Key Factors Assessment on Bird Strike Density Distribution in Airport Habitats: Spatial Heterogeneity and Geographically Weighted Regression Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dependent Variable and Independent Variables
2.3. Spatial Autocorrelation
2.4. The Geographically Weighted Regression Model
3. Results and Discussion
3.1. The Spatial Features of Season-Level Bird Strike Estimation
3.2. The GWR Model Estimation
3.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pfeiffer, M.B.; Blackwell, B.F.; DeVault, T.L. Quantification of avian hazards to military aircraft and implications for wildlife management. PLoS ONE 2018, 13, e0206599. [Google Scholar] [CrossRef] [Green Version]
- Soldatini, C.; Albores-Barajas, Y.V.; Lovato, T.; Andreon, A.; Torricelli, P.; Montemaggiori, A.; Corsa, C.; Georgalas, V. Wildlife strike risk assessment in several Italian airports: Lessons from BRI and a new methodology implementation. PLoS ONE 2011, 6, e28920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roca-González, J.L.; Vera-Lopez, J.A.; Rodriguez-Bermudez, G. Organisational and costing aspects to prevent wildlife strikes on airports: A case study of Spanish airport security managers. Saf. Sci. 2020, 122, 104520. [Google Scholar] [CrossRef]
- Soldatini, C.; Georgalas, V.; Torricelli, P.; Albores-Barajas, Y.V. An ecological approach to birdstrike risk analysis. Eur. J. Wildl. Res. 2010, 56, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Kitowski, I.; Grzywaczewski, G.; Cwiklak, J.; Grzegorzewski, M.; Krop, S. Falconer activities as a bird dispersal tool at Deblin Airfield (E Poland). Transp. Res. Part D Transp. Environ. 2011, 16, 82–86. [Google Scholar] [CrossRef]
- DeVault, T.L.; Seamans, T.W.; Schmidt, J.A.; Belant, J.L.; Blackwell, B.F.; Mooers, N.; Tyson, L.A.; Van Pelt, L. Bird use of solar photovoltaic installations at US airports: Implications for aviation safety. Landsc. Urban Plan. 2014, 122, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Swaddle, J.P.; Moseley, D.L.; Hinders, M.K.; Smith, E.P. A sonic net excludes birds from an airfield: Implications for reducing bird strike and crop losses. Ecol. Appl. 2016, 26, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safety Regulation Group. Birdstrike Risk Management for Aerodromes; Civil Aviation Authority (CAA): London, UK, 2008; CAP 772. [Google Scholar]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Koh, C.N.; Lee, P.F.; Lin, R.S. Bird species richness patterns of northern Taiwan: Primary productivity, human population density, and habitat heterogeneity. Divers. Distrib. 2006, 12, 546–554. [Google Scholar] [CrossRef]
- Bespalov, A.F.; Belyaev, A.N. The dynamics of fauna and population of birds in agricultural landscapes on the border of Kazan International Airport. IOP Conf. Ser. Earth Environ. Sci. 2018, 107, 12082. [Google Scholar] [CrossRef]
- Blackwell, B.F.; Seamans, T.W.; Schmidt, P.M.; De Vault, T.L.; Belant, J.L.; Whittingham, M.J.; Martin, J.A.; Fernández-Juricic, E. A framework for managing airport grasslands and birds amidst conflicting priorities. Ibis (Lond. 1859) 2013, 155, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Crain, A.R.; Belant, J.L.; DeVault, T.L. Carnivore incidents with U.S. civil aircraft. Transp. Res. Part D Transp. Environ. 2015, 36, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Coccon, F.; Zucchetta, M.; Bossi, G.; Borrotti, M.; Torricelli, P.; Franzoi, P. A land-use perspective for birdstrike risk assessment: The attraction risk index. PLoS ONE 2015, 10, e0128363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, M.B.; Kougher, J.D.; DeVault, T.L. Civil airports from a landscape perspective: A multi-scale approach with implications for reducing bird strikes. Landsc. Urban Plan. 2018, 179, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, A.; Chakraborty, J. Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida. Soc. Sci. Res. 2011, 40, 273–286. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. The geography of parameter space: An investigation of spatial non-stationarity. Int. J. Geogr. Inf. Syst. 1996, 10, 605–627. [Google Scholar] [CrossRef]
- Brown, S.; Versace, V.L.; Laurenson, L.; Ierodiaconou, D.; Fawcett, J.; Salzman, S. Assessment of Spatiotemporal Varying Relationships between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression. Environ. Model. Assess. 2012, 17, 241–254. [Google Scholar] [CrossRef]
- Qian, X.; Ukkusuri, S.V. Spatial variation of the urban taxi ridership using GPS data. Appl. Geogr. 2015. [Google Scholar] [CrossRef]
- Wang, S.; Shi, C.; Fang, C.; Feng, K. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Appl. Energy 2019, 235, 95–105. [Google Scholar] [CrossRef]
- Blackwell, B.F.; Wright, S.E. Collisions of Red-tailed Hawks (Buteo Jamaicensis), Turkey Vultures(Cathartes Aura), and Black Vultures (Coragyps Atratus) with Aircraft: Implications for Bird Strike Reduction. J. Raptor Res. 2006, 40, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Yan, J. Kernel Density Estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Hirzel, A.H.; Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 2008, 45, 1372–1381. [Google Scholar] [CrossRef]
- Blackwell, B.F.; DeVault, T.L.; Fernández-Juricic, E.; Dolbeer, R.A. Wildlife collisions with aircraft: A missing component of land-use planning for airports. Landsc. Urban Plan. 2009, 93, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fox, B.J.; Holland, W.B.; Boyd, F.L.; Blackwell, B.F.; Armstrong, J.B. Use of stormwater impoundments near airports by birds recognized as hazardous to aviation safety. Landsc. Urban Plan. 2013, 119, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Morelli, F.; Benedetti, Y.; Ibáñez-Álamo, J.D.; Jokimäki, J.; Mänd, R.; Tryjanowski, P.; Møller, A.P. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 2016, 25, 1284–1293. [Google Scholar] [CrossRef]
- Jeffery, R.F.; Buschke, F.T. Urbanization Around an Airfield Alters Bird Community Composition, but not the Hazard of Bird-Aircraft Collision. Environ. Conserv. 2019, 46, 124–131. [Google Scholar] [CrossRef]
- Rugel, E.J.; Henderson, S.B.; Carpiano, R.M.; Brauer, M. Beyond the Normalized Difference Vegetation Index (NDVI): Developing a Natural Space Index for population-level health research. Environ. Res. 2017, 159, 474–483. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.K.; Nölke, N.; Diwakara, B.N.; Tewari, V.P.; Kleinn, C. Differences in tree species diversity along the rural-urban gradient in Bengaluru, India. Urban For. Urban Green. 2019, 46, 126464. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Dordrecht, The Netherlands, 1988; ISBN 978-94-015-7360-3. [Google Scholar]
- Griffith, D.; Chun, Y. Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642234309. [Google Scholar]
- Su, Y.; Chen, X.; Li, Y.; Liao, J.; Ye, Y.; Zhang, H.; Huang, N.; Kuang, Y. Chinas 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines. Renew. Sustain. Energy Rev. 2014, 35, 231–243. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model. Energy Policy 2017, 104, 404–414. [Google Scholar] [CrossRef]
- Gelfand, A.E.; Kim, H.J.; Sirmans, C.F.; Banerjee, S. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 2003, 98, 387–396. [Google Scholar] [CrossRef]
- Mondal, B.; Das, D.N.; Dolui, G. Modeling spatial variation of explanatory factors of urban expansion of Kolkata: A geographically weighted regression approach. Model. Earth Syst. Environ. 2015, 1, 1–13. [Google Scholar] [CrossRef]
- Dolbeer, R.; Wright, S. Wildlife strikes to civil aircraft in the United States 1990–2013. Other Bird Strike Aviat. Mater. 2014. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Wang, Q.; Ni, J.; Tenhunen, J. Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Glob. Ecol. Biogeogr. 2005, 14, 379–393. [Google Scholar] [CrossRef]
- Seress, G.; Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 2015, 61, 373–408. [Google Scholar] [CrossRef]
- Washburn, B.E. Avian use of solid waste transfer stations. Landsc. Urban Plan. 2012, 104, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Leveau, L.M.; Isla, F.I.; Bellocq, M.I. Predicting the seasonal dynamics of bird communities along an urban-rural gradient using NDVI. Landsc. Urban Plan. 2018, 177, 103–113. [Google Scholar] [CrossRef]
- Zhao, H.L.; Wang, T.; Yang, F.; Yang, G.S. Bird diversity and bird strike risk at Zhalantun Genghis Khan airport. Chin. J. Ecol. 2016. [Google Scholar] [CrossRef]
- Blackwell, B.F.; Schafer, L.M.; Helon, D.A.; Linnell, M.A. Bird use of stormwater-management ponds: Decreasing avian attractants on airports. Landsc. Urban Plan. 2008, 86, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wei, J.; Guo, Z. Deployment and strategy formulation of airport bird-driving equipment based on efficiency analysis. In Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 9–11 May 2019; pp. 218–223. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J. Design and Implementation of Assessment System of Airport Bird-Scaring Equipment Effectiveness Based on Fuzzy Comprehensive Evaluation. In Proceedings of the 2016 6th International Conference on Digital Home (ICDH), Guangzhou, China, 2—4 December 2016; pp. 16–164. [Google Scholar] [CrossRef]
- Carter, N. A Decade of Change for the Israeli Air Force. In Proceedings of the 2011 Bird Strike North America Conference, Niagara Falls, NY, USA, 12–15 September 2011. [Google Scholar]
- Hart, J.D.; Colyer, A.; Allan, J.R. Developing bird-strike risk assessment models for open-water restorations. Human Wildl. Confl. 2009, 3, 186–198. [Google Scholar]
- Blackwell, B.F.; Schmidt James, A.; Martin, P.M. Avian Survey Methods for Use at Airports. Univ. Nebraska–Lincoln. 2013, 14, 153–165. [Google Scholar]
Variable | Description | Min | Median | Mean | Max | Std. Dev |
---|---|---|---|---|---|---|
KDE 1 | Kernel Density Estimation of bird strike (bird strikes/km2) | 0.00 | 0.01 | 0.09 | 0.66 | 0.14 |
P 2 | Human population density (people/km2) | 466.6 | 1576.8 | 1463.0 | 4000.9 | 663.77 |
NDVI 2 | Normalized difference vegetation index | 0.31 | 0.65 | 0.62 | 0.82 | 0.12 |
BD 3 | Bird diversity index | 0.46 | 0.81 | 0.80 | 1.44 | 0.19 |
RNE 1 | The reciprocal of the nearest Euclidean distance from the center of the grid to the water body (1/km) | 0.06 | 0.21 | 0.92 | 137.94 | 5.40 |
Season | Global Moran’s I | z-Score | p-Value |
---|---|---|---|
Spring | 0.941 | 38.603 | 0 |
Summer | 0.924 | 37.915 | 0 |
Autumn | 0.939 | 38.493 | 0 |
Winter | 0.879 | 36.297 | 0 |
Variable | Spring | Summer | ||||
Coefficient | Pr. (> |t|) | VIF | Coefficient | Pr. (> |t|) | VIF | |
Intercept | -0.000 | 1.000 | −0.000 | 1.000 | ||
P | 0.059 | 0.143 | 1.57 | −0.026 | 0.471 | 1.43 |
NDVI | −0.106 * | 0.015 | 1.86 | 0.264 *** | 0.000 | 1.32 |
BD | −0.321 *** | 0.000 | 1.26 | −0.481 *** | 0.000 | 1.22 |
RNE | −0.006 | 0.842 | 1.03 | 0.017 | 0.558 | 1.01 |
R2 | 0.10 | 0.22 | ||||
Variable | Autumn | Winter | ||||
Coefficient | Pr. (> |t|) | VIF | Coefficient | Pr. (> |t|) | VIF | |
Intercept | 0.000 | 1.000 | −0.000 | 1.000 | ||
P | 0.056 | 0.141 | 1.29 | 0.083 * | 0.014 | 1.33 |
NDVI | 0.175 *** | 0.000 | 1.29 | −0.036 | 0.284 | 1.34 |
BD | 0.045 | 0.199 | 1.10 | −0.483 *** | 0.000 | 1.01 |
RNE | −0.031 | 0.349 | 1.01 | 0.033 | 0.268 | 1.01 |
R2 | 0.03 | 0.24 |
Quarter | Parameter Name | OLS | GWR | Delta Variation |
---|---|---|---|---|
Spring | R2 | 0.10 | 0.54 | 0.44 ↑ |
RSS | 806.202 | 407.462 | 398.74 ↓ | |
AIC | 2453.177 | 1877.120 | 576.06 ↓ | |
Summer | R2 | 0.22 | 0.45 | 0.23 ↑ |
RSS | 695.992 | 495.773 | 200.22 ↓ | |
AIC | 2322.056 | 2052.568 | 269.49 ↓ | |
Autumn | R2 | 0.03 | 0.47 | 0.44 ↑ |
RSS | 867.866 | 473.325 | 394.54 ↓ | |
AIC | 2518.920 | 2011.568 | 507.35 ↓ | |
Winter | R2 | 0.24 | 0.50 | 0.26 ↑ |
RSS | 676.372 | 442.595 | 233.78 ↓ | |
AIC | 2296.549 | 1949.597 | 346.95 ↓ |
Variable | Spring: GWR Coefficients | Summer: GWR Coefficients | ||||||
Min | Max | Std. Dev | p-Value | Min | Max | Std. Dev | p-Value | |
P | −0.859 | 0.390 | 0.195 | 0.000 | −0.773 | 0.738 | 0.325 | 0.000 |
NDVI | −0.930 | 0.598 | 0.324 | 0.000 | −0.127 | 0.470 | 0.138 | 0.000 |
BD | −0.855 | 0.918 | 0.356 | 0.000 | −0.784 | −0.098 | 0.168 | 0.000 |
RNE | −34.318 | 0.427 | 1.598 | 0.0002 | −20.488 | 0.869 | 1.226 | 0.022 |
Variable | Autumn: GWR coefficients | Winter: GWR coefficients | ||||||
Min | Max | Std. Dev | p-Value | Min | Max | Std. Dev | p-Value | |
P | −0.395 | 0.499 | 0.252 | 0.000 | −0.455 | 0.753 | 0.279 | 0.000 |
NDVI | −0.373 | 0.801 | 0.309 | 0.000 | −0.733 | 0.219 | 0.248 | 0.000 |
BD | −0.366 | 1.426 | 0.347 | 0.000 | −1.011 | −0.014 | 0.303 | 0.000 |
RNE | −22.027 | 0.140 | 1.300 | 0.000 | -8.926 | 0.840 | 0.588 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Q.; Zhou, Y.; Zhu, P.; Ma, Y.; Shao, M. Key Factors Assessment on Bird Strike Density Distribution in Airport Habitats: Spatial Heterogeneity and Geographically Weighted Regression Model. Sustainability 2020, 12, 7235. https://doi.org/10.3390/su12187235
Shao Q, Zhou Y, Zhu P, Ma Y, Shao M. Key Factors Assessment on Bird Strike Density Distribution in Airport Habitats: Spatial Heterogeneity and Geographically Weighted Regression Model. Sustainability. 2020; 12(18):7235. https://doi.org/10.3390/su12187235
Chicago/Turabian StyleShao, Quan, Yan Zhou, Pei Zhu, Yan Ma, and Mengxue Shao. 2020. "Key Factors Assessment on Bird Strike Density Distribution in Airport Habitats: Spatial Heterogeneity and Geographically Weighted Regression Model" Sustainability 12, no. 18: 7235. https://doi.org/10.3390/su12187235
APA StyleShao, Q., Zhou, Y., Zhu, P., Ma, Y., & Shao, M. (2020). Key Factors Assessment on Bird Strike Density Distribution in Airport Habitats: Spatial Heterogeneity and Geographically Weighted Regression Model. Sustainability, 12(18), 7235. https://doi.org/10.3390/su12187235