwa, Q.M. Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chem. 2020, 302, 125308. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem. 2011, 129, 1139–1147. [Google Scholar] [CrossRef]
- Marinova, E.M.; Yanishlieva, N.V. Antioxidant activity and mechanism of action of some phenolic acids at ambient and high temperatures. Food Chem. 2003, 81, 189–197. [Google Scholar] [CrossRef]
- Réblová, Z. The effect of temperature on the antioxidant activity of tocopherols. Eur. J. Lipid Sci. Technol. 2006, 108, 858–863. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Funct. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Olusegun, T.A.; Olufemi, O.A.; Olaniran, O.; Olusola, A.; Bolade, K.O.; Oluwatoyosi, O. Safety of bread for human consumption in an urban community in Southwestern Nigeria. Afr. J. Food Sci. 2015, 9, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Beta, T. Development of Chinese steamed bread enriched in bioactive compounds from barley hull and flaxseed hull extracts. Food Chem. 2012, 133, 1320–1325. [Google Scholar] [CrossRef]
- De Conto, L.C.; Porto Oliveira, R.S.; Pereira Martin, L.G.; Chang, Y.K.; Steel, C.J. Effects of the addition of microencapsulated omega-3 and rosemary extract on the technological and sensory quality of white pan bread. LWT Food Sci. Technol. 2012, 45, 103–109. [Google Scholar] [CrossRef] [Green Version]
Ingredients | PM | PK |
---|---|---|
Morus alba leaves extract | 1.0 | 0.0 |
Morus alba fruit | 3.0 | 0.0 |
Chia seeds | 3.0 | 3.0 |
Wheat flakes | 2.7 | 2.7 |
Sunflowers seeds | 2.0 | 2.0 |
Cornflakes | 4.0 | 4.0 |
Millet | 1.0 | 1.0 |
Broken soya beans | 2.0 | 2.0 |
Soybean meal | 1.0 | 1.0 |
Linseed | 1.0 | 1.0 |
Wheat malt flour | 1.0 | 1.0 |
Sesame seeds | 1.0 | 1.0 |
Acetic acid | 0.1 | 0.1 |
Lactic acid | 0.1 | 0.1 |
Citric acid | 0.1 | 0.1 |
Sugar | 1.0 | 1.0 |
Emulsifier E 472—mono and di fatty acid glycerides | 2.0 | 2.0 |
Rape lecithin | 2.0 | 2.0 |
Stabilizer E 466—sodium carboxymethylcellulose | 2.0 | 2.0 |
Ascorbic acid | 2.0 | 2.0 |
Wheat flour | 38.0 | 38.0 |
Rye flour | 26.0 | 30.0 |
Yeast | 3.0 | 3.0 |
Low-sodium salt | 1.0 | 1.0 |
Water | 66.0 | 68.0 |
Phenolic Acid (µg/g) | PM 1 | PK 1 | PM 30 | PK 30 | Δ PM1-PK1 | Δ PM30-PK30 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protocateuchic acid | 95.28 d | ± | 6.76 | 62.12 b | ± | 2.58 | 81.22c | ± | 3.23 | 49.77a | ± | 3.55 | 33.16 | ± | 2.51 | 31.45 | ± | 3.53 |
P-hydroxybenzoic acid | 6.97 b | ± | 0.12 | 6.82 b | ± | 1.25 | 5.63 a | ± | 1.22 | 7.93 c | ± | 0.83 | 3.15 | ± | 0.00 | 2.30 | ± | 0.00 |
Vanillic acid | 19.25 a | ± | 2.05 | 19.15 a | ± | 1.77 | 23.17 b | ± | 1.41 | 21.21 b | ± | 1.26 | 0.10 | ± | 0.00 | 1.96 | ± | 0.01 |
Caffeic acid | 17.86 b | ± | 0.32 | 0.89 a | ± | 1.18 | 31.42 c | ± | 3.74 | 1.55 a | ± | 0.44 | 16.97 | ± | 0.83 | 29.87 | ± | 1.64 |
Gallic acid | 12.33 b | ± | 1.91 | 0.00 a | ± | 0.00 | 17.31 c | ± | 1.63 | 0.00 a | ± | 0.00 | 12.33 | ± | 1.09 | 17.31 | ± | 2.63 |
Chlorogenic acid | 59.35 d | ± | 1.99 | 22.07 b | ± | 1.15 | 44.21 c | ± | 2.88 | 8.71 a | ± | 0.36 | 37.28 | ± | 2.41 | 35.50 | ± | 2.13 |
P-coumaric acid | 10.85 a | ± | 1.02 | 22.42 b | ± | 3.06 | 10.93 a | ± | 1.83 | 20.55 b | ± | 2.72 | 11.22 | ± | 1.11 | 9.62 | ± | 0.99 |
Ferulic acid | 6.43 a | ± | 0.50 | 13.50 b | ± | 0.74 | 4.65 a | ± | 1.07 | 7.72 b | ± | 0.24 | 7.07 | ± | 0.87 | 3.07 | ± | 0.02 |
Rutin | 20.27 c | ± | 1.10 | 9.35 a | ± | 0.97 | 18.77 b | ± | 1.55 | 6.44 a | ± | 0.34 | 10.92 | ± | 0.52 | 12.33 | ± | 0.64 |
Astragalin | 4.28 c | ± | 0.13 | 2.44 b | ± | 0.10 | 1.97 a,b | ± | 0.75 | 1.24 a | ± | 0.01 | 1.84 | ± | 0.51 | 0.73 | ± | 0.02 |
Hiperozide | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 |
Quercetin | 13.94 b | ± | 1.69 | 0.00 a | ± | 0.00 | 14.43 b | ± | 0.29 | 1.84 a | ± | 0.01 | 13.94 | ± | 0.66 | 12.59 | ± | 0.12 |
Izoquercetin | 154.25 b | ± | 2.68 | 32.69 a | ± | 1.66 | 155.77 b | ± | 6.74 | 33.37 a | ± | 2.28 | 121.56 | ± | 5.76 | 122.40 | ± | 2.87 |
Myricetin | 7.71c | ± | 1.44 | 4.57 a | ± | 0.33 | 6.97 b,c | ± | 0.93 | 4.24 b | ± | 1.05 | 3.14 | ± | 0.13 | 2.73 | ± | 0.01 |
Kaempferol | 1.38 b | ± | 0.02 | 0.00 a | ± | 0.00 | 1.92 b | ± | 0.02 | 0.00 a | ± | 0.00 | 1.38 | ± | 0.11 | 1.92 | ± | 0.01 |
Izorhramentin | 0.02 a | ± | 0.00 | 0.02 a | ± | 0.00 | 0.02 a | ± | 0.00 | 0.02 a | ± | 0.00 | 0.00 | ± | 1.36 | 0.00 | ± | 0.81 |
Sample | Chelating Activity y = ax + b×log10(x) | Reducing Power y = ax + b×log10(x) | ||||
---|---|---|---|---|---|---|
a | b | R2 p ≤ 0.001 | a | b | R2 p ≤ 0.001 | |
PM1 | −9.26 | 8.34 | 0.944 | −0.31 | 0.26 | 0.944 |
PK1 | −5.55 | 4.61 | 0.935 | −0.26 | 0.13 | 0.954 |
PM30 | −10.47 | 7.27 | 0.965 | −0.19 | 0.24 | 0.924 |
PM30 | −4.11 | 3.11 | 0.934 | −0.12 | 0.19 | 0.975 |
Compound | Correlation | |||
---|---|---|---|---|
DPPH• | ABTS+• | Chelating Activity | Reducing Power | |
Rutin | 0.77 * | 0.94 * | 0.85 NS | 0.72 * |
Astragalin | 0.85 * | 0.87 * | 0.38 NS | 0.82 * |
Hiperozide | 0.53NS | 0.75 NS | 0.34 NS | 0.57 NS |
Quercetin | 0.83 * | 0.95 * | 0.79 * | 0.79 * |
Izoquercetin | 0.81 * | 0.98 * | 0.43 NS | 0.77 NS |
Myricetin | 0.83 * | 0.81 NS | 0.42 NS | 0.62 NS |
Kaempferol | 0.33 NS | 0.78 * | 0.44 NS | 0.77 NS |
Izorhramentin | 0.84 * | 0.96 * | 0.45 NS | 0.79 * |
Total flavonols | 0.83 * | 0.97 * | 0.42 NS | 0.81 * |
Protocateuchic acid | 0.77 * | 0.89 * | 0.27 NS | 0.84 * |
P-hydroxybenzoic acid | 0.04 NS | 0.09 NS | 0.11 NS | 0.38 NS |
Vanilic acid | 0.12 | 0.22 NS | 0.68 NS | 0.22 NS |
Caffeic acid | 0.87 * | 0.67 * | 0.44 NS | 0.69 * |
Gallic acid | 0.85 * | 0.67 * | 0.31 NS | 0.72 * |
Chlorogenic acid | 0.95 * | 0.73 * | 0.44 NS | 0.72 * |
P-coumaric acid | 0.31 NS | 0.23 NS | 0.46 NS | 0.49 NS |
Ferulic acid | 0.47 NS | 0.44 NS | 0.62 NS | 0.46 NS |
Total phenolic acids | 0.89 * | 0.76 * | 0.34 NS | 0.86 * |
Sample | Total Mesophilic Microorganisms | Total Psychrophilic Microorganisms | Yeasts, Molds | Listeria monocytogenes | Salmonella | Enterobacteriaceae | Microbial Indicator | |||
---|---|---|---|---|---|---|---|---|---|---|
Anaerobes | Coli Group | Enterococci | Coagulase-Positive Staphylococci | |||||||
Microbiological criteria | ≤ 1.0 × 104 cfu/g | - | ≤ 1.0 × 102 cfu/g | 0 cfu/25 g | 0 cfu/25 g | ≤ 1.0 × 101 cfu/g | - | 0 cfu/g | - | 0 cfu/g |
PM1 | 1.5 × 101 cfu/g | 1.0 × 101 cfu/g | Yeasts 2.0 × 101 cfu/g ‒ No molds | N/D in 25 g | N/D in 25 g | N/D in 25 g | N/D in 25 g | N/D in 25 g | N/D in 0.1 g | N/D in 0.1 g |
PM30 | 1.9 × 103 cfu/g | 1.0 × 101 cfu/g | Yeasts 1.3 × 101 cfu/g ‒ No molds | N/D in 25 g | N/D in 25 g | N/D in 25 g | N/D in 0.1 g | N/D in 0.1 g | N/D in 0.1 g | N/D in 0.1 g |
PK1 | 1.0 × 101 cfu/g | N/D in 0.1 g | N/D in 0.1 g | N/D in 25 g | N/D in 25 g | N/D in 25 g | N/D in 0.1 g | N/D in 0.1 g | N/D in 0.1 g | N/D in 0.1 g |
PK30 | 6.9 × 103 cfu/g | 6.3 × 102 cfu/g | Yeasts 6.6 × 101 cfu/g ‒ No molds | N/D in 25 g | N/D in 25 g | N/D in 25 g | N/D 0.1 g | N/D in 0.1 g | N/D in 0.1 g | N/D 0.1 g |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobus-Cisowska, J.; Dziedziński, M.; Szymanowska, D.; Szczepaniak, O.; Byczkiewicz, S.; Telichowska, A.; Szulc, P. The Effects of Morus alba L. Fortification on the Quality, Functional Properties and Sensory Attributes of Bread Stored under Refrigerated Conditions. Sustainability 2020, 12, 6691. https://doi.org/10.3390/su12166691
Kobus-Cisowska J, Dziedziński M, Szymanowska D, Szczepaniak O, Byczkiewicz S, Telichowska A, Szulc P. The Effects of Morus alba L. Fortification on the Quality, Functional Properties and Sensory Attributes of Bread Stored under Refrigerated Conditions. Sustainability. 2020; 12(16):6691. https://doi.org/10.3390/su12166691
Chicago/Turabian StyleKobus-Cisowska, Joanna, Marcin Dziedziński, Daria Szymanowska, Oskar Szczepaniak, Szymon Byczkiewicz, Aleksandra Telichowska, and Piotr Szulc. 2020. "The Effects of Morus alba L. Fortification on the Quality, Functional Properties and Sensory Attributes of Bread Stored under Refrigerated Conditions" Sustainability 12, no. 16: 6691. https://doi.org/10.3390/su12166691
APA StyleKobus-Cisowska, J., Dziedziński, M., Szymanowska, D., Szczepaniak, O., Byczkiewicz, S., Telichowska, A., & Szulc, P. (2020). The Effects of Morus alba L. Fortification on the Quality, Functional Properties and Sensory Attributes of Bread Stored under Refrigerated Conditions. Sustainability, 12(16), 6691. https://doi.org/10.3390/su12166691