Analysis of Cellulose Pulp Characteristics and Processing Parameters for Efficient Paper Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Delignification Process
2.2. Chemical Analysis of Pulps
2.3. Production of Paper Sheets
2.4. Analysis of Paper Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Horn, R.A. Morphology of Wood Pulp Fiber from Softwoods and Influence on Paper Strength. Res Pap FPL-242; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1974. [Google Scholar]
- Lin, T.; Yin, X.; Retulainen, E.; Nazhad, M. Effect of chemical pulp fines on filler retention and paper properties. Appita Technol. Innov. Manuf. Environ. 2007, 60, 469–473. [Google Scholar]
- Viikari, L.; Suurnäkki, A.; Grönqvist, S.; Raaska, L.; Ragauskas, A. Forest Products: Biotechnology in Pulp and Paper Processing, Encyclopedia of Microbiology, 3rd ed.; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Godlewska, K.; Jastrzębski, M. Paper and board production and consumption 2017 in Poland compared to other European countries. Przegl. Papiern. 2018, 74, 681–689. [Google Scholar]
- Key Statistics 2018. European Pulp and Paper Industry. Available online: http://www.cepi.org/system/files/public/documents/publications/Final%20Key%20Statistics%202018.pdf (accessed on 13 July 2020).
- Didone, M.; Saxena, P.; Brilhuis-Meijer, E.; Tosello, G.; Bissacco, G.; Mcaloone, C.T.; Antelmi Pigosso, D.C.; Howard, T.J. Moulded pulp manufacturing: Overview and prospects for the process technology. Packag. Technol. Sci. 2017, 30, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Didone, M.; Tosello, G. Moulded pulp products manufacturing with thermoforming. Packag. Technol. Sci. 2018, 32, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Bissacco, G.; Bedka, J.F.; Stolfia, A. Tooling for production of the green fiber bottle. Procedia CIRP 2018, 69, 348–353. [Google Scholar] [CrossRef]
- EUR-Lex. Access to European Union Law. 2004. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02004R1935-20090807 (accessed on 13 July 2020).
- EUR-Lex. Access to European Union Law. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R2023 (accessed on 10 July 2020).
- Good Manufacturing Practice for the Manufacture of Paper and Board for Food Contact. Issue 1. 2010. Available online: file:///C:/Users/MSI/Downloads/gmp.pdf (accessed on 2 September 2020).
- Industry Guideline for the Compliance of Paper & Board Materials and Articles for Food Contact. Issue 2. 2012. Available online: https://www.citpa-europe.org/sites/default/files/Industry%20guideline-updated2012final.pdf (accessed on 2 September 2020).
- Federal Institute for Risk Assessment. Paper and Board for Food Contact. 2017. Available online: https://bfr.ble.de/kse/faces/resources/pdf/360-english.pdf;jsessionid=2EF95A4B046794B56BD2089BC50E8E2C (accessed on 11 July 2020).
- Consumer Health Protection Committee, Committee of Experts on Materials Coming into Contact with Food. Policy Statement Concerning Paper and Board Materials and Articles Intended to Come into Contact with Foodstuffs, Version 4–12.02.2009. Available online: https://rm.coe.int/16804e4794 (accessed on 13 July 2020).
- Annex XV—Identification of SVHC. Proposal for Identification of a Substance as SVHC(CMR). 2009. Available online: https://echa.europa.eu/documents/10162/7fac8104-3be2-471c-bd45-7a82ab5f4359 (accessed on 12 July 2020).
- Good Manufacturing Practice Guide. European Carton Makers Association. 2013. Available online: https://www.ecma.org/uploads/Bestanden/Publications/GMP/UK%20GMP%20%20Version%201.1%20%2016%2012%202013%20%20-%20FINAL.pdf (accessed on 12 July 2020).
- CEN. BS EN 643. Paper and Board. European List of Standard Grades of Paper and Board for Recycling; British Standards Institution: London, UK, 2014. [Google Scholar]
- European List of Standard Grades of Paper and Board for Recycling. Guidance on the Revised EN 643. 2013. Available online: https://www.pita.org.uk/images/PDF/CEPI_EN_643_Documentation.pdf (accessed on 2 September 2020).
- Geueke, B.; Groh, K.; Muncke, J. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. J. Clean. Prod. 2018, 193, 491–505. [Google Scholar] [CrossRef]
- Ervasti, I. Wood fiber contents of different materials in the paper industry material chain expressed in roundwood equivalents (RWEs). Silva Fenn. 2016, 50, 1611. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? Available online: http://www.fao.org/3/a-i4793e.pdf (accessed on 13 July 2020).
- Salim, R.; Johansson, J. The influence of raw material on the wood product manufacturing. Procedia CIRP 2016, 57, 764–768. [Google Scholar] [CrossRef]
- De Galembert, B. Wood Supply for the Growing European Pulp and Paper Industry. 2003. Available online: http://www.fao.org/3/XII/0904-C1.htm (accessed on 13 July 2020).
- Food and Agriculture Organization of the United Nations. Global forest products facts and figures. 2016. Available online: http://www.fao.org/3/i7034en/i7034en.pdf (accessed on 13 July 2020).
- Jimenez, L.; Rodriguez, A.; Ferrer, J.L.; Perez, A.; Angulo, V. Paulownia, a fast-growing plant, as a raw material for paper manufacturing. Afinidad 2005, 62, 100–105. [Google Scholar]
- Saijonkari-Pahkala, K. Non-wood plants as raw material for pulp and paper. Agric. Food Sci. Finl. 2008, 10, 5707. [Google Scholar] [CrossRef]
- Mohieldin, S.D. Pretreatment approaches in non-wood plants for pulp and paper production: A review. JFPI 2014, 3, 84–88. [Google Scholar]
- Adi, D.S.; Wahyuni, I.; Risanto, L.; Rullyati, S.; Hermiati, E.; Dwianto, W.; Watanabe, T. Central kalimantan’s fast growing species: Suitability for pulp and paper. IJFR 2015, 2, 21–29. [Google Scholar] [CrossRef]
- Gang, C.; Tao, J.; Jialuan, Y.; Jiaxiang, C. Characteristics of High Yield Chemical Pulping of Bagasse. In Proceedings of the 2nd International Symposium on Emerging Technologies of Pulping & Papermaking (ISETPP), Guangzhou, China, 9–11 October 2002. [Google Scholar]
- Hart, P.W. Production of high yield bleached hardwood kraft pulp: Breaking the kraft pulp yield barrier. Tappi J. 2011, 10, 37–41. [Google Scholar] [CrossRef]
- Fardim, P. Chemical Pulping Part 1, Fibre Chemistry and Technology; Paper Engineers’ Association/Paperi ja Puu Oy: Espoo, Finland, 2011; Chapter 2. [Google Scholar]
- Mimms, A. Kraft Pulping; Tappi Press: Atlanta, GA, USA, 1989. [Google Scholar]
- Gullicbsen, J.; Fogelholm, C. Papermaking Science and Technology, Chemical Pulping; Tappi Press: Atlanta, GA, USA, 1999; Volume 6B. [Google Scholar]
- Whitty, K. Pyrolysis and gasification behavior of black liquor under pressurized conditions. In Department of Chemical Engineering; Abo Akademi University: Abo, Finland, 1997. [Google Scholar]
- Vakkilainen, E. Chemical pulping. In Papermaking Science and Technology Series; Finnish Paper Engineers’ Association and TAPPI: Espoo, Finland, 1999; Volume 6B, Chapter 13. [Google Scholar]
- Van Heiningen, A.R.P.; Connolly, T. Measurement of gas composition inside a recovery boiler char bed. In International Chemical Recovery Conference; Tappi Press: Charleston, South Carolina, 2004. [Google Scholar]
- Tikka, P. Chemical Pulping part 2, Recovery of Chemicals and Energy, 2nd ed.; SciTech-Service Oy Ltd.: Espoo, Finland, 2008. [Google Scholar]
- Bajpai, P. Pulp and Paper Production Processes and Energy Overview, Pulp and Paper Industry, Energy Conservation; Elsevier Inc.: Cambridge, MA, USA, 2016; Chapter 3. [Google Scholar]
- Mortha, G.F.; Jain, S. SFGP 2007—modelling kraft cooking of wood species mixtures. Int. J. Chem. React. Eng. 2008, 6. [Google Scholar] [CrossRef]
- Hart, P.W. Seasonal variation in wood: Perceived and real impacts on pulp yield. Tappi J. 2009, 8, 4–8. [Google Scholar] [CrossRef]
- Shen, W.; Liu, H.; Xie, Y. Study of On-line Measurement of Pulp Kappa Number with Spectrometry during Pulping. In Proceedings of the TAPPI Technology Summit, Atlanta, GA, USA, 3–7 March 2002; TAPPI Press: Atlanta, GA, USA, 2002; pp. 16–21. [Google Scholar]
- Shen, W.; Chen, X.Q. Measuring and controlling model of pulp kappa number with spectroscopy during batch sulfite pulping process. Ind. Eng. Chem. Res. 2009, 48, 8980–8984. [Google Scholar] [CrossRef]
- Xin, L.; Yu, B.; Zhou, Y. A dissolved lignin monitoring-based model for end-point control during displacement kraft pulping. BioResources 2018, 13, 8529–8538. [Google Scholar] [CrossRef]
- TAPPI, T. 236 om-99. Kappa Number of Pulp; Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 1999. [Google Scholar]
- Chai, X.S.; Luo, Q.; Zhu, J.Y. A simple and practical pulp kappa test method for process control in pulp production. Process Control Qual. 2000, 11, 407–417. [Google Scholar] [CrossRef]
- Pelzer, D.R.; Dörrer, H.; Hemmes, J.L.; Moormann-Schmitz, A.; Hötmann, U.; Blickenstorfer, C.; Kramer, G.; Otto, K.; Hörsken, A.; Opalka, A.; et al. Process chemicals. In Handbook of Paper and Board; Holik, H., Ed.; Wiley-VCH Verlag: Weinheim, Germany, 2013; pp. 291–349. [Google Scholar]
- Ek, M.; Gellerstedt, G.; Henriksson, G. Pulping Chemistry and Technology; Walter de Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Wan Rosli, W.D.; Mazlan, I.; Law, K.N. Effect of lignin on acacia mangiumkraft pulp refining behavior. Cellulose Chem. Technol. 2011, 45, 643–648. [Google Scholar]
- Correia, F.M.; d’Angelo, J.V.H.; Zemp, R.J.; Mingoti, S.A. Prediction of kappa number in eucalyptus kraft pulp continuous digester using the box & Jenkins methodology. ACES 2014, 4, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Brännvall, E. The limits of delignification in kraft cooking. BioResources 2017, 12, 2081–2107. [Google Scholar] [CrossRef]
- Francides Gomes, S.J. Kraft Pulping of Eucalyptus with Anthraquinone, Polysulfide and Surfactant. In Proceedings of the 2007 TAPPI Engineering, Pulping & Environmental Conference, Atlanta, Georgia, 21–23 October 2007. [Google Scholar]
- Hart, P.W.; Rudie, A.W. Anthraquinone a review of the riseand fall of a pulping catalyst. Tappi J. 2014, 13, 23–31. [Google Scholar] [CrossRef]
- Shi, H.; Liu, H.; Ni, Y.; Yuan, Z.; Zou, X.; Zhou, Y. Review: Use of optical brightening agents (OBAs) in the production of paper containing high-yield pulps. BioResources 2012, 7, 2582–2591. [Google Scholar] [CrossRef]
- Zhou, Y. Overview of high yield pulps (HYP) in paper and board. In Proceedings of the PAPTAC 90th Annual Meeting, Montreal, QC, Canada, 26–29 January 2004; pp. B143–B148. [Google Scholar]
- Chen, J.; Zhang, M.; Yuan, Z.; Wang, J. Improved high-yield pulp network and paper sheet properties by the addition of fines. BioResource 2013, 8, 6309–6322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yuan, Z.; Ni, Y. Energy saving potential of high yield pulp (HYP) application by addition of small amounts of bleached wheat straw pulp. Holzforschung 2011, 65, 29–34. [Google Scholar] [CrossRef]
- Ringley, M. Method of High Yield Semichemical Pulp Production. 1974. Available online: https://patents.google.com/patent/US3811995 (accessed on 16 January 2020).
- Walter, K. Influence of Acid Hydrogen Peroxide Treatment on Refining Energy and TMP Properties. Ph.D. Thesis, Mid Sweden University, Sundsvall, Sweden, 2009. [Google Scholar]
- Lumiainen, J. Refining of chemical pulp. In Papapermaking Part 1, Stock Preparation and Wet End. Papermaking Science and Technology; Fapet Oy: Helsinki, Finland, 2000; pp. 87–122. [Google Scholar]
- Kerekes, R. Energy and forces in refining. J. Pulp Pap. Sci. 2010, 36, 10–15. [Google Scholar]
- Gharehkhani, S.; Sadeghinezhad, E.; Kazi, S.N.; Yarmand, H.; Badarudin, A.; Safei, M.R.; Zubir, M.N. Basic effects of pulp refining on fiber properties—A review. Carbohydr. Polym. 2015, 115, 785–803. [Google Scholar] [CrossRef]
- Atalla, R.H.; Wahren, D. On the energy requirement in refining. Tappi J. 1980, 63, 121. [Google Scholar]
- Koskenhely, K.; Nieminen, K.; Paulapuro, H. Edge form profile of refiner filling bars and its impact on softwood fibre shortening. Pap. PuuPap. Tim. 2007, 89, 1–6. [Google Scholar]
- Heymer, J.O. Measurement of Heterogeneity in Low Consistency Pulp Refining by Comminution Modeling. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 2009. [Google Scholar]
- Modrzejewski, K.; Olszewski, J.; Rutkowski, J. Analysis in Papermaking Industry; Editorial Office of the Lodz University of Technology: Lodz, Poland, 1985; pp. 60–89. [Google Scholar]
Kappa Number | Pulp Yield | Shives | DP | Beatability |
---|---|---|---|---|
[%] | [%] | [min] | ||
89.7 | 47.2 (0.5) | 3.10 (0.28) | 1320 (35) | 6.0 |
76.5 | 46.9 (0.4) | 1.60 (0.26) | 1312 (22) | 5.8 |
63.8 | 45.7 (0.3) | 1.00 (0.02) | 1315 (4) | 5.5 |
46.6 | 43.5 (0.4) | 0.61 (0.03) | 1227 (14) | 5.1 |
41.9 | 42.3 (0.3) | 0.46 (0.03) | 1112 (10) | 5.0 |
35.2 | 41.2 (0.1) | 0.12 (0.01) | 1024 (8) | 4.8 |
29.6 | 40.5 (0.3) | 0.08 (0.01) | 929 (9) | 4.5 |
26.9 | 39.4 (0.2) | 0.05 (0.01) | 856 (11) | 4.3 |
23.7 | 38.5 (0.4) | 0.01 (0.00) | 752 (2) | 4.0 |
19.1 | 36.9 (0.3) | 0.00 (0.00) | 599 (5) | 3.2 |
Kappa Number | Brightness | Tensile Index | Breaking Energy | Stretch | Tear Index | Burst Index |
---|---|---|---|---|---|---|
[%] | [N·m/g] | [J] | [%] | [mN·m2/g] | [kPa·m2/g] | |
89.7 | 16 (0) | 8.33 (0.22) | 0.207 (0.002) | 3.09 (0.07) | 5.25 (0.02) | 6.75 (0.11) |
76.5 | 17 (0) | 8.85 (0.36) | 0.215 (0.003) | 3.02 (0.02) | 5.75 (0.09) | 6.81 (0.03) |
63.8 | 18 (0) | 9.40 (0.02) | 0.245 (0.005) | 3.25 (0.08) | 6.00 (0.10) | 7.00 (0.16) |
46.6 | 20 (0) | 9.56 (1.02) | 0.255 (0.004) | 3.32 (0.02) | 6.13 (0.11) | 7.38 (0.17) |
41.9 | 21 (0) | 9.09 (0.11) | 0.236 (0.003) | 3.24 (0.01) | 5.88 (0.12) | 6.75 (0.13) |
35.2 | 23 (0) | 8.12 (0.18) | 0.219 (0.009) | 3.36 (0.10) | 5.75 (0.12) | 6.63 (0.05) |
29.6 | 25 (0) | 7.51 (0.06) | 0.199 (0.007) | 3.31 (0.06) | 5.81 (0.03) | 6.50 (0.07) |
26.9 | 27 (1) | 7.28 (0.47) | 0.187 (0.006) | 3.21 (0.05) | 5.75 (0.04) | 6.50 (0.09) |
23.7 | 28 (0) | 6.77 (0.05) | 0.157 (0.002) | 2.90 (0.01) | 5.75 (0.07) | 6.38 (0.08) |
19.1 | 31 (1) | 6.36 (0.08) | 0.162 (0.000) | 3.17 (0.03) | 5.63 (0.06) | 6.25 (0.04) |
Kappa Number | Tensile Index | Grammage | Pulp Yield | Area of Paper Produced from 1 Metric Ton of Wood |
---|---|---|---|---|
[N·m/g] | [g/m2] | [%] | [m2] | |
89.7 | 8.33 | 91.8 | 47.2 | 5143 |
76.5 | 8.85 | 86.4 | 46.9 | 5427 |
63.8 | 9.40 | 81.4 | 45.7 | 5617 |
46.6 | 9.56 | 80.0 | 43.5 | 5438 |
41.9 | 9.09 | 84.1 | 42.3 | 5027 |
35.2 | 8.12 | 94.2 | 41.2 | 4375 |
29.6 | 7.51 | 101.9 | 40.5 | 3976 |
26.9 | 7.28 | 105.1 | 39.4 | 3749 |
23.7 | 6.77 | 113.0 | 38.5 | 3408 |
19.1 | 6.36 | 120.2 | 36.9 | 3070 |
Kappa Number | Tear Index | Grammage | Pulp Yield | Area of Paper Produced from 1 Metric Ton of Wood |
---|---|---|---|---|
[mN·m2/g] | [g/m2] | [%] | [m2] | |
89.7 | 5.25 | 93.3 | 47.2 | 5057 |
76.5 | 5.75 | 85.2 | 46.9 | 5504 |
63.8 | 6.00 | 81.7 | 45.7 | 5596 |
46.6 | 6.13 | 80.0 | 43.5 | 5438 |
41.9 | 5.88 | 83.4 | 42.3 | 5072 |
35.2 | 5.75 | 85.2 | 41.2 | 4835 |
29.6 | 5.81 | 84.3 | 40.5 | 4804 |
26.9 | 5.75 | 85.2 | 39.4 | 4623 |
23.7 | 5.75 | 85.2 | 38.5 | 4518 |
19.1 | 5.63 | 87.1 | 36.9 | 4236 |
Parameter | Pulp with a Kappa Number of 89.7 | Pulp with a Kappa Number of 63.4 | Percentage Difference |
---|---|---|---|
Yield of pulp [%] | 47.2 | 45.7 | 3.3 |
Shives content [%] | 3.10 | 1.00 | 210 |
Active alkali addition [%] | 20 | 22 | 9 |
Beatability of pulp [s] | 6.0 | 5.5 | 9 |
Tensile index [N·m/g] | 8.33 | 9.40 | 11 |
Tear index [mN·m2/g] | 5.25 | 6.00 | 12 |
Burst index [kPa·m2/g] | 6.75 | 7.00 | 3.6 |
Brightness [%] | 16 | 18 | 11 |
Area of paper produced from 1 metric ton of wood [m2] | 5057 | 5596 | 9.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małachowska, E.; Dubowik, M.; Lipkiewicz, A.; Przybysz, K.; Przybysz, P. Analysis of Cellulose Pulp Characteristics and Processing Parameters for Efficient Paper Production. Sustainability 2020, 12, 7219. https://doi.org/10.3390/su12177219
Małachowska E, Dubowik M, Lipkiewicz A, Przybysz K, Przybysz P. Analysis of Cellulose Pulp Characteristics and Processing Parameters for Efficient Paper Production. Sustainability. 2020; 12(17):7219. https://doi.org/10.3390/su12177219
Chicago/Turabian StyleMałachowska, Edyta, Marcin Dubowik, Aneta Lipkiewicz, Kamila Przybysz, and Piotr Przybysz. 2020. "Analysis of Cellulose Pulp Characteristics and Processing Parameters for Efficient Paper Production" Sustainability 12, no. 17: 7219. https://doi.org/10.3390/su12177219
APA StyleMałachowska, E., Dubowik, M., Lipkiewicz, A., Przybysz, K., & Przybysz, P. (2020). Analysis of Cellulose Pulp Characteristics and Processing Parameters for Efficient Paper Production. Sustainability, 12(17), 7219. https://doi.org/10.3390/su12177219