Hydrocracking: A Perspective towards Digitalization
Abstract
:1. Introduction
2. Models and Processes
2.1. Physics-Based Models
2.2. Data-Driven Models
3. Characterization Methods
4. Optimization, Control, Diagnostics and Future Directions
4.1. Optimization and Control
4.2. Diagnostics
4.3. Future Directions
5. Conclusions
- Physics-based models still have high importance for design and analysis. The increasing complexity of the process increases the need for detail, which can only be supplied by first-principle models. The physical meaning of the variables brings a better understanding of the actual system by providing links between the changes and their potential causes. Next to that, these models have a better extrapolation capability hence a higher fitness for analysis. However, these models are time consuming both in the development phase and in the computation phase.
- The need should be analyzed carefully before deciding the type of model to avoid excessive computational effort or lack of data. It is not only the decision of a physics-based or a data-based model since both of these model classes also offer various options with different assets. A deliberate evaluation leads to a suitable model selection and maximizes the benefit from it.
- Data-driven models need more attention, as they are crucial for real-time optimization and control. These models are fast and robust when designed with system knowledge to evaluate the required inputs to predict the desired outputs. They are suitable for complex processes and employed in industrial applications but are rarely published. Their addition to literature may contribute to a better judgment of data analysis, model training, tuning, and testing for the refining industry.
- The models that do not consider catalyst aging have a need for regular recalibration. As most of the industrial scale hydrocracking units employ fixed bed reactors, catalyst degradation affects the model parameters. With the decreasing activity, bed temperatures increase, and models lose the prediction accuracy. To avoid ill-advised decisions based on outdated models, the affected model parameters should be assessed and updated systematically.
- The accuracy of the soft sensors is still a concern that needs to be addressed. Together with the data-based models, soft sensors can solve real-time monitoring problems of refineries. However, before depending on them for process decisions, they need to be tested with varying feedstock and proved to be reliable.
- Wavelength selection has to be done thoroughly. Using selected wavelengths instead of the entire spectra might help avoid over-fitting; however, it might lead to a loss of necessary data. A well-distributed training sample is necessary to observe the data carrying peaks and to avoid the elimination of them, hence a sacrifice of fidelity.
Funding
Conflicts of Interest
Nomenclature
ANN | Artificial Neural Network |
SARA | Saturate, Aromatic, Resin, Asphaltene |
API | American Petroleum Institute |
FCC | Fluid Catalytic Cracking |
HC | Hydrocracking |
FBR | Fixed Bed Reactor |
EBR | Ebullated Bed Reactor |
SPR | Slurry Phase Reactor |
TBP | True Boiling Point |
SEMM | Single Event Microkinetic Modeling |
CFD | Computational Fluid Dynamics |
RTO | Real-Time Optimization |
CNN | Convolutional Neural Network |
PCA | Principal Component Analysis |
ASTM | American Society for Testing and Materials |
NIR | Near Infrared |
IR | Infrared |
NMR | Nuclear Magnetic Resonance |
UV | Ultra-Violet |
PLS | Partial Least Squares |
PCR | Principal Component Regression |
MLR | Multiple Linear Regression |
SVM | Support Vector Machine |
RMSEP | Root Mean Square Error of Prediction |
GA | Genetic Algorithm |
MPC | Model Predictive Control |
PID | Proportional - Integral - Derivative |
SQP | Sequential Quadratic Programming |
References
- Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC. Off. J. Eur. Union. 2008, 140, 88–114.
- Höök, M.; Aleklett, K. A review on coal-to-liquid fuels and its coal consumption. Int. J. Energy Res. 2010, 34, 848–864. [Google Scholar] [CrossRef] [Green Version]
- Speight, J. Visbreaking: A technology of the past and the future. Sci. Iran. 2012, 19, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 2013, 104, 683–710. [Google Scholar] [CrossRef]
- Scherzer, J.; Gruia, A.J. Hydrocracking Science and Technology; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Calzado Catala, F.; Flores de la Fuente, R.; Gardzinski, W.; Kawula, J.; Hille, A.; Iglesias Lopez, A.; Lambert, G.; Leveque, F.; Lyde, C.; Mackenzie, A.; et al. Oil Refining in the EU in 2020, with Perspectives to 2030; Technical Report; CONCAWE: Brussels, Belgium, 2013. [Google Scholar]
- Petroleum and Other Liquids. Available online: https://www.eia.gov/petroleum/data.php/summary (accessed on 13 April 2020).
- Coonradt, H.L.; Garwood, W.E. Mechanism of hydrocracking. Reactions of Paraffins and Olefins. Ind. Eng. Chem. Process. Des. Dev. 1964, 3, 38–45. [Google Scholar] [CrossRef]
- Qader, S.; Hill, G. Hydrocracking of gas oil. Ind. Eng. Chem. Process. Des. Dev. 1969, 8, 98–105. [Google Scholar] [CrossRef]
- Flinn, R.; Larson, O.; Beuther, H. The mechanism of catalytic hydrocracking. Ind. Eng. Chem. 1960, 52, 153–156. [Google Scholar] [CrossRef]
- Sullivan, R.; Egan, C.J.; Langlois, G.; Sieg, R.P. A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons. J. Am. Chem. Soc. 1961, 83, 1156–1160. [Google Scholar] [CrossRef]
- Laxminarasimhan, C.; Verma, R.; Ramachandran, P. Continuous lumping model for simulation of hydrocracking. AIChE J. 1996, 42, 2645–2653. [Google Scholar] [CrossRef]
- Mohanty, S.; Saraf, D.; Kunzru, D. Modeling of a hydrocracking reactor. Fuel Process. Technol. 1991, 29, 1–17. [Google Scholar] [CrossRef]
- Ayasse, A.R.; Nagaishi, H.; Chan, E.W.; Gray, M.R. Lumped kinetics of hydrocracking of bitumen. Fuel 1997, 76, 1025–1033. [Google Scholar] [CrossRef]
- Schweitzer, J.M.; Galtier, P.; Schweich, D. A single events kinetic model for the hydrocracking of paraffins in a three-phase reactor. Chem. Eng. Sci. 1999, 54, 2441–2452. [Google Scholar] [CrossRef]
- Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Rotness, L.J.; Zacher, A.H. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ. Prog. Sustain. Energy 2009, 28, 441–449. [Google Scholar] [CrossRef]
- Tanneru, S.K.; Steele, P.H. Direct hydrocracking of oxidized bio-oil to hydrocarbons. Fuel 2015, 154, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Jia, L.; Chen, C.; Liu, G.; Fang, W. Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst. Bioresour. Technol. 2011, 102, 4580–4584. [Google Scholar] [CrossRef]
- Rana, M.S.; Sámano, V.; Ancheyta, J.; Diaz, J. A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 2007, 86, 1216–1231. [Google Scholar] [CrossRef]
- Castañeda, L.; Muñoz, J.; Ancheyta, J. Combined process schemes for upgrading of heavy petroleum. Fuel 2012, 100, 110–127. [Google Scholar] [CrossRef]
- Tye, C.T. Catalysts for Hydroprocessing of Heavy Oils and Petroleum Residues. In Processing of Heavy Crude Oils-Challenges and Opportunities; Gounder, R.M., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Ancheyta, J.; Sánchez, S.; Rodríguez, M.A. Kinetic modeling of hydrocracking of heavy oil fractions: A review. Catal. Today 2005, 109, 76–92. [Google Scholar] [CrossRef]
- Chung, H. Applications of near-infrared spectroscopy in refineries and important issues to address. Appl. Spectrosc. Rev. 2007, 42, 251–285. [Google Scholar] [CrossRef]
- Edwards, J.C. A Review of Applications of NMR Spectroscopy in the Petroleum Industry. In Spectroscopic Analysis of Petroleum Products and Lubricants; Nadkarni, K.R., Ed.; ASTM International: West Conshohocken, PA, USA, 2011; pp. 423–473. [Google Scholar]
- Ogden-Swift, A. An industrial review of advanced process control of continuous processes on refineries and petrochemical plants. Trans. Inst. Meas. Control 1996, 18, 9–14. [Google Scholar] [CrossRef]
- Robinson, P.R.; Dolbear, G.E. Hydrotreating and hydrocracking: Fundamentals. In Practical Advances in Petroleum Processing; Hsu, C.S., Robinson, P.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 177–218. [Google Scholar]
- Ancheyta, J.; Alvarez-Majmutov, A.; Leyva, C. Hydrotreating of oil fractions. In Multiphase Catalytic Reactors: Theory, Design, Manufacturing, and Applications; Ilsen Onsan, Z., Avci, A.K., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Al-Dalama, K.; Stanislaus, A. Comparison between deactivation pattern of catalysts in fixed-bed and ebullating-bed residue hydroprocessing units. Chem. Eng. J. 2006, 120, 33–42. [Google Scholar] [CrossRef]
- Martinez, J.; Sanchez, J.L.; Ancheyta, J.; Ruiz, R.S. A review of process aspects and modeling of ebullated bed reactors for hydrocracking of heavy oils. Catal. Rev. 2010, 52, 60–105. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D.; Deng, W.; Que, G. A review of slurry-phase hydrocracking heavy oil technology. Energy Fuels 2007, 21, 3057–3062. [Google Scholar] [CrossRef]
- Bellussi, G.; Rispoli, G.; Landoni, A.; Millini, R.; Molinari, D.; Montanari, E.; Moscotti, D.; Pollesel, P. Hydroconversion of heavy residues in slurry reactors: Developments and perspectives. J. Catal. 2013, 308, 189–200. [Google Scholar] [CrossRef]
- Calderón, C.J.; Ancheyta, J. Modeling, simulation, and parametric sensitivity analysis of a commercial slurry-phase reactor for heavy oil hydrocracking. Fuel 2019, 244, 258–268. [Google Scholar] [CrossRef]
- Sahu, R.; Song, B.J.; Im, J.S.; Jeon, Y.P.; Lee, C.W. A review of recent advances in catalytic hydrocracking of heavy residues. J. Ind. Eng. Chem. 2015, 27, 12–24. [Google Scholar] [CrossRef]
- Mosby, J.; Buttke, R.; Cox, J.; Nikolaides, C. Process characterization of expanded-bed reactors in series. Chem. Eng. Sci. 1986, 41, 989–995. [Google Scholar] [CrossRef]
- Stangeland, B.E. A kinetic model for the prediction of hydrocracker yields. Ind. Eng. Chem. Process. Des. Dev. 1974, 13, 71–76. [Google Scholar] [CrossRef]
- Callejas, M.A.; Martínez, M.T. Hydrocracking of a Maya residue. Kinetics and product yield distributions. Ind. Eng. Chem. Res. 1999, 38, 3285–3289. [Google Scholar] [CrossRef]
- Elkady, F. Hydrocracking of vacuum distillate fraction over bifunctional molybdenum-nickel-silica-alumina catalyst. Indian J. Technol. 1979, 17, 176–183. [Google Scholar]
- Martínez, J.; Ancheyta, J. Kinetic model for hydrocracking of heavy oil in a CSTR involving short term catalyst deactivation. Fuel 2012, 100, 193–199. [Google Scholar] [CrossRef]
- Elizalde, I.; Ancheyta, J. Modeling catalyst deactivation during hydrocracking of atmospheric residue by using the continuous kinetic lumping model. Fuel Process. Technol. 2014, 123, 114–121. [Google Scholar] [CrossRef]
- Elizalde, I.; Ancheyta, J. On the detailed solution and application of the continuous kinetic lumping modeling to hydrocracking of heavy oils. Fuel 2011, 90, 3542–3550. [Google Scholar] [CrossRef]
- Alcázar, L.A.; Ancheyta, J. Sensitivity analysis based methodology to estimate the best set of parameters for heterogeneous kinetic models. Chem. Eng. J. 2007, 128, 85–93. [Google Scholar] [CrossRef]
- Valavarasu, G.; Bhaskar, M.; Sairam, B.; Balaraman, K.; Balu, K. A four lump kinetic model for the simulation of the hydrocracking process. Pet. Sci. Technol. 2005, 23, 1323–1332. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Pushpavanam, S. Model discrimination in hydrocracking of vacuum gas oil using discrete lumped kinetics. Fuel 2008, 87, 1660–1672. [Google Scholar] [CrossRef]
- Becker, P.; Serrand, N.; Celse, B.; Guillaume, D.; Dulot, H. Comparing hydrocracking models: Continuous lumping vs. single events. Fuel 2016, 165, 306–315. [Google Scholar] [CrossRef]
- Becker, P.J.; Serrand, N.; Celse, B.; Guillaume, D.; Dulot, H. A single events microkinetic model for hydrocracking of vacuum gas oil. Comput. Chem. Eng. 2017, 98, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Thybaut, J.; Marin, G. Single-Event MicroKinetics: Catalyst design for complex reaction networks. J. Catal. 2013, 308, 352–362. [Google Scholar] [CrossRef]
- Svoboda, G.D.; Vynckier, E.; Debrabandere, B.; Froment, G.F. Single-event rate parameters for paraffin hydrocracking on a Pt/US-Y zeolite. Ind. Eng. Chem. Res. 1995, 34, 3793–3800. [Google Scholar] [CrossRef]
- Quann, R.; Jaffe, S. Building useful models of complex reaction systems in petroleum refining. Chem. Eng. Sci. 1996, 51, 1615–1635. [Google Scholar] [CrossRef]
- Quann, R.J.; Jaffe, S.B. Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures. Ind. Eng. Chem. Res. 1992, 31, 2483–2497. [Google Scholar] [CrossRef]
- Jaffe, S.B.; Freund, H.; Olmstead, W.N. Extension of structure-oriented lumping to vacuum residua. Ind. Eng. Chem. Res. 2005, 44, 9840–9852. [Google Scholar] [CrossRef]
- Sadighi, S.; Ahmad, A.; Shirvani, M. Comparison of lumping approaches to predict the product yield in a dual bed VGO hydrocracker. Int. J. Chem. React. Eng. 2011, 9, 1–25. [Google Scholar] [CrossRef]
- Sadighi, S. A two-dimensional discrete lumped model for a trickle-bed vacuum gas oil hydrocracking reactor. Korean J. Chem. Eng. 2016, 33, 2538–2546. [Google Scholar] [CrossRef]
- Calderon, C.J.; Ancheyta, J. Dynamic modeling and simulation of a slurry-phase reactor for hydrotreating of oil fractions. Energy Fuels 2017, 31, 5691–5700. [Google Scholar] [CrossRef]
- Elkamel, A.; Al-Ajmi, A.; Fahim, M. Modeling the hydrocracking process using artificial neural networks. Pet. Sci. Technol. 1999, 17, 931–954. [Google Scholar] [CrossRef]
- Bahmani, M.; Sharifi, K.; Shirvani, M.; Street, M.; Street, N. Product yields prediction of tehran refinery hydrocracking unit using artificial neural networks. Iran. J. Chem. Eng. 2010, 7, 51. [Google Scholar]
- Sadighi, S.; Zahedi, G.R. Comparison of kinetic-based and artificial neural network modeling methods for a pilot scale vacuum gas oil hydrocracking reactor. Bull. Chem. React. Eng. Catal. 2013, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Sadighi, S.; Mohaddecy, S.R.S.; Abbasi, A. Modeling and Optimizing a Vacuum Gas Oil Hydrocracking Plant using an Artificial Neural Network. Int. J. Technol. 2018, 9, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Mahalec, V.; Long, J.; Yang, M.L.; Qian, F. Modeling the hydrocracking process with deep neural networks. Ind. Eng. Chem. Res. 2020, 59, 3077–3090. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, K.; Yuan, X.; Cao, Y.; Li, L.; Koivo, H.N. A novel sliding window PCA-IPF based steady-state detection framework and its industrial application. IEEE Access 2018, 6, 20995–21004. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Shang, D. Parameter Optimization of Hydrocracker using Multi-block Kriging Metamodeling within Discontinuous Operating Space. In Proceedings of the 2019 12th Asian Control Conference (ASCC), Kitakyushu-shi, Japan, 9–12 June 2019; pp. 254–259. [Google Scholar]
- ASTM-D2892-19. Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column); Standard, ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- ASTM-D5236-18a. Standard Test Method for Distillation of Heavy Hydrocarbon Mixtures (Vacuum Potstill Method); Standard, ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM-D86-19. Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure; Standard, ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- ASTM-D2622-16. Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry; Standard, ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM-D4629-17. Standard Test Method for Trace Nitrogen in Liquid Hydrocarbons by Syringe/Inlet Oxidative Combustion and Chemiluminescence Detection; Standard, ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM-D5863-00a. Standard Test Methods for Determination of Nickel, Vanadium, Iron, and Sodium in Crude Oils and Residual Fuels by Flame Atomic Absorption Spectrometry; Standard, ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Ismail, A.A.; van de Voort, F.R.; Sedman, J. Fourier transform infrared spectroscopy: Principles and applications. In Techniques and Instrumentation in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 1997; Volume 18, pp. 93–139. [Google Scholar]
- Pasquini, C. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 2003, 14, 198–219. [Google Scholar] [CrossRef] [Green Version]
- Förster, H. UV/vis spectroscopy. In Characterization I; Karge, H.G., Weitkamp, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 337–426. [Google Scholar]
- Petry, R.; Schmitt, M.; Popp, J. Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 2003, 4, 14–30. [Google Scholar] [CrossRef]
- Workman JR, J.J.; Mobley, P.R.; Kowalski, B.R.; Bro, R. Review of chemometrics applied to spectroscopy: 1985–1995, Part I. Appl. Spectrosc. Rev. 1996, 31, 73–124. [Google Scholar] [CrossRef]
- Mobley, P.R.; Kowalski, B.R.; Workman JR, J.J.; Bro, R. Review of chemometrics applied to spectroscopy: 1985–1995, part 2. Appl. Spectrosc. Rev. 1996, 31, 347–368. [Google Scholar] [CrossRef]
- Bro, R.; Workman JR, J.J.; Mobley, P.R.; Kowalski, B.R. Review of chemometrics applied to spectroscopy: 1985–1995, Part 3—Multi-way analysis. Appl. Spectrosc. Rev. 1997, 32, 237–261. [Google Scholar] [CrossRef]
- Silva, S.L.; Silva, A.M.; Ribeiro, J.C.; Martins, F.G.; Da Silva, F.A.; Silva, C.M. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review. Anal. Chim. Acta 2011, 707, 18–37. [Google Scholar] [CrossRef]
- Filgueiras, P.R.; Terra, L.A.; Castro, E.V.; Oliveira, L.M.; Dias, J.C.; Poppi, R.J. Prediction of the distillation temperatures of crude oils using 1H NMR and support vector regression with estimated confidence intervals. Talanta 2015, 142, 197–205. [Google Scholar] [CrossRef]
- Molina, D.; Uribe, U.N.; Murgich, J. Partial least-squares (PLS) correlation between refined product yields and physicochemical properties with the 1H nuclear magnetic resonance (NMR) spectra of Colombian crude oils. Energy Fuels 2007, 21, 1674–1680. [Google Scholar] [CrossRef]
- Gilbert, W.R.; de Lima, S.G.; Bueno, A.F. Comparison of NIR and NMR Spectra Chemometrics for. In Fluid Catalytic Cracking VI: Preparation and Characterization of Catalysts; Elsevier: Amsterdam, The Netherlands, 2004; p. 203. [Google Scholar]
- Pasquini, C.; Bueno, A.F. Characterization of petroleum using near-infrared spectroscopy: Quantitative modeling for the true boiling point curve and specific gravity. Fuel 2007, 86, 1927–1934. [Google Scholar] [CrossRef]
- Hidajat, K.; Chong, S. Quality characterisation of crude oils by partial least square calibration of NIR spectral profiles. J. Near Infrared Spectrosc. 2000, 8, 53–59. [Google Scholar] [CrossRef]
- Laxalde, J.; Ruckebusch, C.; Devos, O.; Caillol, N.; Wahl, F.; Duponchel, L. Characterisation of heavy oils using near-infrared spectroscopy: Optimisation of pre-processing methods and variable selection. Anal. Chim. Acta 2011, 705, 227–234. [Google Scholar] [CrossRef]
- Santos, V.O., Jr.; Oliveira, F.C.; Lima, D.G.; Petry, A.C.; Garcia, E.; Suarez, P.A.; Rubim, J.C. A comparative study of diesel analysis by FTIR, FTNIR and FT-Raman spectroscopy using PLS and artificial neural network analysis. Anal. Chim. Acta 2005, 547, 188–196. [Google Scholar] [CrossRef]
- Laxalde, J.; Caillol, N.; Wahl, F.; Ruckebusch, C.; Duponchel, L. Combining near and mid infrared spectroscopy for heavy oil characterisation. Fuel 2014, 133, 310–316. [Google Scholar] [CrossRef]
- Buchanan, B. Recent Advances in the Use of Near-IR Spectroscopy in the Petrochemical Industry. In Handbook of Near-Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 521–529. [Google Scholar]
- Swarin, S.J.; Drumm, C.A. Prediction of gasoline properties with near-infrared spectroscopy and chemometrics. SAE Trans. 1991, 100, 1110–1118. [Google Scholar]
- Baldrich Ferrer, C.A. Prediction of physicochemical properties of FCC feedstock by chemometric analysis of their ultraviolet spectrum. Ct&F-Cienc. Tecnol. Futuro 2008, 3, 143–156. [Google Scholar]
- Evdokimov, I.N.; Losev, A.P. Potential of UV-visible absorption spectroscopy for characterizing crude petroleum oils. Oil Gas Bus. 2007, 1, 1–21. [Google Scholar]
- Baldrich, C.A.; Novoa, L.A.; Bueno, A. Comparison between NIR and UVVIS spectra chemometrics for predicting FCC feedstocks properties. Ct&F-Cienc. Tecnol. Futuro 2010, 4, 113–125. [Google Scholar]
- Pasadakis, N.; Sourligas, S.; Foteinopoulos, C. Prediction of the distillation profile and cold properties of diesel fuels using mid-IR spectroscopy and neural networks. Fuel 2006, 85, 1131–1137. [Google Scholar] [CrossRef]
- Breitkreitz, M.C.; Raimundo, I.M., Jr.; Rohwedder, J.J.; Pasquini, C.; Dantas Filho, H.A.; José, G.E.; Araújo, M.C. Determination of total sulfur in diesel fuel employing NIR spectroscopy and multivariate calibration. Analyst 2003, 128, 1204–1207. [Google Scholar] [CrossRef] [Green Version]
- Molina, D.; Uribe, U.N.; Murgich, J. Correlations between SARA fractions and physicochemical properties with 1H NMR spectra of vacuum residues from Colombian crude oils. Fuel 2010, 89, 185–192. [Google Scholar] [CrossRef]
- Muhammad, A.; de Vasconcellos Azeredo, R.B. 1H NMR spectroscopy and low-field relaxometry for predicting viscosity and API gravity of Brazilian crude oils–A comparative study. Fuel 2014, 130, 126–134. [Google Scholar] [CrossRef]
- Flórez, M.; Guerrero, J.; Cabanzo, R.; Mejía-Ospino, E. SARA analysis and Conradson carbon residue prediction of Colombian crude oils using PLSR and Raman spectroscopy. J. Pet. Sci. Eng. 2017, 156, 966–970. [Google Scholar] [CrossRef]
- Lababidi, H.M.; Chedadeh, D.; Riazi, M.; Al-Qattan, A.; Al-Adwani, H.A. Prediction of product quality for catalytic hydrocracking of vacuum gas oil. Fuel 2011, 90, 719–727. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, J.; Wang, Y. A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process. In Proceedings of the 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China, 25–27 May 2018; pp. 1064–1068. [Google Scholar]
- Wang, Y.; Wu, D.; Yuan, X. A two-layer ensemble learning framework for data-driven soft sensor of the diesel attributes in an industrial hydrocracking process. J. Chemom. 2019, 33, e3185. [Google Scholar] [CrossRef]
- Lukec, I.; Sertić-Bionda, K.; Lukec, D. Prediction of sulphur content in the industrial hydrotreatment process. Fuel Process. Technol. 2008, 89, 292–300. [Google Scholar] [CrossRef]
- Camacho, E.F.; Alba, C.B. Model Predictive Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lababidi, H.; Alatiqi, I.; Ali, Y. Constrained model predictive control for a pilot hydrotreating plant. Chem. Eng. Res. Des. 2004, 82, 1293–1304. [Google Scholar] [CrossRef]
- Aydın, E.; Arkun, Y.; Is, G.; Mutlu, M.; Dikbas, M. Plant-wide optimization and control of an industrial diesel hydro-processing plant. Comput. Chem. Eng. 2016, 87, 234–245. [Google Scholar] [CrossRef]
- Alhajree, I.; Zahedi, G.; Manan, Z.; Zadeh, S.M. Modeling and optimization of an industrial hydrocracker plant. J. Pet. Sci. Eng. 2011, 78, 627–636. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, J.; Cao, Z.; Shi, J.; Pan, M.; Li, W.; Jiang, Q. Modeling and optimization of an industrial hydrocracking unit to improve the yield of diesel or kerosene. Fuel 2011, 90, 3521–3530. [Google Scholar] [CrossRef]
- Zhong, W.; Qiao, C.; Peng, X.; Li, Z.; Fan, C.; Qian, F. Operation optimization of hydrocracking process based on Kriging surrogate model. Control Eng. Pract. 2019, 85, 34–40. [Google Scholar] [CrossRef]
- Sildir, H.; Arkun, Y.; Cakal, B.; Gokce, D.; Kuzu, E. Plant-wide hierarchical optimization and control of an industrial hydrocracking process. J. Process Control 2013, 23, 1229–1240. [Google Scholar] [CrossRef]
- Altissimi, R.; Brambilla, A.; Deidda, A.; Semino, D. Optimal operation of a separation plant using artificial neural networks. Comput. Chem. Eng. 1998, 22, S939–S942. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, B.; Shen, J. Multidimensional non-orthogonal wavelet-sigmoid basis function neural network for dynamic process fault diagnosis. Comput. Chem. Eng. 1998, 23, 83–92. [Google Scholar] [CrossRef]
- Stockmann, M.; Haber, R.; Schmitz, U. Source identification of plant-wide faults based on k nearest neighbor time delay estimation. J. Process Control 2012, 22, 583–598. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, J. A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis. Comput. Chem. Eng. 2020, 135, 106755. [Google Scholar] [CrossRef]
- AlGhazzawi, A.; Lennox, B. Monitoring a complex refining process using multivariate statistics. Control Eng. Pract. 2008, 16, 294–307. [Google Scholar] [CrossRef] [Green Version]
FCC Capacity (Mt/Year) | HC Capacity (Mt/Year) | |||
---|---|---|---|---|
2008 | 2015 | 2008 | 2015 | |
EU | 132 | 124 | 75 | 97 |
U.S.A. | 368 | 353 | 103 | 133 |
Compound | Branch | Double Bond | Triple Bond | C-Hexane | Benzene | ||
---|---|---|---|---|---|---|---|
0 | 8 | 0 | 0 | 0 | 0 | 0 | |
0 | 8 | 2 | 0 | 0 | 0 | 0 | |
0 | 8 | 0 | 1 | 0 | 0 | 0 | |
2 | 0 | 0 | 0 | 0 | 1 | 0 | |
2 | 0 | 0 | 0 | 0 | 0 | 1 |
Model | Advantage | Disadvantage |
---|---|---|
Global lumping | Fast | No product distribution |
Discrete lumping | Flexible number of lumps | Limited product distribution |
Pseudo-components | Full product distribution | Data need and arduous solution |
Continuous lumping | Full product distribution | Data need and arduous solution |
SEMM | Fundamental observations | Slow |
SOL | Fundamental observations | Slow |
Data-driven | Fast | No physical interpretation |
Analyzer | Advantage | TBP | SARA | N | S | Metal | API |
---|---|---|---|---|---|---|---|
NIR | No sampling requirements | [78] | [82] | [89] | [78] | ||
NMR | No optic interference | [75] i | [90] | [90] | [90] | [90] | [91] |
Raman | Not sensitive to temperature changes | [81] ii | [92] | [81] | |||
Mid-IR | Precise molecular data | [88] | [82] | [81] | |||
UV | Cheap equipment | [85] | [85] | [85] | [85] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iplik, E.; Aslanidou, I.; Kyprianidis, K. Hydrocracking: A Perspective towards Digitalization. Sustainability 2020, 12, 7058. https://doi.org/10.3390/su12177058
Iplik E, Aslanidou I, Kyprianidis K. Hydrocracking: A Perspective towards Digitalization. Sustainability. 2020; 12(17):7058. https://doi.org/10.3390/su12177058
Chicago/Turabian StyleIplik, Esin, Ioanna Aslanidou, and Konstantinos Kyprianidis. 2020. "Hydrocracking: A Perspective towards Digitalization" Sustainability 12, no. 17: 7058. https://doi.org/10.3390/su12177058
APA StyleIplik, E., Aslanidou, I., & Kyprianidis, K. (2020). Hydrocracking: A Perspective towards Digitalization. Sustainability, 12(17), 7058. https://doi.org/10.3390/su12177058