Development of Analytical Procedures for Chemical Characterization of Substrates for the Production of TRISO Coated Particles as Nuclear Fuel in High Temperature Gas-Cooled Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Preparation for the Determination by ICP-MS
2.3. ICP-MS Measurements
2.4. Sample Preparation for the Determination by NAA and Neutron Activation
2.5. Gamma-Ray Spectrometric Measurements
3. Results and Discussion
3.1. Chemical Characterization with the Use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
- preparation of samples and standards (U1),
- measurement by ICP-MS technique (U2).
3.2. Chemical Characterization with the Use of Neutron Activation Analysis (NAA)
- preparation of samples and standards (U1);
- neutron irradiation in the nuclear reactor (U2);
- gamma-ray spectrometric measurement (U3).
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Atomic Energy Agency. High Temperature Gas Cooled Reactor Fuels and Materials; IAEA-TECHDOC-1645; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- Nishihara, T.; Yan, X.; Tachibana, Y.; Shibata, T.; Ohashi, H.; Kubo, S.; Inaba, Y.; Nakagawa, S.; Goto, M.; Ueta, S.; et al. Excellent Feature of Japanese HTGR Technologies; JAEA-Technology 2018-004; Japan Atomic Energy Agency: Tokai, Japan, 2018. [Google Scholar] [CrossRef]
- Wang, J.; Gu, Y. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor. Nucl. Eng. Des. 2005, 235, 1761–1772. [Google Scholar] [CrossRef]
- Quade, R.N.; McMain, A.T. Hydrogen production with a high-temperature gas-cooled reactor (HTGR). In Hydrogen Energy; Veziroglu, T.N., Ed.; Plenum Press: New York, NY, USA, 1975; pp. 137–154. [Google Scholar]
- Sakaba, N.; Kasahara, S.; Onuki, K.; Kunitomia, K. Conceptual design of hydrogen production system with thermochemical water-splitting iodine–sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR. Int. J. Hydrog. Energy 2007, 32, 4160–4169. [Google Scholar] [CrossRef]
- Chao Fang, C.; Morris, R.; Li, F. Safety features of high temperature gas cooled reactor. Sci. Technol. Nucl. Install. 2017, 2017, 9160971. [Google Scholar] [CrossRef]
- Verfondern, K.; Nabielek, H.; Kendall, J.M. Coated particle fuel for high temperature gas cooled reactors. Nucl. Eng. Technol. 2007, 39, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Petti, D.A.; Buongiorno, J.; Maki, J.T.; Hobbins, R.R.; Miller, G.K. Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 2003, 222, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Tang, Y.; Zhu, J.; Qiu, X.; Li, J.; Xu, S. Research and development of fuel element for Chinese 10 MW high temperature gas-cooled reactor. J. Nucl. Sci. Technol. 2000, 37, 802–806. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, Z.; Zhang, J.; Liu, B.; Zou, Y.; Tang, C.; Tang, Y. Preparation of spherical fuel elements for HTR-PM in INET. Nucl. Eng. Des. 2013, 263, 456–461. [Google Scholar]
- Fu, X.; Takahashi, M.; Ueta, S.; Sawa, K. Comparison of HTGR Fuel Design, Manufacture and Quality Control Methods between Japan and China; JAERI–Tech 2002-049; Japan Atomic Energy Research Institute: Tokai, Japan, 2002.
- Brykała, M.; Deptuła, A.; Rogowski, M.; Łada, W.; Olczak, T.; Wawszczak, D.; Smoliński, T.; Wójtowicz, P.; Modolo, G. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols. J. Radioanal. Nucl. Chem. 2014, 299, 651–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brykała, M.; Deptuła, A.; Rogowski, M.; Łada, W. Modification of ICHTJ sol gel process for preparation of medium sized ceramic spheres (Ø < 100 µm). Ceram. Int. 2015, 41, 13025–13033. [Google Scholar]
- Brykała, M.; Rogowski, M.; Olczak, T. Carbonization of solid uranyl-ascorbate gel as an indirect step of uranium carbide synthesis. Nukleonika 2015, 60, 921–925. [Google Scholar] [CrossRef] [Green Version]
- Brykała, M.; Rogowski, M. Preparation of microspheres of carbon black dispersion in uranyl-ascorbate gels as precursors for uranium carbide. Prog. Nucl. Energy 2016, 89, 132–139. [Google Scholar] [CrossRef]
- Brykała, M.; Rogowski, M. Complex sol-gel process for producing small ThO2 microspheres. J. Nucl. Mater. 2016, 473, 249–255. [Google Scholar] [CrossRef]
- De Souza, A.L.; Cotrim, M.E.B.; Pires, M.A.F. An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem. J. 2013, 106, 194–201. [Google Scholar] [CrossRef]
- Sadikov, I.I.; Rakhimov, A.V.; Salimov, M.I.; Zinov’ev, V.G.; Mukhamedshina, N.M.F.; Tashimova, A. Neutron activation analysis of pure uranium: Preconcentration of impurity elements. J. Radioanal. Nucl. Chem. 2009, 280, 489–493. [Google Scholar] [CrossRef]
- Oliveira Junior, O.P.; Sarkis, J.E.S. Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method. J. Radioanal. Nucl. Chem. 2002, 254, 519–526. [Google Scholar] [CrossRef]
- Bürger, S.; Riciputi, L.R.; Bostick, D.A. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J. Radioanal. Nucl. Chem. 2007, 274, 491–505. [Google Scholar] [CrossRef]
- Ishikawa, K. Introduction to Quality Control; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- International Organization for Standardization. ISO Guide to the Expression of Uncertainty in Measurement (GUM); International Organization for Standardization: Geneva, Switzerland, 1993. [Google Scholar]
- EUROLAB. Measurement Uncertainty Revisited: Alternative Approaches to Uncertainty Evaluation; Technical Report 1/2007; European Federation of National Associations of Measurement, Testing and Analytical Laboratories: Brussels, Belgium, 2007. [Google Scholar]
- Meyer, V.R. Measurement uncertainty. J. Chromatogr. A 2007, 1158, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Namieśnik, J. Quality Assurance and Quality Control in the Chemical Laboratory: A Practical Approach; CRC Press Inc–Taylor & Francis Ltd.: Boca Raton, FL, USA; London, UK, 2009. [Google Scholar]
- Rogers, V.C. Detection limits for gamma-ray spectral analysis. Anal. Chem. 1970, 42, 807–808. [Google Scholar] [CrossRef]
Element (Unit) | Content | ||||||
---|---|---|---|---|---|---|---|
Ethanol | 30 % NH3 Solution | Extraction Gasoline | Gasoline | Ascorbic Acid | Silicone Oil | HMTA 1 | |
U (ppb) | <LOD 2 | 5.4 | <LOD | 5.4 | <LOD | 152 | <LOD |
Mn (ppb) | <LOD | <LOD | 39.5 | <LOD | 189 | 1269 | 926 |
Co (ppb) | <LOD | <LOD | 30.1 | <LOD | <LOD | <LOD | <LOD |
Cd (ppb) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Th (ppb) | <LOD | 131 | 182 | <LOD | <LOD | 1899 | <LOD |
Cu (ppb) | <LOD | <LOD | <LOD | <LOD | <LOD | 1413 | 524 |
Pb (ppb) | <LOD | <LOD | <LOD | <LOD | 987 | 1015 | 602 |
Cr (ppb) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 970 |
V (ppb) | <LOD | <LOD | <LOD | <LOD | <LOD | 205 | <LOD |
Sb (ppb) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Al (ppm) | <LOD | 0.5 | 0.3 | 0.2 | 17.9 | 47.9 | <LOD |
Ni (ppm) | <LOD | <LOD | 0.7 | <LOD | <LOD | 2.5 | <LOD |
Fe (ppm) | 0.3 | 0.6 | 1.4 | <LOD | <LOD | 186 | 153 |
Zn (ppm) | <LOD | <LOD | <LOD | <LOD | 0.2 | 5.0 | <LOD |
Element | LOD, mg/ kg (ppm) | Element | LOD, mg/kg (ppm) |
---|---|---|---|
Al | 0.150 | Ni | 0.100 |
Cd | 0.006 | Pb | 0.030 |
Cr | 0.255 | Sb | 0.060 |
Co | 0.005 | Th | 0.003 |
Cu | 0.050 | U | 0.001 |
Fe | 0.090 | V | 0.054 |
Mn | 0.010 | Zn | 0.053 |
Element | Concentration, ng/g (ppb) | Element | Concentration, ng/g (ppb) |
---|---|---|---|
Co | 678 | Hf | 648 |
Eu | 42 | Sc | 140 |
Fe | 980 |
Element | Detection Limit, ng/g (ppb) | Element | Detection Limit, ng/g (ppb) |
---|---|---|---|
Ag | 80 | Hf | 10 |
Ce | 850 | Rb | 200 |
Co | 100 | Sb | 150 |
Cr | 2500 | Sc | 10 |
Eu | 10 | Se | 150 |
Fe | 1500 | Zn | 750 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chajduk, E.; Kalbarczyk, P.; Dudek, J.; Pyszynska, M.; Bojanowska-Czajka, A.; Samczyński, Z. Development of Analytical Procedures for Chemical Characterization of Substrates for the Production of TRISO Coated Particles as Nuclear Fuel in High Temperature Gas-Cooled Reactors. Sustainability 2020, 12, 7221. https://doi.org/10.3390/su12177221
Chajduk E, Kalbarczyk P, Dudek J, Pyszynska M, Bojanowska-Czajka A, Samczyński Z. Development of Analytical Procedures for Chemical Characterization of Substrates for the Production of TRISO Coated Particles as Nuclear Fuel in High Temperature Gas-Cooled Reactors. Sustainability. 2020; 12(17):7221. https://doi.org/10.3390/su12177221
Chicago/Turabian StyleChajduk, Ewelina, Paweł Kalbarczyk, Jakub Dudek, Marta Pyszynska, Anna Bojanowska-Czajka, and Zbigniew Samczyński. 2020. "Development of Analytical Procedures for Chemical Characterization of Substrates for the Production of TRISO Coated Particles as Nuclear Fuel in High Temperature Gas-Cooled Reactors" Sustainability 12, no. 17: 7221. https://doi.org/10.3390/su12177221
APA StyleChajduk, E., Kalbarczyk, P., Dudek, J., Pyszynska, M., Bojanowska-Czajka, A., & Samczyński, Z. (2020). Development of Analytical Procedures for Chemical Characterization of Substrates for the Production of TRISO Coated Particles as Nuclear Fuel in High Temperature Gas-Cooled Reactors. Sustainability, 12(17), 7221. https://doi.org/10.3390/su12177221