Growth of Fagus sylvatica L. and Picea abies (L.) Karst. Seedlings Grown in Hiko Containers in the First Year after Planting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- The change of foliar fertilization to a mixed one at the stage of production in the container nursery affected the parameters of beech and spruce seedlings; however, it did not affect the diversity of their survival on the experimental forest plantation.
- Taller seedlings planted on the forest plantation were characterized by a lesser RHI after the first year of their establishment, and its dependence on the height of seedlings obtained in the container nursery was described well by logarithmic regression equations.
- For spruce and beech, the highest annual height increment (AHI) was recorded in the VCON variant, and the lowest in the VLAI variant. However, a difference was obtained in the relative height increment (RHI) in both species. This is due to the different height of seedlings after production in a container nursery, which is most likely the result of a different amount of fertilizers used in individual experimental variants.
- The optimal range for the height of seedlings obtained at the stage of nursery cultivation, which determined the maximum value of the AHI after the first year of growth on the forest plantation, was 18–36 cm for beech and 14–25 cm for spruce.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, J.; Skrzyszewska, K.; Skrzyszewski, J. Reforestation in Poland: History, Current Practice and Future Perspectives. Reforesta 2017, 3, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Buraczyk, W.; Szeligowski, H. The impact of soil’s textural group and moisture on the growth of Scots pine (Pinus sylvestris L.) seedlings with containerized root system. For. Res. Pap. 2008, 69, 291–297. [Google Scholar]
- Repáč, I.; Tučeková, A.; Sarvašová, I.; Vencurik, J. Survival and growth of outplanted seedlingsof selected tree species on the High Tatra Mts. windthrow area after the first growing season. J. For. Sci. 2011, 57, 349–358. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.M. Container seedlings outperform barefoot stock: Survival and growth after 10 years. New For. 1991, 5, 147–156. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; El-Kassaby, Y.A. Bareroot versus container stocktypes: A performance comparison. New For. 2016, 47, 1–51. [Google Scholar] [CrossRef]
- Zou, C.; Penfold, C.; Sands, R.; Misra, R.K.; Hudson, I. Effects of soil air-filled porosity, soil matric potential and soil strength on primary root growth of radiata pine seedlings. Plant Soil 2001, 236, 105–115. [Google Scholar] [CrossRef]
- Jordan, D.; Ponder, F.; Hubbard, V.C. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Appl. Soil Ecol. 2003, 23, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Banach, J.; Skrzyszewska, K.; Świeboda, Ł. Substrate influences the height of one- and two-year-old seedlings of silver fir and European beech growing in polystyrene containers. For. Res. Pap. 2013, 74, 117–125. [Google Scholar] [CrossRef]
- Olivo, V.B.; Buduba, C.G. Influencia de seis sustratos en el crecimiento de Pinus ponderosa producido en contenedores bajo condiciones de invernáculo. Bosque 2006, 27, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, T.T. Soil Compaction and Growth of Woody Plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Brais, S. Persistence of Soil Compaction and Effects on Seedling Growth in Northwestern Quebec. Soil Sci. Soc. Am. J. 2001, 65, 1263–1271. [Google Scholar] [CrossRef]
- Fleming, R.; Powers, R.; Foster, N.; Kranabetter, J.; Scott, A.; Ponder, F., Jr.; Berch, S.; Chapman, W.; Kabzems, R.; Ludovici, K.; et al. Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: A regional comparison of Long-Term Soil Productivity sites. Can. J. For. Res. 2006, 36, 529–550. [Google Scholar] [CrossRef] [Green Version]
- Kormanek, M.; Banach, J.; Ryba, M. Influence of substrate compaction in nursery containers on the growth of Scots pine (Pinus sylvestris L.) seedlings. For. Res. Pap. 2013, 74, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Kormanek, M.; Banach, J.; Sowa, P. Effect of soil bulk density on forest tree seedlings. Int. Agrophys. 2015, 29, 67–74. [Google Scholar] [CrossRef]
- Fare, D.C.; Gilliam, C.H.; Keever, G.J. Monitoring Irrigation at Container Nurseries. HortTechnology 1992, 2, 75–78. [Google Scholar] [CrossRef]
- Beeson, R.C. Relationship of Plant Growth and Actual Evapotranspiration to Irrigation Frequency Based on Management Allowed Deficits for Container Nursery Stock. J. Am. Soc. Hortic. Sci. 2006, 131, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Zida, D.; Tigabu, M.; Sawadogo, L.; Odén, P.C. Initial seedling morphological characteristics and field performance of two Sudanian savanna species in relation to nursery production period and watering regimes. For. Ecol. Manag. 2008, 255, 2151–2162. [Google Scholar] [CrossRef]
- Durło, G.; Jagiełło-Leńczuk, K.; Kormanek, M.; Małek, S.; Banach, J. Supplementary irrigation at container nursery. For. Res. Pap. 2018, 79, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Ruano, I.; Pando, V.; Bravo, F. How do light and water influence (Pinus pinaster Ait.) germination and early seedling development? For. Ecol. Manag. 2009, 258, 2647–2653. [Google Scholar] [CrossRef]
- Trubat, R.; Cortina, J.; Vilagrosa, A. Nursery fertilization affects seedling traits but not field performance in Quercus suber L. J. Arid Environ. 2010, 74, 491–497. [Google Scholar] [CrossRef]
- Luis, V.C.; Puértolas, J.; Climent, J.; Peters, J.; González-Rodríguez, Á.M.; Morales, D.; Jiménez, M.S. Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. Eur. J. For. Res. 2009, 128, 221–229. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Pinto, J.; Liu, J.; Shi, W.; Liu, Y. Both nursery and field performance determine suitable nitrogen supply of nursery-grown, exponentially fertilized Chinese pine. Silva Fenn. 2015, 49. [Google Scholar] [CrossRef] [Green Version]
- Szołtyk, G.; Zajączkowski, P. Nawożenie doglebowe. In Szkółkarstwo Leśne od A do Z: Praca Zbiorowa; Wesoły, W., Hauke, M., Eds.; Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2009; pp. 233–241. ISBN 978-83-89744-81-4. [Google Scholar]
- Wesoły, W.; Hauke, M.; Sienkiewicz, A. Nawożenie dolistne oraz stosowanie nawozów wieloskładnikowych o długim okresie działania, w szkółkach kontenerowych i otwartych. In Szkółkarstwo Leśne od A do Z: Praca Zbiorowa; Wesoły, W., Hauke, M., Eds.; Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2009; pp. 241–254. ISBN 978-83-89744-81-4. [Google Scholar]
- Razaq, M.; Zhang, P.; Shen, H. Salahuddin Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 2017, 12, e0171321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, B.E. Seedling morphological evaluation—What you can tell by looking. In Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests: Proceedings of the Workshop Held 16–18 October 1984; Dureya, M.L., Ed.; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1985; pp. 59–71. ISBN 0-87437-000-0. [Google Scholar]
- Haase, D. Morphological and Physiological Evaluations of Seedling Quality. In National Proceedings: Forest and Conservation Nursery Associations—2006; Proc. RMRS-P-50; USDA Forest Service: Fort Collins, CO, USA, 2007; pp. 3–8. [Google Scholar]
- Grossnickle, S.C. Why seedlings survive: Influence of plant attributes. New For. 2012, 43, 711–738. [Google Scholar] [CrossRef]
- McAlister, J.A.; Timmer, V.R. Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol. 1998, 18, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Óskarsson, H.; Brynleyfsdóttir, S.J. The interaction of fertilization in nursery and field on survival, growth and the frost heaving of birch and spruce. Icel. Agric. Sci. 2009, 22, 59–68. [Google Scholar]
- Jackson, P.D.; Dumroese, K.R.; Barnett, J.P. Nursery response of container Pinus palustris seedlings to nitrogen supply and subsequent effects on outplanting performance. For. Ecol. Manag. 2012, 265, 1–12. [Google Scholar] [CrossRef]
- PN-R-67025 Sadzonki drzew i krzewów do upraw leśnych i na plantacje; Polski Komitet Normalizacyjny: Warszawa, Poland, 1999; ISBN 978-83-236-2771-5.
- Durło, G.; Jagiełło-Leńczuk, K.; Kormanek, M.; Małek, S.; Banach, J.; Pająk, K. Using unmanned aerial vehicle (UAV) to monitor the physiological condition of plants in a nursery. In Výskum Rezných Mechanizmov v Procese Spracovania Drevnej Hmoty; Krilek, J., Ed.; TU Zvolen Mongraph; Technická univerzita vo Zvolene: Zvolen, Slovakia, 2016; pp. 17–27. ISBN 978-80-228-2920-5. [Google Scholar]
- Kormanek, M.; Durło, G.B.; Małek, S.; Banach, J. Modyfikacja pola zraszania rampy deszczującej na przykładzie rozwiązania zastosowanego w urządzeniu HAB T-1 BCC w szkółce leśnej w Nędzy. In Użytkowanie Maszyn Rolniczych i Leśnych—Badania Naukowe i Dydaktyczne; Tylek, P., Owoc, D., Eds.; Przemysłowy Instytut Maszyn Rolniczych: Poznań, Poland, 2018; pp. 63–70. ISBN 978-83-940788-9-8. [Google Scholar]
- Radzka, E.; Rymuza, K. Statistical and geostatistical analysis of spatial variation of precipitation periodicity in the growing season. Időjárás 2020, 124, 129–141. [Google Scholar] [CrossRef]
- Marcinek, J.; Komisarek, J. Systematyka gleb Polski. In Gleboznawstwo; Mocek, A., Ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2015; pp. 281–364. ISBN 978-83-01-17994-6. [Google Scholar]
- STATISTICA (data analysis software system). StatSoft Inc.: Tulsa, OK, USA, 2014.
- Carlson, W.C. Root System Considerations in the Quality of Loblolly Pine Seedlings. South. J. Appl. For. 1986, 10, 87–92. [Google Scholar] [CrossRef]
- Rose, R.; Atkinson, M.; Gleason, J.; Sabin, T. Root volume as a grading criterion to improve field performance of Douglas-fir seedlings. New For. 1991, 5, 195–209. [Google Scholar] [CrossRef]
- Hasse, D.L.; Rose, R. Soil Moisture Stress Induces Transplant Shock in Stored and Unstored 2 + 0 Douglas-Fir Seedlings of Varying Root Volumes. For. Sci. 1993, 39, 275–294. [Google Scholar]
- Hobbs, S.D. The Influence of Species and Stocktype Selection on Stand Establishment: An Ecophysiological Perspective. In Seedling Physiology and Reforestation Success; Duryea, M.L., Brown, G.N., Eds.; Forestry Sciences; Springer Netherlands: Dordrecht, The Netherlands, 1984; Volume 14, pp. 179–224. ISBN 978-94-009-6139-5. [Google Scholar]
- Ivetić, V.; Skorić, M. The impact of seeds provenance and nursery production method on Austrian pine (Pinus nigra Arn.) seedlings quality. Ann. For. Res. 2013, 56, 297–305. [Google Scholar]
- Roller, K.J. Suggested Minimum Standards for Containerized Seedlings in Nova Scotia; Information Report M-X-69; Maritimes Forest Research Centre: Fredericton, NB, Canada, 1977; pp. 1–18. [Google Scholar]
- Vaario, L.-M.; Tervonen, A.; Haukioja, K.; Haukioja, M.; Pennanen, T.; Timonen, S. The effect of nursery substrate and fertilization on the growth and ectomycorrhizal status of containerized and outplanted seedlings of Picea abies. Can. J. For. Res. 2009, 39, 64–75. [Google Scholar] [CrossRef]
- Ivetić, V.; Devetaković, J.; Maksimović, Z. Initial height and diameter are equally related to survival and growth of hardwood seedlings in first year after field planting. Reforesta 2016, 1, 6–21. [Google Scholar] [CrossRef]
Soil Parameter | Mean ± SE | |
---|---|---|
pH in KCl | 3.37 ± 0.01 | |
pH in H2O | 4.24 ± 0.01 | |
Hydrolytic acidity (me∙100 g−1) | 7.156 ± 0.111 | |
EC (µS∙cm−1) | 28.3 ± 0.4 | |
Nutrient content | Total nitrogen (%) | 0.052 ± 0.001 |
Soil Organic Carbon (%) | 1.309 ± 0.031 | |
Calcium—Ca2+ (me∙100 g−1) | 0.177 ± 0.005 | |
Potassium—K+ (me∙100 g−1) | 0.051 ± 0.001 | |
Magnesium—Mg2+ (me∙100 g−1) | 0.066 ± 0.002 | |
Sodium—Na+ (me∙100 g−1) | 0.025 ± 0.000 | |
Phosphorus—P2O5 (me∙100 g−1) | 0.541 ± 0.022 | |
Content of exchangeable cations—SH (me∙100 g−1) | 0.319 ± 0.007 | |
Cation exchange capacity—TH = HH + SH (me∙100 g−1) | 7.475 ± 0.117 | |
Share of exchangeable cations—VH = SH/TH∙100 (%) | 4.198 ± 0.052 |
Species | Experimental Variant | Number of Planted Seedlings (pcs.) | Survival ± SE (%) | Seedlings Share (%) | |||
---|---|---|---|---|---|---|---|
A | B | C | D | ||||
European beech | VCON | 300 | 100.0 ± 0.0 a | 97.0 | 3.0 | 0.0 | 0.0 |
VGRO | 300 | 98.0 ± 0.8 b | 97.0 | 1.0 | 0.0 | 2.0 | |
VLAI | 300 | 100.0 ± 0.0 a | 94.1 | 5.3 | 0.6 | 0.0 | |
Total | 900 | 99.3 | 96.0 | 3.1 | 0.2 | 0.7 | |
Norway spruce | VCON | 300 | 90.4 ± 1.7 b | 72.7 | 1.7 | 16.0 | 9.6 |
VGRO | 300 | 95.7 ± 1.2 a | 73.4 | 1.3 | 21.0 | 4.3 | |
VLAI | 300 | 95.7 ± 1.2 a | 71.8 | 2.3 | 21.6 | 4.3 | |
Total | 900 | 93.9 | 72.3 | 2.1 | 19.5 | 6.1 |
Trait | Average Value ± SE in the Variant | F Test | Significance Level (p) | ||
---|---|---|---|---|---|
VCON | VGRO | VLAI | |||
European beech | |||||
Height in 2016 (cm) | 24.2 ± 0.4 c | 36.5 ± 0.4 b | 40.7 ± 0.5 a | 435.65 | <0.001 |
Height in 2017 (cm) | 31.3 ± 0.5 c | 42.6 ± 0.5 b | 46.2 ± 0.5 a | 257.71 | <0.001 |
Absolute height increment (cm)—AHI | 7.1 ± 0.3 b | 6.1 ± 0.2 a | 5.4 ± 0.2 a | 14.07 | <0.001 |
Relative height increment (%)—RHI | 32.9 ± 1.6 a | 17.2 ± 0.6 b | 13.7 ±0.6 b | 95.27 | <0.001 |
Norway spruce | |||||
Height in 2016 (cm) | 27.2 ± 0.4 a | 24.8 ± 0.3 b | 22.2 ± 0.2 c | 68.17 | <0.001 |
Height in 2017 (cm) | 34.9 ± 0.4 a | 32.1 ± 0.3 b | 28.5 ± 0.3 c | 103.45 | <0.001 |
AHI (cm) | 7.7 ± 0.2 a | 7.3 ± 0.2 a | 6.3 ±0.2 b | 13.74 | <0.001 |
RHI (%) | 30.0 ± 1.1 a | 31.1 ± 1.1 a | 29.3± 0.9 a | 0.63 | 0.511 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach, J.; Małek, S.; Kormanek, M.; Durło, G. Growth of Fagus sylvatica L. and Picea abies (L.) Karst. Seedlings Grown in Hiko Containers in the First Year after Planting. Sustainability 2020, 12, 7155. https://doi.org/10.3390/su12177155
Banach J, Małek S, Kormanek M, Durło G. Growth of Fagus sylvatica L. and Picea abies (L.) Karst. Seedlings Grown in Hiko Containers in the First Year after Planting. Sustainability. 2020; 12(17):7155. https://doi.org/10.3390/su12177155
Chicago/Turabian StyleBanach, Jacek, Stanisław Małek, Mariusz Kormanek, and Grzegorz Durło. 2020. "Growth of Fagus sylvatica L. and Picea abies (L.) Karst. Seedlings Grown in Hiko Containers in the First Year after Planting" Sustainability 12, no. 17: 7155. https://doi.org/10.3390/su12177155
APA StyleBanach, J., Małek, S., Kormanek, M., & Durło, G. (2020). Growth of Fagus sylvatica L. and Picea abies (L.) Karst. Seedlings Grown in Hiko Containers in the First Year after Planting. Sustainability, 12(17), 7155. https://doi.org/10.3390/su12177155